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ABSTRACT

In this paper, we describea new methodof blind sourcesep-
aration (BSS) on a microphonearray combiningsubbandinde-
pendentcomponentanalysis(ICA) andbeamforming. The pro-
posedarray systemconsistsof the following threesections:(1)
subband-ICA-basedBSSsectionwith direction-of-arrival (DOA)
estimation,(2) null beamformingsectionbasedon the estimated
DOA information,and(3) integrationof (1) and(2) basedon the
algorithmdiversity. Usingthis technique,we canresolve thelow-
convergenceproblemthroughoptimizationin ICA. Theresultsof
the signalseparationexperimentsreveal that the noisereduction
rate(NRR) of about18 dB is obtainedunderthe nonreverberant
condition,andNRRsof 8 dB and6 dB areobtainedin the case
that the reverberationtimesare150 msecand300 msec. These
performancesaresuperiorto thoseof bothsimpleICA-basedBSS
andsimplebeamformingmethod.

1. INTRODUCTION

Blind sourceseparation(BSS) is the approachto estimateorigi-
nal sourcesignalsusingonly theinformationof themixedsignals
observed in eachinput channel. This techniqueis applicableto
therealizationof noise-robustspeechrecognitionandhigh-quality
hands-freetelecommunicationsystems.In therecentworks,asfor
theBSSbasedon the independentcomponentanalysis(ICA) [1],
the several methods,in which the inverseof the complex mixing
matricesarecalculatedin the frequency domain,have beenpro-
posedto deal with the arriving lags amongeachelementof the
microphonearray system[2, 3]. Sincethe calculationsare car-
ried out at eachfrequency independently, the following problems
arisein thesemethods:(1) permutationof eachsoundsource,(2)
arbitrarinessof eachsourcegain.To resolve theseproblems,apri-
ori assumptionof similarity amongtheenvelopesof sourcesignal
waveformsis necessary[2].

In this paper, a new methodof BSS on a microphonearray
combiningsubbandICA andbeamformingis proposed.Thepro-
posedarray systemconsistsof the following threesections(see
Fig. 1 for the systemconfiguration): (1) subbandICA section,
(2) null beamformingsection,and(3) integrationof (1) and(2).
First, a new subbandICA is introducedto achieve the frequency-
domainBSS on the microphonearray system,wheredirectivity
patternsof thearrayareexplicitly usedto estimateeachdirection
of arrival (DOA) of thesoundsources[4]. Usingthis method,we
canresolve both permutationandarbitrarinessproblemssimulta-
neouslywithout theassumptionfor thesourcesignalwaveforms.
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Figure 1: Configurationof proposedmicrophonearray system
basedon subbandICA andbeamforming.

Next, basedon the DOA estimatedin the above-mentionedICA
section,we constructa null beamformer, in which thedirectional
null is steeredto the directionof the undesiredsoundsource,in
parallelwith theICA-basedBSS.This approachto signalsepara-
tion hastheadvantagethat thereis no difficulty with respectto a
low-convergenceon optimizationbecausethenull beamformeris
determinedby only DOA informationwithout independencebe-
tweensoundsources.Finally, both signalseparationprocedures
areappropriatelyintegratedby the algorithmdiversity [5] in the
frequency domain. The following sectionsdescribetheproposed
methodin detail, andcanshow that the signalseparationperfor-
manceof theproposedmethodis superiorto thoseof bothconven-
tionalbeamformingandICA-basedBSSmethods.

2. ALGORITHM

2.1. Subband ICA Section

In this study, a straight-linearray is assumed.The coordinates
of the elementsare designatedas ��� ( �	��

����������� ), and the
directionsof arrival of multiplesoundsourcesaredesignatedas ���
( ����
������������ ) (seeFig. 2).

In general,theobservedsignalsin which multiple sourcesig-
nalsaremixed linearly aregivenby thefollowing equationin the
frequency domain: � ��� �!� (1)

where
�

= " #%$'&)(+*,���������-#/.0&)(+*2143 is the observed signalvector,
and � = " 5 $ &)(+*,���������65�78&)(+*21 3 is thesourcesignalvector. � is the
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Figure2: Configurationof microphonearrayandsignals.

mixing matrixwhichis assumedto becomplex-valuedbecausewe
introducethemodelto dealwith thearriving lagsamongeachof
theelementof themicrophonearrayandroomreverberations.

Weperformthesignalseparationby usingthecomplex-valued
unmixingmatrix, 9 , so that theeachelementin theoutput : =9<; becomesmutually independentin thecaseof = = > . The
optimal 9 canbeobtainedby usingthefollowing iterative equa-
tion [4, 6]:9<?4@8ACBEDGFIH�JLK
M0F�N2OQP):SR-:UTWV-X+Y/N2OQP):UR-:UTZV-X'F[9\T? X^] A_ 9 ? (2)

where N[` V denotestheaveragingoperator, a is usedto expressthe
valueof the a th stepin theiterations,and D is thestepsizeparam-
eter. Also, we definethenonlinearvectorfunction ObP[` R asObP):cRdB�e�f�ghe _ i�j�k P[Yl:nmLoqpIR�r _Gs `�e�ftghe _ i�j�k P[Yl:nmLu4p2R�rhv (3)

where : mLoqp and : mLuLp arethe real andimaginarypartsof : , re-
spectively.

Sincetheabove-mentionedcalculationsarecarriedoutateach
frequency independently, problemsaboutthe sourcepermutation
andscalingindeterminacy ariseatevery frequency bin. In orderto
resolve theproblems,wehavealreadyprovidedthesolution[4] to
utilize thedirectivity patternof thearraysystem,wWxIP)yzv�{�R , which
is is givenbyw x P)yzv�{�R|B }~ � � Aq� x

� P)y+R i�j�k�� sh�'� yz� �d� J���{tf��,�tv (4)

where � is the velocity of sound. Hereafterwe assumethe two-
channelcasewithout lossof generality, i.e., =�B�>�B � . In the
directivity patterns,directionalnulls exist in only two particular
directions.Accordingly, by obtainingstatisticswith respectto the
directionsof nullsatall frequency bins,wecanestimatetheDOAs
of thesoundsources.TheDOA of the � th soundsource, �{�x , can
beestimatedas �{�x�B ����W�6�~� � A {�xIP)y � R,v (5)

where
�

is a total point of DFT, and {�xIP)y � R representstheDOA
of the � th soundsourceat the � th frequency bin. Thesearegiven
by{ A P)y � RtB%�GJ����LK���Mt�GJ����� w A P)y � v�{tR � v�K���Mh�GJL�� � w � P)y � v�{�R � ¡ v (6){ � P)y � RtBb�QK j ��K'��Mh�GJ��� � w A P)y � v�{�R � v-K'��Mh�GJ����� w � P)y � v�{tR � ¡ v (7)

where �GJ�� � ¢ v-£h� ( �QK j+� ¢ v-£h� ) is definedasa function in order to
obtainthe smaller(larger)valueamong

¢
and £ . Basedon these

DOA informations,we candetectandcorrectthesourcepermuta-
tion andthegaininconsistency.

2.2. Beamforming Section

In the beamformingsection,we canconstructan alternative un-
mixing matrix in parallelbasedonthenull beamformingtechnique
wherethe DOA informationobtainedin the ICA sectionis used.
In thecasethat the look directionis �{ A andthedirectionalnull is
steeredto �{ � , theelementsof theunmixingmatrix aregivenas

� mL¤�¥�pA-A P)y � R¦B i�j�k ��Y sh��� y � � A � J�� �{ A f'� ¡§©¨ i�j�k � sh�'� y � �qA�P � J�� �{ � Y
� J�� �{tA,R-f'� ¡Y i,j�k � sh�'� y � � � P

� J�� �{ � Y
� JL� �{ A R-f'� ¡�ª ] A v (8)

� mL¤�¥�pA � P)y � R¦B«Y i�j�k �^Y sh�'� y � � �
� J�� �{ A f�� ¡§©¨ i�j�k � sh�'� y � � A P � J�� �{ � Y

� J�� �{ A R-f'� ¡Y i,j�k � sh�'� y � � � P
� J�� �{ � Y

� JL� �{tA,R-f'� ¡�ª ] A4¬ (9)

Also in the casethat the look direction is �{ � andthe directional
null is steeredto �{ A , theelementsof theunmixingmatrixaregiven
as

� m�¤�¥tp� A P)y � R¦B<Y i,j�k ��Y sh��� y � �qA � JL� �{ � f'� ¡§­¨ Y i�j�k � sh�'� y � � A P � JL� �{ A Y � J�� �{ � R-f'� ¡_Ui�j�k � sh�'� y � � � P
� J��%�{ A Y � J�� �{ � R-f'� ¡�ª ] A v (10)

� m�¤�¥tp�-� P)y � R¦B i�j�k ��Y sh�'� y � � �
� J�� �{ � f'� ¡§­¨ Y i�j�k � sh�'� y � �qA�P � JL� �{tAtY � J�� �{ � R-f'� ¡_Ui�j�k � sh�'� y � � � P
� J�� �{ A Y � J�� �{ � R-f'� ¡�ª ] A�¬ (11)

Theseelementsgivenby Eqs.(8)–(11)arenormalizedsothat the
eachgainfor look directionis setto be1.

2.3. Integration of Subband ICA with Null Beamforming

In orderto integratethesubbandICA with null beamforming,we
newly introducethefollowing strategy for selectingthemostsuit-
ableunmixingmatrix in eachfrequency bin, i.e., algorithmdiver-
sity in thefrequency domain.(1) If thedirectionalnull is steeredto
theproperestimatedDOA of theundesiredsoundsource,we use
the unmixing matrix obtainedby the subbandICA, � m�u4®�¯°px � P)y+R .
(2) If thedirectionalnull deviatesfrom theestimatedDOA, weuse
theunmixingmatrixobtainedby thenull beamforming,� m�¤�¥tpx � P)y+R ,
in preferenceto thatof thesubbandICA. Theabovestrategy yields
thefollowing algorithm:

� x
� P)y+R±B ² � mLuL®�¯°px � P)y+R,v³P � { x P)y+R8Y �{ x ��´¶µ `�· x R� mL¤�¥tpx � P)y+R,v¸P � {�xIP)y+RWY �{�x �^¹ºµ `�·qx»R,v (12)

where µ is a magnificationparameterof thethreshold,and ·+x rep-
resentsthedeviation with respectto theestimatedDOA of the � th
soundsource;it canbegivenas

·+x°B ¼½½¾ �� �W�6�~� � A P¿{'x2P)y � RWY �{�x»R � ¬ (13)



Table1: AnalysisConditionsof SignalSeparation

SamplingFrequency 8 kHz
FrameLength 32msec
FrameShift 16msec
Window Hammingwindow
Numberof Iterations 500
StepSizeParameter À/Á�Â
Ã Ä/ÅUÂ�Ä^Æ+Ç

Using thealgorithmwith anadequatevalueof È , we canrecover
theunmixingmatrix trappedona localminimizerof theoptimiza-
tion procedurein ICA. Also, by changingtheparameterÈ , we can
constructvarioustypesof arraysignalprocessingfor BSS,e.g.,a
simplenull beamformingwith È =0, andasimpleICA-basedBSS
procedurewith È = É .

3. EXPERIMENTS AND RESULTS

3.1. Conditions for Experiments

A two-elementarraywith the interelementspacingof 4 cm is as-
sumed.Thespeechsignalsareassumedto arrive from two direc-
tions, Ê�Ë�Ä�Ì and ÍtÄ�Ì . Six sentencesspoken by six maleandsix
femalespeakersselectedfrom theASJcontinuousspeechcorpus
for researchareusedastheoriginalspeech.Usingthesesentences,
weobtain36combinationswith respectto speakersandsourcedi-
rections. In theseexperiments,we usedthe following signalsas
thesourcesignals:(1) theoriginal speechnot convolvedwith the
impulseresponses,and(2) theoriginal speechconvolvedwith the
impulseresponsesrecordedin two environmentsspecifiedby dif-
ferentreverberationtimes(RTs),150msecand300msec.Theim-
pulseresponsesarerecordedin avariablereverberationtimeroom
asshown in Fig. 3. Theanalysisconditionsof theseexperiments
aresummarizedin Table1.

3.2. Results 1: Effectiveness of Algorithm Diversity

In orderto illustratethebehavior of theproposedarrayfor different
valuesof È , thenoise reduction rate (NRR),definedastheoutput
signal-to-noiseratio(SNR)in dB minusinputSNRin dB, isshown
in Figs. 4–6. Thesevaluesaretaken asthe averageof all of the
combinationswith respectto speakersandsourcedirections.The
SNRscorrespondto theobjective evaluationscorein thecasethat
thesuppressedsignalis regardedasnoise.

From Fig. 4 for the nonreverberanttests,it canbe seenthat
the NRRs monotonicallyincreaseas the parameterÈ decreases,
i.e., the performanceof the null beamformeris superiorto that
of ICA-basedBSS.This indicatesthat thedirectionsof thesound
sourcesareestimatedcorrectlyby theproposedmethod,andthus
thenull beamformingtechniqueis moresuitablefor theseparation
of directionalsoundsourcesundernonreverberantcondition.

In contrast,from Figs.5 and6 for the reverberanttests,it is
shown that(1) theNRR monotonicallyincreasesastheparameterÈ decreasesin thecasethattheobservedsignalsof 1 secduration
areusedto learnthe unmixing matrix, and(2) we canobtainthe
optimumperformancesby settingtheappropriatevalueof È , e.g.,È = 2, in thecasethat the learningdurationsare3 and5 sec.We
cansummarizefrom theseresultsthat the proposedcombination
algorithmof ICA andnull beamformingis effective for thesignal
separation,particularlyunderthereverberantconditions.
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Figure3: Layoutof reverberantroomusedin experiments.
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3.3. Results 2: Comparison with Conventional BSS Method

In orderto performacomparisonwith theconventionalBSSmethod,
wealsoperformthesameBSSexperimentsusingMurata’smethod
[2]. Figure7 (a) shows the resultsobtainedusing the proposed
methodandMurata’s methodwheretheobservedsignalsof 5 sec
durationareusedto learnthe unmixing matrix, Fig. 7 (b) shows
thoseof 3 secduration,andFig. 7 (c) shows thoseof 1 secdura-
tion. In theseexperiments,theparameterÔ in theproposedmethod
is setto be2.

From Figs.7 (a)–(c), in both nonreverberantandreverberant
tests,it can be seenthat the BSS performancesobtainedby us-
ing the proposedmethodare the sameasor superiorto thoseof
Murata’s conventionalmethod.In particular, from Fig. 7 (c), it is
evidentthat theNRRsof Murata’s methoddegraderemarkablyin
thecasethat the learningdurationis 1 sec;however, thereareno
significantdegradationsin thecaseof theproposedmethodcom-
paredwith thoseof Murata’smethod.Wecansummarizethemain
reasonsfor thedegradationsin Murata’s methodby looking at the
similarity (e.g.,cosine distance) amongthesourcesignalsof dif-
ferent lengthsas follows (seeFig. 8). (1) The envelopesof the
original sourcespeechbecomemoresimilar to eachotherasthe
durationof the speechshortens. (2) The separatedsignals’ en-
velopesat thesamefrequency aresimilar to eachothersincethe
inaccurateunmixingmatrixis estimatedto havemany components
of crosstalk. Therefore,therecovery of thepermutationtendsto
fail in Murata’s method. In contrast,our methoddid not fail to
recover thesourcepermutationbecausewe did not useany infor-
mation of signalwaveformsbut rather, usedonly the directivity
patterns.

4. CONCLUSION

In this paper, a new blind sourceseparation(BSS)methodusing
subbandindependentcomponentanalysis(ICA) andbeamform-
ing wasdescribed.In orderto evaluateits effectiveness,thesignal
separationexperimentswereperformedundervariousreverberant
conditions.Fromtheresults,it wasshown thatthenoisereduction
rate(NRR) of about18 dB is obtainedunderthe nonreverberant
condition,andNRRsof 8 dB and6 dB areobtainedin thecasethat
thereverberationtimesare150msecand300msec.Theseperfor-
mancesweresuperiorto thoseof bothsimpleICA-basedBSSand
simplebeamformingtechnique.
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