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ABSTRACT

The primary goal of this paper is to give examples of the re-
cently developed (finite-field) wavelet coding method by studying
the encoder and decoder for some half-rate codes. We propose
a decoding methodology based on estimating the polyphase com-
ponents of the channel error pattern. To demonstrate the striking
computational savings of the wavelet coding method over alterna-
tives, we show that bounded-distance decoding of the (24,12,8)
Golay code requires only weight computations (or at the worst
case, it needs a cyclic lookup table of table size 12). The simplic-
ity and computational savings that finite field wavelets offer for
the encoding and decoding of wavelet block codes indicate their
powerful capacities for error control coding applications.

1. INTRODUCTION

Recently, wavelet decompositions have been extended to signals
that can be considered as sequences defined over finite fields, in
particular, fields of characteristic two [1, 2]. The notion of per-
forming error control coding using wavelet has evolved from our
earlier studies of self-dual codes [3]. Later, we established a new
framework to study block codes [4, 5] as well as convolutional
codes [6]. Inspired by [3], in this paper we generalize the wavelet
decoding strategy to correct multiple errors. To accomplish this,
a method is proposed to remove the interference terms from the
estimates of the polyphase components of the error pattern. As ex-
amples, we will give descriptions of the decoders for a (20,10,6)
and Golay code. More in-depth study of half-rate wavelet codes
can be found in [4].

1.1. Notations and Definitions

We use the following notation and definitions:

� The letters N , M and d are reserved for the code-length,
message-length, and minimum distance, respectively.

� We reserve F[z�1] to represent polynomial rings in z�1

over the field F. We also use uppercase and lowercase let-
ters with arguments (z) for polynomials in F[z�1].

� F[z�1]=(z�M � 1) designates the ring of polynomials of
degree less than M in which the rules of polynomial addi-
tion and multiplication hold, except that polynomial multi-
plication is performed mod(z�M � 1).

� The upper and lower case Italic letters correspond to matri-
ces and vectors, respectively.

� Let a(z) = a0+a1z
�1+� � �+aM�1z

�(M�1) be a polyno-
mial in F[z�1]=(z�M � 1) defined by the vector of coeffi-
cients a = [a0; : : : ; aM�1]. We call aR = [a0; aM�1; : : : ; a1]
the circular-reciprocal of the vector a, and the polynomial
aR(z) the circular-reciprocal of a(z).

� We define a cyclic LTI system as a linear time invariant
(LTI) filter where the operation of linear convolution is re-
placed by circular convolution. This means that all of the
time indices in a cyclic LTI systems are interpreted as mod-
ulo some number. Throughout the paper, we denote ((�))N
for a modulo-N operation, or equivalently an N -point cir-
cular shift.

� We use q-circ(b) to represent q-circulant matrices. A q-
circulant matrix is defined by its first row b. The ith row
is equal to the left-to-right cyclic shift of the vector b by
(i� 1)q.

� Consider two finite sequences x = [x0; : : : ; xM�1]
T , h =

[h0; : : : ; hM�1] and define y(n) = h(n)�x(n) as their cir-
cular convolution. Then we write the circular convolution
in a matrix form y = Hx in which H = 1-circ(hR).

2. STRUCTURE OF DOUBLE CIRCULANT WAVELET
CODES

In the study of block codes, we will frequently exploit the iso-
morphism between the algebra of M � M one-circulant matri-
ces over the field F and the algebra of polynomials in the ring
F[z�1]=(z�M � 1) [7]. In other words, the addition and multi-
plication of two polynomials in F[z�1]=(z�M �1) are equivalent
to the addition and multiplication of their corresponding circulant
matrices, respectively. In the following, we first give a formula-
tion of cyclic filter banks in which all the filters, interpolators and
decimators are cyclic.

2.1. Cyclic Wavelet Transforms over the Field F

It is well known that wavelet decomposition and reconstruction
can be implemented as the analysis and synthesis components of a
perfect reconstruction filter bank, respectively. Figure 1 shows the
analysis and synthesis banks of a two-channel perfect reconstruc-
tion filter bank in which the synthesis filters g0(n) and g1(n) are
the scaling sequence and mother wavelet, respectively. In [1] the
authors show how to decompose a vector space V over a finite-field
F onto two orthogonal subspaces. In particular, a design method-
ology is presented in [1] and [2] to obtain the analysis and synthe-
sis filters over the fields of characteristic 2, GF (2r), that results in
a two-channel perfect-reconstruction orthogonal filter bank.

Since the codewords of half-rate block codes have finite even
length, the vector space V is considered to be a vector space of
finite dimension N = 2M . It can also be regarded as a space of
periodic sequences of period N . Next, we characterize the two-
channel cyclic multirate systems that are used in the construction
of half-rate codes. Consider a two-channel perfect reconstruction
filter bank with the scaling sequence g0(n) = fg0(0); g0(1); � � � ;
g0(N�1)g and the mother wavelet g1(n) = fg1(0); g1(1); � � � ; g1
(N � 1)g. In the analysis bank of Fig. 1, the operation of filtering
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Fig. 1. Diagram of the two-band filter bank

periodic signals followed by decimation by a factor of two can be
described using 2-circulant matrices

y0(n) =
PN�1

i=0
x(i)h0((2n� i))N = (H0x)(n)

y1(n) =
PN�1

i=0
x(i)h1((2n� i))N = (H1x)(n);

(1)

in which H0 = 2-circ(hR0 ) and H1 = 2-circ(hR1 ) are 2-circulant
matrices defined by the analysis filters h0(n) and h1(n).

Similarly, in the synthesis bank, the upsampling of periodic
signals by a factor of two followed by the filtering operation can be
described by (column-wise) 2-circulant matricesG0 = [2-circ(g0)]T

and G1 = [2-circ(g1)]T :

x(n) =

M�1X

i=0

y0(i)g0((n� 2i))N +

M�1X

i=0

y1(i)g1((n� 2i))N

= (G0y0)(n) + (G1y1)(n):
(2)

The above formulation holds for the general class of two-channel
cyclic filter banks. The properties of Hi and Gj and their relation
to each other were discussed in [5]

2.2. Structure of Encoder and Syndrome Generator

Figure 2a shows the encoder for the (N;M; d) wavelet-code over
a finite field F. The encoder is realized by the synthesis portion of
the two-band filter bank in which go(n) and g1(n) are an orthonor-
mal wavelet basis of length N over F. According to Fig. 2a, the
encoder takes a message block m(n) of size M = N=2 and maps
it to the codeword c(n) (of size N ) by expanding it by a factor of
two through the interpolator.

Fact 1 The following holds in the encoder of Fig. 2a.

� The (N;M; d) wavelet code is a linear code. This can
be verified by the linearity and invertibility of the wavelet
transform.

� The code is double circulant. The double circulant property
requires that if c(n) = fc(0); c(1); : : : ; c(N � 1)g is a
codeword, then c((n � 2))N is also a codeword. To prove
this, let c(n) be a codeword associated with the message
m(n), then by the property of the multirate filters, there
exists a message datum m((n�1))M that is mapped to the
codeword c((n� 2))N .

� It can be shown that G = G0 + G1 is the generator ma-
trix for the wavelet-code (i.e., c = Gm) in which the two
matrices G0 and G1 are obtained by (??).

In the following we show that the structure in Fig. 2.b con-
structs the syndrome of the code. We write:

s = (H0 +H1)(c+ e); (3)
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Fig. 2. Filter bank structure of the half-rate encoder and syndrome
generator

in which e is the error pattern due to the communication channel.
Using the equality c = (G0 + G1)m and the relations that we
developed for cyclic orthogonal filter banks, it can be verified that:

s = (H0 +H1)e: (4)

Therefore, the output of the system in Fig. 2b depends only on the
error pattern.

It is worth noting that both the encoder and syndrome gener-
ator in Fig. 2 can be implemented by a polyphase structure effi-
ciently [5].

3. DECODING WAVELET CODES

In [3], the authors gave a full description of the complete-decoder
for the (12,6,4) binary self-dual code. Here, we show that the strat-
egy for decoding wavelet codes (that correct more than one bit er-
ror in a block) is very similar to that of the (12,6,4) code (that cor-
rects one bit error). First we give a bounded-distance decoder for a
(20,10,6) code (not a self-dual code). Then, we describe bounded-
decoding of the (24,12,8) wavelet-Golay code.

3.1. Bounded-Distance Decoding of (20,10,6) Double Circu-
lant Wavelet Code

It can be verified that the (20,10,6) code can be constructed by
the wavelet-encoder of Fig. 2a by choosing the scaling function
g0(n) = f88015g and the mother wavelet g1(n) = fFBB9Eg
(The filter coefficients result by converting the Hexadecimal num-
bers to binary). Note that g0(n) and g1(n) construct a cyclic
biorthogonal filter bank whose relationship to the analysis bank
filters has been discussed in [4].

As shown in Fig. 3 , the syndrome of the error can be gener-
ated by filtering followed by decimation by a factor of two in which
the filter coefficients are h(n) = fB9DC5g [5]. The polyphase
components of H(z) are u00(n) and u01(n). The remaining prob-
lem is to interpolate the low (M ) dimensional syndrome s(n) into
the higher (N ) dimensional error pattern e(n). Since more than
one error pattern is mapped into the same low dimensional syn-
drome, the interpolator should choose (out of those possible valid
choices) the error pattern that is most likely (has minimum weight)
to achieve the maximum likelihood ML decoder performance.

We build a bounded-distance decoder that is guaranteed to cor-
rect all errors of weight one and two. Our approach to design
the decoder is based on inverting the polyphase filters u00(n) =
h(2n) and u01(n) = h(2n + 1) of the syndrome generator filter
h(n). Let r00(n) and r01(n) be two filters with the z-transform in
F[z�1]=(z�M � 1) satisfying:

R0i(z)U0i(z) = 1 mod (z�M � 1) i = 0; 1: (5)
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In other words, these two filters are the circular inverses of u00(n)
and u01(n), respectively. For the (20,10,6) code we have:

r00(n) = f1; 0; 0; 0; 0; 1; 0; 1; 1; 1g
r01(n) = f1; 0; 1; 1; 1; 1; 0; 1; 1; 0g:

(6)

Now, define e00(n) and e01(n) as the polyphase components of
the error signal e(n). In this way, we distinguish between those
errors that occur in the even time indexes from those occur in the
odd time indexes.

Figure 4 shows the structure of the multirate filters that esti-
mate the error signal from the syndrome sequence and then ex-
tracts the message from the corrected received signal. Table 1 de-
scribes the logic that governs the decoder. The first and second
columns of this table are the weights of the polyphase components
of e(n). As shown in Fig. 3, these polyphase components are in-
puts for the two filters u00(n) and u01(n). The third and fourth
columns give the weight of the response of the filters r00(n) and
r01(n) to the syndrome, respectively. Note that the interference
term �eo(n) is induced by e00(n) on y1(n). Similarly, the inter-
ference term �oe(n) is induced by e01(n) on y0(n). Define:

�oe(n) = u01(n) � r00(n) �eo(n) = u00(n) � r01(n): (7)

Since we only consider error patterns of weight up to two, it can be
verified that �oe(n) = �oe((n � n0))M and �eo(n) = �eo((n �
n1))M for some integers n0 and n1. The fifth and sixth columns of
the table gives the weight of the outputs y0(n) and y1(n), respec-
tively. Finally, the last column specifies the node whose output is
used as an estimate of the error pattern ~e(n). The decoding algo-
rithm works as following. First, the decoder determines the weight
of the error in its even and odd time indexes. In other words, the
decoder should determine wt(e00(n)) and wt(e01(n)). As shown
in the table this can be done by just computing wt(y0(n)) except
for the case when wt(e00(n)) = wt(e01(n)) = 1 (the last row of
the table) which can be confused with the case wt(e00(n)) = 0
and wt(e01(n)) = 2 (the fifth row in the table). Therefore, when-
ever wt(y0(n)) is equal to either 4 or 6, the decoder should com-
pute wt(y1(n)) to determine whether the case lies on the fifth row

Table 1. Description of the logic that governs the bounded-
decoding of (20,10,6) code.

wt(e00)wt(e01) y0(n) y1(n) wt(y0) wt(y1) output

0 0 zero zero 0 0 -
1 0 e00(n) �eo(n) 1 7 node 1
0 1 �oe(n) e01(n) 5 1 node 2
2 0 e00(n) �eo(n) 2 4,6 node 1
0 2 �oe(n) e01(n) 4,6 2 node 2
1 1 e00(n)+

�oe(n)
e01(n)+
�eo(n)

4,6 6,8 node 3

or on the last row of the table. The second step after comput-
ing the weight of e00(n) and e01(n), is to estimate e(n). It is
clear from the table that except for the case where wt(e00(n)) =
wt(e01(n)) = 1, the correct estimate appears at either node 1 or
node 2 in Fig. 4. For the case wt(e00(n)) = wt(e01(n)) = 1,
the decoder needs to determine the interference term �oe(n) =
�oe((n�n0))M . This is equivalent to finding the integer n0 which
is the appropriate cyclic shift of �oe((n � n0))M . This requires
trying all ten possible n0 and computing the weight of x0(n). It
can be shown that the value of n0 for which wt(x0(n)) = 1 cor-
responds to the exact interference term. For this value of n0, the
polyphase components of the error e(n) are x0(n) = e00(n) and
e01(n) = Æ(n � n0). Once e(n) is determined by its polyphase
components (the output of the node 3 in Fig. 4), it can be used to
correct the received code word which further passes through the
filter h0(n) and the downsampler (one of the branches of the anal-
ysis bank) to extract the message block.

3.2. Bounded-distance Decoding of the Wavelet-Golay Code

In [4], it has been shown that any double circulant self-dual code
can be constructed by a cyclic orthogonal wavelet system. It can
be verified that the (24,12,8) Golay code can be constructed by
the wavelet-encoder of Fig. 2a by choosing the scaling function
and mother wavelet as g0 = fA80011g and g1 = f40DD55g,
respectively. Figure 3 generates the syndrome of the error in which
the syndrome generator filter is h(n) = f915D8Bg.

The decoder acts very similar to the decoder described for the
(20,10,6) code. Figure 5 shows the structure of the multirate filters
that estimate the error signal from the syndrome sequence and then
extract the message from the corrected received signal. The filters
u00(n), u01(n), r00(n), and r01(n) are specified using h(n) by
the relations described for the (20,10,6) code. One can verify that:

r00(n) = f1; 0; 0; 1; 0; 1; 0; 0; 1; 0; 0; 1g
r01(n) = f1; 0; 1; 1; 0; 0; 1; 1; 0; 1; 1; 0g:

(8)

Table 2 describes the logic that governs the decoder. Note that
the interference term �

(i)
eo (n) that is induced by e00(n) on y1(n)

have a superscript (i) that shows the number of bits in e00(n) that
contribute to the interference. A similar convention applies to the
�
(i)
oe (n). To describe the logic of the decoder, we divide the ta-

ble into different regions. The first region, the upper rows of the
table, are the cases for which wt(y0) and wt(y1) uniquely spec-
ify whether we need to choose the output at node 1 or node 2 as
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Table 2. Description of the logic that governs the bounded-
decoding of (24,12,8) wavelet-Golay code. In this table the letter
X means: do not care.

wt(e00)wt(e01) y0(n) y1(n) wt(y0) wt(y1) output

0 0 zero zero 0 0 -
1 0 e00(n) �

(1)
eo (n) 1 7 node 1

0 1 �
(1)
oe (n) e01(n) 7 1 node 2

2 0 e00(n) �
(2)
eo (n) 2 6,10 node 1

0 2 �
(2)
oe (n) e01(n) 6,10 2 node 2

3 0 e00(n) �
(3)
eo (n) 3 X node 1

0 3 �
(3)
oe (n) e01(n) X 3 node 2

1 1 e00(n)+

�
(1)
oe (n)

e01(n)+

�
(1)
eo (n)

6,8 6,8 node 3

2 1 e00(n)+

�
(1)
oe (n)

e01(n)+

�
(2)
eo (n)

5,7,9 5,7,9,11 node 3

1 2 e00(n)+

�
(2)
oe (n)

e01(n)+

�
(1)
eo (n)

5,7,9,11 5,7,9 node 4

the estimate of the channel error pattern e(n). The case corre-
sponding to wt(e00) = wt(e01) = 1, which we refer to it as the
Case 1e1o, can be distinguished from other cases by using wt(y0)
and wt(y1). However, both y0(n) and y1(n) contain an interfer-
ence term. Therefore, to find e(n), we have to compute the inter-
ference term. Since the interference in y0(n) is due to �

(1)
oe (n),

the decoder specifies the interference term by cyclic shifting of
�oe((n � n0))M until wt(x0(n)) = 1, similar to the decoding
of the (20,10,6) code. This requires trying all 12 possible values
of n0 and computing the weight of x0(n). Finally the last region
of the table, are the cases in which 2 bits error lie in e00(n) and
one bit error lies in e01(n) (Case 2e1o) or vice versa (Case 1e2o).
Having the information about wt(y0) and wt(y1) does not specify
whether we are in Case 2e1o or Case 1e2o. It turns out that de-
coding these two cases are very similar to the Case 1e1o. We first
assume that it is Case 2e1o, and we repeat the same procedure that
is described for the Case 1e1o. In other words, we try 12 differ-

ent possible interference terms �(1)oe ((n � n0))M and find n0 for
which wt(x0(n)) = 2. Once n0 is found the decoder selects the
output at node 3 as estimate of e(n). If no n0 was found, then the
assumption was wrong. Thus the case must be (1e2o), and we try
12 different possible interference terms �(1)eo ((n� n0))M and find
n0 for which wt(x1(n)) = 2. Then e(n) is obtained from node 4.

The description of the wavelet-Golay code shows that most of
the time the decoder only needs to compute wt(y0) and wt(y1) to
find the error pattern e(n). In the worst cases (1e2o and 2e1o) the
decoder needs 12 (or at most 24) cyclic shift and add operations.
Consequently, the computation cost for wavelet-Golay decoding is
much smaller than that of bounded-distance decoding of the Go-
lay code with the conventional table lookup method which requires
2324 syndrome comparisons. As a final remark, note that the de-
coding strategy that has been described for (20,10,6) and (24,12,8)
codes can be generalized similarly for other codes that have higher
error correction property.

4. CONCLUSION

We have reported an example of using finite-field wavelet trans-
form for error control coding. We addressed three issues. First,
we described how the two-channel cyclic wavelet transform can
be used to construct some of the double circulant half-rate codes.
Second, we introduced a decoding technique for the wavelet codes
based on a polyphase filter inversion methodology. Third, we
demonstrated the striking simplicity and computational saving of
wavelet decoding method by describing the decoders of the (20,10,6)
and (24,12,8) Golay code.
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