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ABSTRACT below f;, Hz or abovefy Hz, and has a bandwidth & =

fg — fr. The bandpass sampling theorem [5] states that
such a bandpass signal can be sampled at a frequéncy
without causing aliasing if satisfies

Sampling requirements for nonlinear systems with a band-
pass input are developed in this paper. It is well known
that the output of a nonlinear system may have a larger
bandwidth than that of the input. According to the Nyquist 2QB 2(Q-1)B

: ; — < fs<—, 1)
sampling theorem, the sampling rate needs to be at least n n—1
twice the maximum frequency of the output to avoid alias-
ing. However, if the input is a bandpass signal, the spectrum
of the output is usually distributed over several frequency
bands. In this case, using the bandpass sampling concep
it is possible to sample the output at a much lower rate. In
this paper, conditions for such a lower sampling rate to ex-
ist are derived for nonlinear systems up to the third order.
Supporting computer simulation is also provided.

where@Q = fy /B, andn is a positive integer and < Q.
Forn = 1, eq. (1) simply states the Nyquist sampling cri-
{erion. Forn > 1, f, is smaller than the Nyquist sam-
pling frequency. The larger the value of the smaller the
sampling frequency. Note that the output of the nonlinear
system to such a bandpass signal may possess multiple fre-
quency bands. We see that (1) can not be applied to the
output signal.
It is the objective of this paper to derive the sampling
1. INTRODUCTION requirements for the output signal of nonlinear systems ex-
cited by a bandpass input signal. Considering that the cubi-
Nonlinear systems often have a spectral spreading effect on.a|ly nonlinear system is the lowest-order nonlinear system
their input signals. For atv-th order nonlinear system, the  jncluding both even and odd order nonlinear terms, we de-
maximum frequency of the output signal can be as large asjye the bandpass sampling requirements for nonlinear sys-
N times the maximum frequency of the input signal. Ingen- tems up to the third order. In fact, one may find in the litera-
eral, the output signal of the nonlinear system needs to beyre that many nonlinear effects in science and engineering
sampled at a rate which is at le@s¥ times the maximum  can pe appropriately modeled as a cubically nonlinear sys-
frequency of the system input, otherwise the output samplestem . Extension of the derivation to higher-order nonlinear

would be aliased [1]. It has been shown that, for identifica- gystems, although may be quite involved, is conceptually
tion of nonlinear systems, it suffices for the sampling rate straightforward.
of the output signal to be twice the maximum frequency of
the input signal, even though the resulting output samples
are aliased [2, 3]. However, for situations where retaining
all information in the output signal is the main concern and
system identification is of little interest, avoiding aliasing Consider a quadratically nonlinear system (including linear
in.th'e output sar.nples.to ensure proper reconstruction of the, | | quadratic responses) with an inpgt) and an output
original output signal is des'f,eF’- o y(t). Suppose that(t) is a bandpass signal whose spec-
In many cases, such as digital communications OVEr NON<ym say X (f), is shown in Fig. 1(a), then the spectrum

linear channels [4], etc., the input to the nonlinear system of the the output(t), say Y (f), would have a form like

is_ a bandpass signal who.se spectrum is as that shown ”?:ig. 1(b). Note that, in Fig. 1(b), the spectrum labeled ‘1" is
Fig. 1(a). The bandpass signal has no spectral component iy 't the linear response of the system, and the spectra
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der Contracts NSC 89-2611-E-019-048 and NSC 89-2218-E-019-011. the system.

2. BANDPASS SAMPLING FOR QUADRATICALLY
NONLINEAR SYSTEMS
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Fig. 1. The spectra of (a) the input and (b) the output signals
of a quadratically nonlinear system. Fig. 3. The spectrum of the sampled output for case 2.

Recall that ‘1’ and ‘-1’ (as well as ‘2’ and ’-2’) are symmet-
ric with respect tof, /2 in each segment, we havkf, <

€_1 < fs and%fs < €9 < fs. Sincee; < 2¢1 = €9,

the spectrum of the sampled output would have a form like
Fig. 2. In Fig. 2, we use solid circles to denote the spectra of

straddlen f, or (n + 1/2) f, for any integem. Because if a - . .
spectrum (say spectrum '1’) straddleg., then its counter- the original output sngnal, and use dashgd circles .to defno.te
the spectra of the replicas. The number in each circle indi-

art in the negative frequency region (labeled as spectrum
P g q y region ( P cates where in Fig. 1(b) it is from. For example, a dashed

’-1') must straddle—n f,. Due to spectral replication, the ™ .
) nf P b dC|rcle labeled ‘-2’ denotes a replica of the spectrum *-2'.

spectrum of the sampled output would have the positive an F Fig 2 hat th : p |
the negative frequency spectra overlapping in the vicinity rom Fig. = we see that the requirements for no spectra
overlapping are

of every multiple off,. This leads to aliasing in the sam-

If the output is sampled af, Hz, then the spectrum of
the sampled output can be obtained by replicating the spec
trum of the original signal at multiples gt. To be immune
from aliasing, neither spectrum ‘1’ nor spectrum ‘2’ can

pled output. Similar result can be reached for the case of a fi > nf.+B )

spectrum straddlingn + 1/2) fs. 9 - 3
Let the center frequency of spectrumbe f;, i = +1, foo = fut nlfs (3)

+2. Note thatf, = 2f;. We must haveif, < fi < 2fg < (2n+ 2)fs (4)

(n+1)fs (and thu2nfs < fo < 2(n + 1)f,) for somen. 2

Referring to the frequency banlfs, (k + 1) fs] (k an inte- which leads to

ger) assegment k, we then define; as the relative position 10B (Q-2)B

of f; in its corresponding segment. For exampfe,is in i <fs < - (5)

segment, thereforec; = f; — nf,. The center frequency
f2 can be either in segmeit or segmen2n + 1, therefore, Case 2: ifs <€ < %fs, and henc«%fS <€y < %fs
€2 = Ry {f2 — 2nfs} = Ry, {2¢1}, whereR,{b} denotes
the remainder ob divided bya.

Due to spectral replication, a replica of spectruh(s =
+1, £2) will appear in each segment. It is easy to see that
the positions of the replicas ‘1’ and ‘-1’ will be symmetric
with respect to the center frequengy/2 in each segment,

In this case, we havef, < e_1 < 2f,;andyf, < e_ <

% fs. The resulting spectrum of the sampled output is shown
in Fig. 3. We see from Fig. 3 that the requirements for no
spectral overlapping are

so will the positions of the replicas ‘2’ and ‘-2'. Note that fr > nfs+B (6)
is in fact the relative position of the center frequency of the
replica % in each segment. To be immune from aliasing, 2fu = @ntDfs = [(fu = nfs)] (7)
the replicas in each segment can not overlap. To derive the 2f > (2n+ l)fs (8)
sampling requirements, it is sufficient to consider the range 2
0 < €1 < fs, which is further divided into the following 6  which yields
subranges: 30B 4 0B

Q <f. < 4Q-1)B 9)

Case 1:0 < e < ;1 fs, and henc® < e; < % f; 3n+1=7""~ 4dn+1
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Fig. 4. The spectrum of the sampled output for case 3.
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Fig. 5. The spectrum of the sampled output for case 4.

Case3:if, < e < 3fs, andhencé€ f, < e < f.

In this case, we havef, < e_; < 2f,and0 < e_5 <

%fs. Therefore, the spectrum of the resulting sampled out-
put should be like that shown in Fig. 4. The requirements for
preventing spectral overlapping in this case are as follows:

2fn < (@n+1)fi-B (10)
fo > nfs+[2n+1)fs —2fL] (11)
fo < (n+2)fs (12)
This results in
@e+HB . 3Q-1B (13)
2n +1 n+1

Case4:if, <e < 2f,, andhencé < e; < § fs.

In this case, we havéf, < e_; < 3f;and2f, <e_, <

fs. Note that sincef, < 2¢; < %fs, the spectrum ‘2’ is in
segmen®n + 1 instead of2n. Therefore, the spectrum of
the sampled output for this case is shown in Fig. 5. To avoid
spectral overlapping, we must have

2fr > (2n+1)fs+B (14)
fo < (n+1)fs—2fu—(2n+1)f] (15)
fu 2 (), (16)
which gives the following
3QB (2Q — 3)B
R T 40

Caseb5: 2f, < e < 3f,,and hence f, < e; < L f,.
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Fig. 6. The spectrum of the sampled output for case 5.
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Fig. 7. The spectrum of the sampled output for case 6.

In this case, we havef, < e_1 < 3f;andif, <e_s <

%fs. Since%fS < 26 < %fs, the spectrum ‘2’ is in seg-
ment2n + 1. The spectrum of the sampled output for this
case is shown in Fig. 6. The requirements for no spectral
overlapping in Fig. 6 are

fu < (n+1)fs—B (18)
2fL Z (2n+1)fs+[(n+l)fs_fL] (19)
2 < @nt ), (20)
which leads to
Q5 _; Q1B (21)
in + 3 3n+2

Case 6: 2 f, < e < fs,and hence f, < e; < f,

In this case, we hav® < e_; < 1f;and0 < e, <
1 fs. Sinced f, < 2e; < 2f,, the spectrum ‘2’ is again in
segmentn + 1. It is easy to see that, in this cass,
Ry {2¢,} must be smaller thae;, hence the spectrum of
the sampled output is as that shown in Fig. 7.

To avoid spectral overlapping in Fig. 7, we must have

fu < (n+1)fs—B (22)
2fg < fo+(n+1)f (23)
2f, > (2n+ ;)fs (24)
which results in
(@Q+1)B 4(Q —-1)B
Tavt Sl T 29

3. BANDPASS SAMPLING FOR CUBICALLY
NONLINEAR SYSTEMS

Consider a cubically nonlinear system (which includes lin-
ear, quadratic, and cubic responses). Suppose the input to
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Fig. 8. The spectrum of the output signal of a cubically
nonlinear system.

the system is a bandpass signal whose spectrum is shown in
Fig. 1(a), then the output of the system would have a spec-
trum like the one shown in Fig. 8. Note that the spectra
labeled ‘0’ and ‘2’ are owing to the quadratic response, the
spectrum labeled ‘3’ is owing to the cubic response, and the
spectrum labeled ‘1’ is owing to the linear as well as the cu-
bic responses. Following similar steps as shown in Section 2
and with some algebra, the bandpass sampling requirements
can be derived. The result is summarized in the following
table, where valid sampling frequency ranges for various
possible orders of spectra in each segment are shown.
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Fig. 9. Spectra of (a) the original and (b) the sampled output

signals in the simulation.

Spectral Order Sampling Frequency Range
1,2,3,-3,-2,—1 6QB - ¢ < (@=39)B
{1,2,3,-3,-2,-1} opt < fs < o' 5. CONCLUSION
5QB —
{13277373372771} 5n41 < fs < W . . .
(1,-3,2,-2,3, 1} (429”4;11)3 < f.< o(EC’Qn:Lll)B Bandpas_s sampling requw_ements for nonlinear systems up
(-3,1,-2,2,-1,3) (3§+11)B <f< (45_533 to the third or(_jer were d_erlved. The result can be used to
5753 (SQJ}JB select appropriate sampling frequency for the output of non-
{3,-2,1,-1,2,-3} 2(5@75:32)5 fs < i linear systems with a bandpass input.
{_273717_17_372} Tﬂgfséﬁ
{2,-3,-1,1,3,-2} | 298 < <2028 6. REFERENCES
3 1)B 5(Q—1)B
{_3’27_1’1’_2’3} ( ?(?7;-2) S fs S (5Qn+3) “ . . .
(3,-1,2,-2,1,-3) (“4Q+1B _ f. < (3Q—4)B [1] S. W. Nam and E. J. Powers, “Application of higher
’1 3’ ’2 2’ - v < <_(4Q§%§r§ order spectral analysis to cubically nonlinear sys-
{-1,3,-2,2,-3,1} %7534 <fs < 5(5@13)3 tem identification,”IEEE Trans. Signal Processing
{-1,-2,3,-3,2,1} (S"’S)E’BS fs < 65(,34 5 vol. 42, no. 7, pp. 1746-1765, July 1994.
{-1,-2,-3.3,2,1} | ©R7 <[, < "G

4. SIMULATION

A bandpass signalf{, = 990 Hz, fgy = 1000 Hz, and

B = 10 Hz) is used as the input to the cubically nonlinear
systemy(t) = x(t)+x2(t)+x>(t). The spectrum of the sys-
tem output is shown in Fig. 9(a), where 4 frequency bands
at around 0, 1000, 2000, and 3000 Hz are clearly shown.
Usingn = 3, we found273.64 < f, < 275 is the valid
range for the case of spectral order3,2, —1,1,—2, 3}.

We chosef, = 274 Hz to sample the output signal. The
spectrum of the sampled output is shown in Fig. 9(b). The
result indicates that various spectra do not overlap, and the
spectral order is indeeg-3,2, —1,1, —2, 3}.
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