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ABSTRACT

Thispaperpresentsa delayedinstantaneousdemixer (DID)
for speechsignal separationfrom real recordings. Based
on the fact that the original signalsarecoloredandmutu-
ally uncorrelated,a simplealgorithmis derivedto estimate
the parametersof the demixer. This algorithmconsistsof
two parts:a grid searchingmethodto estimatetime delays
andanalternatingprojectionmethodto estimategaincoef-
ficients.Experimentalresultdemonstratestheperformance
of themodelandthealgorithm.

1. INTRODUCTION

Blind signal recovery from FIR (finite impulseresponse)
andMIMO (multi input andmulti output)channeloutputs
is an intenseareaof research.It hasa wide rangeof appli-
cationssuchas speechenhancement,telecommunications
andmedicalsignalanalyses.While many blind deconvo-
lution methodshave to usehigher order statistics(HOS)
for white input signals(e.g., [1]), the additionalinforma-
tion that the input signalsarecoloredcanbe exploited to
designsecondorder statistics(SOS)basedalgorithms[2,
3, 4]. In fact, mostnaturalsignalsare temporallycolored
ratherthanwhite. Among the SOS-basedalgorithms,the
BIDS (blind identificationvia decorrelatingsubchannels)
algorithm[4] requiresweaker identifiability conditionthan
thematrixpencil(MP) algorithm[2] andthesubspacealgo-
rithm [3].

However, in somepracticalapplications,completere-
coveryof inputsignalsis notnecessary. For example,in the
problemof Cocktail Party, speechenhancementcanbedone
by separatingthe desiredspeechsignalsfrom interfering
sources.Althoughtheseparatedsignalsmaybeconvolutive
distortedversionsof theoriginalspeechsignals,thisdistor-
tion is to someextentnot detectableby humanears.In the
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blind signalseparation(BSS)problem,neitherthechannel
nor thesignalsareknown. Many algorithmsreportedhave
beentestedon computergeneratedsignals,to separatesig-
nalsfrom instantaneousmixtures[5, 6] andfrom dynamic
mixtures[7, 8]. Other algorithmshave beentestedusing
real acousticallymixed speechsignals(e.g., [9, 10]). But
thesealgorithmsarenormallycomplicatedbecauseof high
filter ordersandsomesuffer from localminimumproblems.

Thispaperfocusonseparatingtwo unknownspeechsig-
nalsfromtheirconvolutivemixturesrecordedby two micro-
phones.A formulationof theproblemis givenin section2.
Thedelayedinstantaneousdemixer (DID) modelfor sepa-
rating acousticallymixed signalsis presentedin section3
with implementationdetailsin section4. Section5 shows
anexperimentalexample.

2. PROBLEM FORMULA TION

A noiseless����� FIR MIMO channelcanbedescribedas���	��
���
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 the �A�B� sequenceof the systemimpulse
responseof length CED . The operators* and 6 represent
convolutionandtranspose,respectively. All datain thetime
domainareassumed,without lossof generality, to be real
valued.An equivalentexpressionof � 8 
 is�E����
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where 
 �G �	HI
J�LK � �� � � 
 � �	"!
#HNM � denotesthe channelma-
trix. The order of 
 �G �!H<
 reflectsthe reverberationtime
varyingon theroomsize,wall absorbance,andspeakerand
microphonepositions,etc. Theblind channelidentification
andequalizationmethodscanbeusedto estimate�<����
 from
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 undercertainconditions,e.g.,theBIDS algorithmas-
sumesthat the channelmatrix is irreducibleandthe input
signalsaremutuallyuncorrelatedandof sufficiently diverse
power spectra.As we discussedabove, blind signalsepa-
rationis sufficient for mostspeechenhancementproblems.
In otherword, any (diagonal)convolutive versionof ���	��

is a desiredsolutionaslong asthe orderof convolution is
notsohigh. To achievethis,weneedto constructademixerO � �!H<
 suchthat

O � �!H<
#
 � �!H<
 is a diagonalpolynomialma-
trix upto apermutationmatrix. Obviously, selectingproper
structuresof

O � �!H<
 is importantin designingsimple, fast
androbustalgorithms.

3. DELAYED DEMIXER MODEL

A generalexpressionof channelmatrix 
 �G<�	HI
 is
 �G �	HI
P�RQTS �+U+ �	HI
 S � +V1 �	HI
S �1/+ �	HI
 S �1=1 �	HI
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where Y �Z\[ �	HI
/.=]U.>^_� 8 . � arepolynomials. Under the as-
sumptionthatat leastoneelementon eachrow andcolumn
of 
 �G �	HI
 is a polynomial of minimum phase,(3) can be
re-writtenas
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Note that if not all of theseminimum phasepolynomials
areon themaindiagonal,thereexistspermutationbetween
two sources.Possiblepermutationis ignoredherefor con-
venience.Takingtheadvantageof indeterminaciesof BSS,
(2) becomes ���	��
��m
 G �	HI
5nP�	��
 (4)

where nP�	��
'�o( S � +U+ �!H<
=*p+-����
q. S �1=1 �	HI
#*213�	��
>4 6 . TheCocktail
Party problemis a specificcaseof this modelwhereeach
speaker is assumedto be close to a distinct microphone
which leadsto S � +U+ �!H<
r� S �1=1 �	HI
s� 8 . Most existing al-
gorithmschoosean FIR demixer with unit main diagonal
elements.

Huanget al carriedout an experimentto measurethe
impulseresponsesof thecross-channelacousticpaths[11].
This experimentwasdonein a room-acousticenvironment
at the HouseEar Institute,Los Angeles. The room sizeis�t8puwvx�y8dzN{}|3uwv with a tableof size 82��uwvx��~<uwv in themid-
dle of the room. Two speakers,sitting at two sidesof the
table (faceto face),are ~Iuwv away from eachother. Their
experimentalresultshows thatthelengthsof thetwo cross-
channelfilters are200samples,correspondingto 18.7msat
a samplingrateof 10667Hz.A closelooking at thecross-
channelfilters,onecanseethatonly very few of thepulses

have dominantmagnitudesand stay with one anotheral-
thoughtheordersof thecross-channelsarein generalhigh.
Basedon this importantobservation, we can further sim-
plify thechannelmatrix in (4) to be
 G �	HI
P� Q 8 � + H�Mw6 e� 1 H�Mw6 f 8 W
which leadsto thecorrespondingdelayedinstantaneous
demixer O �	HI
P� Q 8 � + HNM�6 e� 1 HNM�6 f 8 W
Wewill show next thattheconstructionof thedemixer
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is extremelysimple.

4. ALGORITHM IMPLEMENT ATION

Thefirst partof thealgorithmis to estimatetime delays� +
and � 1 .
4.1. Estimating time delays

Define � �	��
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Theautocorrelationmatrixof ���	��
 canbecomputedas�� � ����
�� 8� ��� � � ������
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 (8)

Substituting(8) into (6) and (7), we obtain
�� G e G f ����
 and�� G f G e ����
 .

Thecostfunctionto beminimizedis� �����  � �E¡ �� 1G e G f �	��
�� �� 1G f G e ����
#¢ (9)



For the �r�B� case,thereareonly 4 unknown parameters� +p. � 1,. � +p. � 1 in thecostfunction.We first useasimplegrid
searchingmethodto estimate� + and � 1 . We set a range( k�. � 4 for � + and � 1 with stepsize1, and a range (£$ � . � 4
for � + and � 1 with stepsize ¤@¥ , respectively. Here, � , �
and ¤@¥ areall positive real values. Basically, large � and� or small ¤@¥ correspondsto morecomputationtime. For
differentcombinationsof theseparameters,

�
is computed

accordingto (9). Then,� + and � 1 canbeobtainedfrom that
setof parametercombinationwhich leadsto theleast

�
. If

onewantsto obtainaccurateestimatesof � + and � 1 at the
sametime, thenstepsize ¤ ¥ mustbe chosento be small
enoughthat slows down the searchingspeed.We will use
analternatingprojectionmethodto estimate� + and � 1 after� + and � 1 areobtained.

4.2. Estimating gain coefficients

Let
O �	HI
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We canform a costfunctionas� � � ��  � � Qd¸ ¶ 6 + ���·� ����
#¶ 12¹ 1 � ¸ ¶ 61 ��A·� ����
#¶ +h¹ 1 W
where

��A·� ����
 is theestimateof
��·� ����
 . Thecalculationof�� ·� ����
 is similar to thatof

��X� ����
 . Thecostfunction
� � is a

non-quadraticfunctionof ´O . But it is quadraticwith respect
to eachindividual row of ´O .

Denoteº [ � ��  � � ¸ ��A·� ����
V¶ [ ¶ 6[ �� 6 ·� �	��
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wherê%� 8 . � . By differentiatingthecostfunction

� � , we
have » � �» ¶ 6Z � � º [ ¶ Z

where ]x� 8 . � �	]�¼�ª^I
 . Let ¶ �Z is ¶ Z with all zeroelements
removed from ¶ Z , and

º �[ is
º [ with the columnscorre-

spondingto thezeroelementsof ¶ Z removedfrom
º [ . The

alternatingprojectionmethodis formulatedasfollows:
(1) Iterationindex "§��k .
(2) Set ¶ g � i+ �½¶ g � i1 �)( 8 .UkN.d¬h¬h¬ .Uk,4?6 . Thenuse � + and � 1
obtainedfrom grid searchmethodto replacethe � �,� + � � 
 -
th elementof ¶ g � i+ and the � �-� 1 � 8 
 -th elementof ¶ g � i1 ,
respective.
(3) ¶ � g �£¾ + iZ � unit-normleast-eigenvectorof

º � g �£¾ + i[ , where]0.�^�� 8 . � but ]®¼�B^ , andº g �¿¾ + i[ � ��  � � ¸ �� ·� ����
#¶ g7À i[ ¶ gÁÀ i 6[ �� 6 ·� ����
� �� 6 ·� �	��
V¶ gÁÀ i[ ¶ g7À i 6[ ��A·� ����
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where Â ��" if ^�� � , or Â �ª"Ã� 8 if ^�� 8 . ¶ g �£¾ + iZ should
alsobeupdatedat thisstep.
(4) If K 1Z � +sÄ ¶ � g7À ¾ + iZ $B¶ � gÁÀ iZ Ä£ÅµÆ ( Æ denotestheselected
threshold),stop;otherwise"��m"�� 8 , gotostep(3).

Remark: For realspeechdata,it is notnecessaryto use
a very largesetof datasamplesto constructa demixer. We
only needto pick a segmentof datathatcontain“uncorre-
latedwords”, i.e., thewordsmixed in thatsegmentshould
havehighly uncorrelatedwaveforms.

5. EXPERIMENT AL RESULT

This sectiondemonstratesthe proposedmethodusingreal
recordingmadebyT.-W. Lee(availablefrom S v5v?ÇrÈIÉ3É,Ê�Ê�ÊË{Ì/�§" { * � " Â�{ ÍpÎ3Ï§É�Ð)vVÍ2Ê®Ñ � É ). The recordingwasdonein a
normaloffice room at samplingrate16kHz. Two Speak-
ershave beenrecordedspeakingsimultaneously. Speaker
1 saysthe digits from oneto ten in Englishandspeaker 2
countsat thesametime thedigits in Spanish.Thedistance
betweenthe speakersandthe microphonesis about60cm
in asquareordering.TheIndependentComponentAnalysis
(ICA) methodwasusedby Leetoseparatethemixedspeech
signalsandthereconstructedwaveformsareshown in Fig-
ure1. Morerecently, theprobabilisticIndependentCompo-
nentAnalysis(PICA) methodwasproposedby Aceroet al
to enhancespeech(seeS v5v?Ç�È<É3É,�,Í * Íp�<� Ì S { ©s]>Ì �pÑ * Ñ-uwv/{ Ì Ñ ©É@Ðª� " Í2«Ã� Ì É3� *p* É ). ThePICA methodis not blind because
it usesamoreaccurateprobabilisticmodelof speech.These
methodsarecomputationallycostlyasthey usealargesetof
datasamplesto constructthehighorderchannelequalizers.

Figure2 shows thewaveformsof theseparatedsignals
by usingtheDID method.In theexperiment,wechose� �8 k�k , � � 83{}� and¤ ¥ ��k {¿8 . 20000samples(aboutoneword
length)betweensample10500andsample30499wereused
to estimatethe delayedinstantaneousdemixer

O �!H<
 . We
have observed that a datasegmentof one word length is



enoughtoconstructthedemixer. By playingtheseseparated
signals,we foundthattheICA methodofferedbettersepa-
ration thanthe the DID methodbut the latter yielded less
noisyseparatedsignals.While thePICA methodperformed
the bestamongthe threemethods,the DID methoddeliv-
eredthe leastcomputationalcomplexity. TheDID method
couldbeveryusefulfor datapreprocessing.

6. CONCLUSION

In this paper, we have proposeda simple delayedinstan-
taneousdemixer for signal separation. The derivation of
this demixer was motivatedby the following observation:
in someacousticenvironment, the cross-channelimpulse
responsesweredominatedby only few strongpulsesthat
exist in a verysmallneighborhood.An algorithmbasedon
grid searchingandalternatingprojectionwasusedto con-
structthedemixer. Realrecordeddatawereusedto inves-
tigatetheperformanceof theDID methodwith comparison
to the ICA methodandthe PICA method. The simplicity
of the DID methodmakesit a potentialcandidatefor data
preprocessing.
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Figure1. ThereconstructedwaveformsusingtheICA method.
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Figure2. ThereconstructedwaveformsusingtheDID method.


