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ABSTRACT

Sampling requirements for nonlinear systems with a band-
pass input are developed in this paper. It is well known
that the output of a nonlinear system may have a larger
bandwidth than that of the input. According to the Nyquist
sampling theorem, the sampling rate needs to be at least
twice the maximum frequency of the output to avoid alias-
ing. However, if the input is a bandpass signal, the spectrum
of the output is usually distributed over several frequency
bands. In this case, using the bandpass sampling concept,
it is possible to sample the output at a much lower rate. In
this paper, conditions for such a lower sampling rate to ex-
ist are derived for nonlinear systems up to the third order.
Supporting computer simulation is also provided.

1. INTRODUCTION

Nonlinear systems often have a spectral spreading effect on
their input signals. For anN -th order nonlinear system, the
maximum frequency of the output signal can be as large as
N times the maximum frequency of the input signal. In gen-
eral, the output signal of the nonlinear system needs to be
sampled at a rate which is at least2N times the maximum
frequency of the system input, otherwise the output samples
would be aliased [1]. It has been shown that, for identifica-
tion of nonlinear systems, it suffices for the sampling rate
of the output signal to be twice the maximum frequency of
the input signal, even though the resulting output samples
are aliased [2, 3]. However, for situations where retaining
all information in the output signal is the main concern and
system identification is of little interest, avoiding aliasing
in the output samples to ensure proper reconstruction of the
original output signal is desired.

In many cases, such as digital communications over non-
linear channels [4], etc., the input to the nonlinear system
is a bandpass signal whose spectrum is as that shown in
Fig. 1(a). The bandpass signal has no spectral components
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belowfL Hz or abovefH Hz, and has a bandwidth ofB =
fH − fL. The bandpass sampling theorem [5] states that
such a bandpass signal can be sampled at a frequencyfs
without causing aliasing iffs satisfies

2QB
n
≤ fs ≤

2(Q− 1)B
n− 1

, (1)

whereQ = fH/B, andn is a positive integer andn ≤ Q.
For n = 1, eq. (1) simply states the Nyquist sampling cri-
terion. Forn > 1, fs is smaller than the Nyquist sam-
pling frequency. The larger the value ofn, the smaller the
sampling frequency. Note that the output of the nonlinear
system to such a bandpass signal may possess multiple fre-
quency bands. We see that (1) can not be applied to the
output signal.

It is the objective of this paper to derive the sampling
requirements for the output signal of nonlinear systems ex-
cited by a bandpass input signal. Considering that the cubi-
cally nonlinear system is the lowest-order nonlinear system
including both even and odd order nonlinear terms, we de-
rive the bandpass sampling requirements for nonlinear sys-
tems up to the third order. In fact, one may find in the litera-
ture that many nonlinear effects in science and engineering
can be appropriately modeled as a cubically nonlinear sys-
tem. Extension of the derivation to higher-order nonlinear
systems, although may be quite involved, is conceptually
straightforward.

2. BANDPASS SAMPLING FOR QUADRATICALLY
NONLINEAR SYSTEMS

Consider a quadratically nonlinear system (including linear
and quadratic responses) with an inputx(t) and an output
y(t). Suppose thatx(t) is a bandpass signal whose spec-
trum, sayX(f), is shown in Fig. 1(a), then the spectrum
of the the outputy(t), sayY (f), would have a form like
Fig. 1(b). Note that, in Fig. 1(b), the spectrum labeled ‘1’ is
owing to the linear response of the system, and the spectra
labeled ‘0’ and ‘2’ are owing to the quadratic response of
the system.



0 B fHfL 2fH2fL
f

2BB

1 2

Y(f)

X(f)

(a)

(b)

0 fHfL
f

B

0

Fig. 1. The spectra of (a) the input and (b) the output signals
of a quadratically nonlinear system.

If the output is sampled atfs Hz, then the spectrum of
the sampled output can be obtained by replicating the spec-
trum of the original signal at multiples offs. To be immune
from aliasing, neither spectrum ‘1’ nor spectrum ‘2’ can
straddlenfs or (n+ 1/2)fs for any integern. Because if a
spectrum (say spectrum ’1’) straddlesnfs, then its counter-
part in the negative frequency region (labeled as spectrum
’-1’) must straddle−nfs. Due to spectral replication, the
spectrum of the sampled output would have the positive and
the negative frequency spectra overlapping in the vicinity
of every multiple offs. This leads to aliasing in the sam-
pled output. Similar result can be reached for the case of a
spectrum straddling(n+ 1/2)fs.

Let the center frequency of spectrum ‘i’ be fi, i = ±1,
±2. Note thatf2 = 2f1. We must havenfs < f1 <
(n+ 1)fs (and thus2nfs < f2 < 2(n+ 1)fs) for somen.
Referring to the frequency band[kfs, (k+ 1)fs] (k an inte-
ger) assegment k, we then defineεi as the relative position
of fi in its corresponding segment. For example,f1 is in
segmentn, thereforeε1 = f1 − nfs. The center frequency
f2 can be either in segment2n or segment2n+1, therefore,
ε2 = Rfs{f2 − 2nfs} = Rfs{2ε1}, whereRa{b} denotes
the remainder ofb divided bya.

Due to spectral replication, a replica of spectrum ’i’ ( i =
±1,±2) will appear in each segment. It is easy to see that
the positions of the replicas ‘1’ and ‘-1’ will be symmetric
with respect to the center frequencyfs/2 in each segment,
so will the positions of the replicas ‘2’ and ‘-2’. Note thatεi
is in fact the relative position of the center frequency of the
replica ‘i’ in each segment. To be immune from aliasing,
the replicas in each segment can not overlap. To derive the
sampling requirements, it is sufficient to consider the range
0 < ε1 < fs, which is further divided into the following 6
subranges:

Case 1: 0 < ε1 <
1
4fs, and hence0 < ε2 <

1
2fs
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Fig. 2. The spectrum of the sampled output for case 1.
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Fig. 3. The spectrum of the sampled output for case 2.

Recall that ‘1’ and ‘-1’ (as well as ‘2’ and ’-2’) are symmet-
ric with respect tofs/2 in each segment, we have34fs <
ε−1 < fs and 1

2fs < ε−2 < fs. Sinceε1 < 2ε1 = ε2,
the spectrum of the sampled output would have a form like
Fig. 2. In Fig. 2, we use solid circles to denote the spectra of
the original output signal, and use dashed circles to denote
the spectra of the replicas. The number in each circle indi-
cates where in Fig. 1(b) it is from. For example, a dashed
circle labeled ‘-2’ denotes a replica of the spectrum ‘-2’.

From Fig. 2 we see that the requirements for no spectral
overlapping are

fL ≥ nfs +B (2)

2fL ≥ fH + nfs (3)

2fH ≤ (2n+
1
2

)fs (4)

which leads to

4QB
4n+ 1

≤ fs ≤
(Q− 2)B

n
(5)

Case 2: 1
4fs < ε1 <

1
3fs, and hence12fs < ε2 <

2
3fs

In this case, we have23fs < ε−1 <
3
4fs and 1

3fs < ε−2 <
1
2fs. The resulting spectrum of the sampled output is shown
in Fig. 3. We see from Fig. 3 that the requirements for no
spectral overlapping are

fL ≥ nfs +B (6)

2fH ≤ (2n+ 1)fs − [(fH − nfs)] (7)

2fL ≥ (2n+
1
2

)fs (8)

which yields

3QB
3n+ 1

≤ fs ≤
4(Q− 1)B

4n+ 1
(9)
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Fig. 4. The spectrum of the sampled output for case 3.
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Fig. 5. The spectrum of the sampled output for case 4.

Case 3: 1
3fs < ε1 <

1
2fs, and hence23fs < ε2 < fs.

In this case, we have12fs < ε−1 < 2
3fs and0 < ε−2 <

1
3fs. Therefore, the spectrum of the resulting sampled out-
put should be like that shown in Fig. 4. The requirements for
preventing spectral overlapping in this case are as follows:

2fH ≤ (2n+ 1)fs −B (10)

fL ≥ nfs + [(2n+ 1)fs − 2fL] (11)

fH ≤ (n+
1
2

)fs (12)

This results in

(2Q+ 1)B
2n+ 1

≤ fs ≤
3(Q− 1)B

3n+ 1
(13)

Case 4: 1
2fs < ε1 <

2
3fs, and hence0 < ε2 <

1
3fs.

In this case, we have13fs < ε−1 <
1
2fs and 2

3fs < ε−2 <
fs. Note that sincefs < 2ε1 < 4

3fs, the spectrum ‘2’ is in
segment2n + 1 instead of2n. Therefore, the spectrum of
the sampled output for this case is shown in Fig. 5. To avoid
spectral overlapping, we must have

2fL ≥ (2n+ 1)fs +B (14)

fH ≤ (n+ 1)fs − [2fH − (2n+ 1)fs] (15)

fL ≥ (n+
1
2

)fs (16)

which gives the following

3QB
3n+ 2

≤ fs ≤
(2Q− 3)B

2n+ 1
(17)

Case 5: 2
3fs < ε1 <

3
4fs, and hence13fs < ε2 <

1
2fs.
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Fig. 6. The spectrum of the sampled output for case 5.
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Fig. 7. The spectrum of the sampled output for case 6.

In this case, we have14fs < ε−1 <
1
3fs and 1

2fs < ε−2 <
2
3fs. Since 4

3fs < 2ε1 < 3
2fs, the spectrum ‘2’ is in seg-

ment2n + 1. The spectrum of the sampled output for this
case is shown in Fig. 6. The requirements for no spectral
overlapping in Fig. 6 are

fH ≤ (n+ 1)fs −B (18)

2fL ≥ (2n+ 1)fs + [(n+ 1)fs − fL] (19)

2fH ≤ (2n+
3
2

)fs (20)

which leads to

4QB
4n+ 3

≤ fs ≤
3(Q− 1)B

3n+ 2
(21)

Case 6: 3
4fs < ε1 < fs, and hence12fs < ε2 < fs

In this case, we have0 < ε−1 < 1
4fs and 0 < ε−2 <

1
2fs. Since3

2fs < 2ε1 < 2fs, the spectrum ‘2’ is again in
segment2n + 1. It is easy to see that, in this case,ε2 =
Rfs{2ε1} must be smaller thanε1, hence the spectrum of
the sampled output is as that shown in Fig. 7.

To avoid spectral overlapping in Fig. 7, we must have

fH ≤ (n+ 1)fs −B (22)

2fH ≤ fL + (n+ 1)fs (23)

2fL ≥ (2n+
3
2

)fs (24)

which results in

(Q+ 1)B
n+ 1

≤ fs ≤
4(Q− 1)B

4n+ 3
(25)

3. BANDPASS SAMPLING FOR CUBICALLY
NONLINEAR SYSTEMS

Consider a cubically nonlinear system (which includes lin-
ear, quadratic, and cubic responses). Suppose the input to
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Fig. 8. The spectrum of the output signal of a cubically
nonlinear system.

the system is a bandpass signal whose spectrum is shown in
Fig. 1(a), then the output of the system would have a spec-
trum like the one shown in Fig. 8. Note that the spectra
labeled ‘0’ and ‘2’ are owing to the quadratic response, the
spectrum labeled ‘3’ is owing to the cubic response, and the
spectrum labeled ‘1’ is owing to the linear as well as the cu-
bic responses. Following similar steps as shown in Section 2
and with some algebra, the bandpass sampling requirements
can be derived. The result is summarized in the following
table, where valid sampling frequency ranges for various
possible orders of spectra in each segment are shown.

Spectral Order Sampling Frequency Range

{1, 2, 3,−3,−2,−1} 6QB
6n+1 ≤ fs ≤

(Q−3)B
n

{1, 2,−3, 3,−2,−1} 5QB
5n+1 ≤ fs ≤

6(Q−1)B
6n+1

{1,−3, 2,−2, 3,−1} (4Q+1)B
4n+1 ≤ fs ≤ 5(Q−1)B

5n+1

{−3, 1,−2, 2,−1, 3} (3Q+1)B
3n+1 ≤ fs ≤ (4Q−5)B

4n+1

{3,−2, 1,−1, 2,−3} 5QB
5n+2 ≤ fs ≤

(3Q−4)B
3n+1

{−2, 3, 1,−1,−3, 2} 2(Q+1)B
2n+1 ≤ fs ≤ 5(Q−1)B

5n+2

{2,−3,−1, 1, 3,−2} 5QB
5n+3 ≤ fs ≤

2(Q−2)B
2n+1

{−3, 2,−1, 1,−2, 3} (3Q+1)B
3n+2 ≤ fs ≤ 5(Q−1)B

5n+3

{3,−1, 2,−2, 1,−3} (4Q+1)B
4n+3 ≤ fs ≤ (3Q−4)B

3n+2

{−1, 3,−2, 2,−3, 1} 5QB
5n+4 ≤ fs ≤

(4Q−5)B
4n+3

{−1,−2, 3,−3, 2, 1} 6QB
6n+5 ≤ fs ≤

5(Q−1)B
5n+4

{−1,−2,−3, 3, 2, 1} (Q+2)B
n+1 ≤ fs ≤ 6(Q−1)B

6n+5

4. SIMULATION

A bandpass signal (fL = 990 Hz, fH = 1000 Hz, and
B = 10 Hz) is used as the input to the cubically nonlinear
systemy(t) = x(t)+x2(t)+x3(t). The spectrum of the sys-
tem output is shown in Fig. 9(a), where 4 frequency bands
at around 0, 1000, 2000, and 3000 Hz are clearly shown.
Usingn = 3, we found273.64 < fs < 275 is the valid
range for the case of spectral order{−3, 2,−1, 1,−2, 3}.
We chosefs = 274 Hz to sample the output signal. The
spectrum of the sampled output is shown in Fig. 9(b). The
result indicates that various spectra do not overlap, and the
spectral order is indeed{−3, 2,−1, 1,−2, 3}.
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Fig. 9. Spectra of (a) the original and (b) the sampled output
signals in the simulation.

5. CONCLUSION

Bandpass sampling requirements for nonlinear systems up
to the third order were derived. The result can be used to
select appropriate sampling frequency for the output of non-
linear systems with a bandpass input.
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