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ABSTRACT

We consider a communication scenario involving an m� n
MIMO linear channel whose input is a symbol stream mul-
tiplied prior to transmission by an n � �n space-time cod-
ing matrix X, and whose output is fed into an m � �n lin-
ear combiner Z. We show how to choose the matrices X
and Z to maximize the SNR of the linear combiner output
data that are used for detection, under total power con-
straint (TPC), elemental power constraint (EPC), or total
and elemental power constraint (TEPC). The TEPC design
(considered here for the �rst time) is shown to include the
TPC and EPC designs (previously considered by the au-
thors) as special cases, and hence to provide a theoretically
and practically interesting unifying framework. We make
use of this framework to discuss various tradeo�s of the
three space-time designs considered, such as transmission
rate and requirements for channel status information at the
transmission side.

1. INTRODUCTION AND PROBLEM
FORMULATION

Let s be the (scalar) symbol to be transmitted, X the n� �n
space-time coding matrix, and A the m�n transfer matrix
of the communication channel. Then the channel output
can be written as

Y = AXs+N (1)

where N is anm��n noise term. The above equation is valid
for 
at fading channels (see, e.g, [2]). However for (1) to
hold the channel is required to be only slowly time-varying
so that A is (nearly) constant during the transmission of
Xs.

Under the Gaussian hypothesis the maximum likelihood
detector of the symbol stream is a linear function of the
received data. Let Z� be an �n�m linear combiner matrix
used at the receiver to form a general linear combination of
the elements of Y , namely tr(Z�Y ). Hereafter � denotes the
conjugate transpose and tr(�) denotes the trace operator.
The detection of s is based on tr(Z�Y ) which in view of (1)
satis�es the equation:

tr(Z�Y ) = tr(Z�AX)s+ tr(Z�N) (2)

Under the assumption that the elements of N are i.i.d ran-
dom variables with mean zero and common variance �2,
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that is,

E(NijN
�
kp) = �2ÆikÆjp (3)

one can readily check that

Ejtr(Z�N)j2 = �2tr(Z�Z) (4)

Hence the SNR for the detection data in (2) is

SNR =
jtr(Z�AX)j2

�2tr(Z�Z)
�2s (5)

where �2s = Ejsj2. By the Cauchy-Schwartz matrix inequal-
ity (see, e.g, [1]):

SNR �
�2s
�2
tr(X�A�AX) (6)

where the equality is achieved for:

Z = AX (7)

Note that, as expected, the maximum SNR linear combiner
is a matched �lter. Let:

R = XX� (8)

It follows from (6) that the problem left is to choose X so
that

SNR =
�2s
�2
tr(RA�A) (9)

is maximized under a suitable power constraint (to prevent
the impractical solution kRk ! 1). Solving this problem
under various power constraints is the main topic dealt with
in the remainder of the paper.

2. POWER CONSTRAINTS

In what follows �max(B) denotes the maximum eigenvalue
of the matrix B.

2.1. Total Power Constraint (TPC)

tr(R) � � > 0 (10)

This is a commonly-used constraint and hence requires no
comment.



2.2. Elemental Power Constraint (EPC)

�max(R) � � > 0 (11)

This is a less-often used power constraint and hence some
comments on it are in order. Since fRiig, the diagonal
elements of R, are upper-bounded by �max(R),

Rii � �max(R) (12)

it follows that indeed (11) is a constraint on the elemental
powers fRiig. However it is only an indirect constraint in
the sense that the matrix R may well be such that Rii < �
(strictly) even when �max(R) = �. Despite this fact we
prefer (11) to the more direct elemental power constraints
fRii � �g because the EPC design derived from (11) has a
simple form (see below).

2.3. Total and Elemental Power Constraint (TEPC)

tr(R) � �

�max(R) � � (13)

As

�max(R) � tr(R) � n�max(R) (14)

it follows that:

1. If � � � then only the TPC is active (that is, the
EPC is implied by the TPC for this choice of � and
�), and hence the TEPC reduces to TPC;

2. If n� � � then only the EPC is active and TEPC
reduces to EPC; and

3. If 1

n
� < � < � both constraints in (13) are active in

general.

In the sequel we derive the maximum SNR designs for
R (or, essentially equivalent, for X) under the three con-
straints above. The TPC and EPC designs are presented
without a proof since they were previously derived in [2, 3]
and, moreover, they follow as special cases of the novel
TEPC design (as explained in 1 and 2 above; also see the
next section).

3. MAXIMUM SNR DESIGNS

Let r = rank(A) and let

A�A = U�U� (15)

denote the eigenvalue decomposition (EVD) of A�A, where
U is an n� r semi-unitary matrix (U�U = I)

U = [u1 : : : ur] (16)

and

� =

2
4

�1 : : : 0
. . .

0 : : : �r

3
5 (17)

with �1 � �2 : : : � �r > 0.

3.1. TPC Design

The matrix R that maximizes the SNR in (9) under the
TPC is (see [2] and Section 3.4):

RTPC = �u1u
�
1 (18)

The corresponding maximum SNR is given by

SNRTPC =
�2s
�2
��1 (19)

If we consider X to be an n � �n matrix then it is obvious
that the TPC design exists for any �n � 1. In particular we
can use it with �n = 1 to achieve full transmission rate, in
which case:

XTPC = (�)1=2u1 (20)

This is not possible for the EPC design discussed next.

3.2. EPC Design

The maximum SNR under the EPC is

SNREPC =
�2s
�2

�tr(A�A) (21)

and it is achieved at (see [2] and Section 3.4):

REPC = �I (22)

where I is the n� n identity matrix.
The great advantage of the EPC design, which is not

shared by any other design discussed in this paper, is that
channel information is not required at the transmission side.
However, unlike the TPC design and the TEPC design (dis-
cussed in Section 3.4), the EPC design in (22) requires at
least �n = n to exist, in which case

XEPC = (�)1=2I (23)

This is a drawback since it leads to a reduction in the trans-
mission rate of the EPC design by a factor of n as compared
with the TPC design. Space-Time Block Codes (STBC)
may be used to increase the transmit rate of the EPC de-
sign (see [2, 3, 6] for details). However recovering full data
rates by using the currently available STBC is only possible
for very few values of n (such as n = 2), for most other val-
ues we can only achieve 1=2 of the maximum possible data
rate (see the cited references).

3.3. Maxmin Interpretation of the EPC Design

As explained above, an important feature of the EPC design
is that it does not need channel information at the trans-
mission side, even though that was not an a priori design
requirement. In the following we formulate a maxmin opti-
mization problem in which we �rst derive the worst channel
that minimizes the SNR in (9) over a general class of chan-
nel matrices A and then obtain the matrix R that maxi-
mizes the worst-case SNR under the TPC. Mathematically,

max
R

min
A

tr(RA�A) (24)



subject to:

A 2 C = fAj�r � �g (25)

tr(R) � � (26)

In (25), r is the rank of A, �r is the smallest non-zero
eigenvalue of A�A (see (15)-(17)), and � > 0 is an arbitrary
constant. By choosing � suÆciently small we can evidently
include any given possible A in the above class of channels
C. Note that the constraint A 2 C is needed to eliminate
the worst trivial channel A = 0. Also note that the maxmin
optimal R matrix will not depend on A, by design. It is
shown in [5] that the maxmin optimal matrix R is:

Rmaxmin = (�=n)I (27)

which coincides with the EPC design in (22) with � = �=n
(to satisfy the TPC considered here, see (26)). The maxmin
interpretation is an interesting property of the EPC design.
In words it says that for any given design that is channel
independent and satis�es the TPC we can �nd a matrixA so
that the corresponding SNR is smaller than that associated
with (27).

3.4. TEPC Design

This design is the solution to the following optimization
problem:

max
R

tr(RA�A) (28)

subject to:

tr(R) � �

�max(R) � � (29)

To solve the above problem we make use of the EVD of
A�A in (15)-(17) and of the EVD of R

R = V �V � (30)

where V is an n� n unitary matrix and:

� =

2
4


1 : : : 0
. . .

0 : : : 
n

3
5 (31)

The eigenvalues f
kg of R are ordered as stated in the pre-
vious subsection: 
1 � : : : � 
n � 0. By a corollary of von
Neumann theorem in [4] we have that:

tr(RA�A) �

rX
k=1

�k
k (32)

The upper-bound in (32) is obviously achieved for:

RTEPC = U

2
4


1 : : : 0
. . .

0 : : : 
r

3
5U� (33)

It remains to obtain the f
kg that solve the problem:

max
f
kg

rX
k=1

�k
k (34)

subject to:

rX
k=1


k � � (35)


1 � � (36)

Let �r denote the integer part of �=�:

�r = b�=�c (37)

Under the constraints in (35)(36),

rX
k=1

�k
k �

8><
>:

�
�rP

k=1

�k + (�� �r�)��r+1 for �r < r

�
rP

k=1

�k for �r � r

(38)
The upper-bound in (38) is achieved for:


1 = : : : = 
�r = �; 
�r+1 = �� �r�;

�r+2 = : : : = 
r = 0

�
for �r < r


1 = : : : = 
r = � for �r � r

(39)

The corresponding maximum SNR is:

SNRTEPC =
�2s
�2

rX
k=1

�k
k (40)

In summary, then, the TEPC design is given by (33),(37)
and (39). Note that for �r > r we do not use the total power
allowed, �, but only a fraction of it equal to �r.

Like the TPC design, the TEPC design requires chan-
nel information at the transmission side. However, unlike
the TPC design, the TEPC design does not achieve full
transmission rate: indeed, a direct implementation of (33)
would reduce the transmission rate by a factor equal to
min(r; �r+1); note that the X matrix, with minimum num-
ber of columns, associated with (33) is:

XTEPC = U�1=2 (41)

where

�1=2 =

2
64



1=2
1 : : : 0

. . .

0 : : : 

1=2
r

3
75

But since we know the channel at the transmitter we can
modify the scheme so as to transmit simultaneously r sym-
bols to achieve the full data rate and still achieve the max-
imum SNR corresponding to the TEPC design for each of
the transmitted symbols [5].

We remind the reader that the EPC design can also be
modi�ed to achieve full rate but only for n = 2. For all
other values of n the maximum rate that can be achieved
by the EPC design via the use of the currently available
STBC is less than full (3=4, or most often 1=2) [3, 2].

Finally we note that (as explained in Section 2.3) it is
possible to obtain the TPC design as a special case of the
TEPC design simply by choosing � > �. This is in fact



easily checked, as for � > � we have �r = 0 and hence, from
(33) and (39)

R = �u1u
�
1

which coincides with the TPC design (18).

Similarly, the EPC design results as a special case of
the TEPC design if � � n� (see Section 2.3). To see this,
�rst note that � � n� implies �r � n � r. Hence the TEPC
design becomes:

R = �UU� (42)

which depends on the channel. However the same SNR
value (proportional to

Pr

k=1
�k = tr(A�A)) can evidently

be achieved by using the channel-independent EPC design:

R = �I (43)

(cf. (22)). It is interesting to observe the tradeo�s made
when using (43) in lieu of the alternate design (42): we elim-
inate the need for channel information at the transmission
side, but we lose transmission rate (as explained before)
and also we spend more transmit power (the total power
for (43) is n� whereas it is r� for (42)).

4. NUMERICAL EXAMPLES

In this section we present two numerical examples for the
TEPC design (numerical examples for the EPC and TPC
designs can be found in [2]). The channel we consider is a

at Rayleigh fading channel. The elements of A, fAijg, are
considered to be i.i.d complex Gaussian random variables
with mean zero and variance equal to one: Aij � N (0; 1).
The variance of the additive Gaussian noise as well as the
signal power are set to one: �2 = �2s = 1. We want to
illustrate numerically the average SNR associated with the
TEPC design.

Example 1 In this example we consider the TEPC design
for a �xed � and varying �. We set the number of trans-
mitter antennas equal to the number of receiver antennas
(m = n). A is assumed to be full rank, i.e. r = n. Also
we set � = 1 and vary � between 0.1 and 1.5 in steps of
0.1. The average (over A) SNRTEPC is plotted versus �
in Figure 1 for di�erent values of m = n. The averages
were computed over 1000 realizations of A. From Figure 1
it can be seen that when � = � the EPC constraint becomes
inactive and there is no increase in SNR as � is increased
further.

Example 2 In this example we consider the TEPC design
for a �xed � and varying �. Again we set m = n and
assume that A has full rank r = n. We set � = 0:5 and vary
� between 0.1 and 2.5 in steps of 0.1. The average (over
A) SNRTEPC is plotted versus � in Figure 2 for di�erent
values of m = n. As for Example 1, the averages were
computed over 1000 realizations of A. It can be seen from
Figure 2 that when � = n� the TPC constraint becomes
inactive and there is no increase in SNR as � is increased
further.
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Figure 1: The (average) SNRTEPC versus � for � = 1.
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Figure 2: The (average) SNRTEPC versus � for � = 0:5.


