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ABSTRACT

Theblind estimationof the symbolperiodof anunknavn linearly
modulatedsignalis addressedWe proposean original methodol-
ogy relying onthe concepbf blind decorolution, which doesnot
suffer from thedravbacksof theclassicabpproacheselyingupon
thecyclostatinarityof therecevedsignal. Undersuitabletechnical
conditionswe shaw thatthe optimizationof certaincostfunctions
leadsto the identificationof the symbolrate. Simulationresults
illustratethe excellentperformancef the method.

1. INTRODUCTION AND NOTATIONS

Lety, (t) denotethecomplex envelopeof thecontinuous-timesig-
nal transmittedby communicationsystemthat emplgys a linear
modulation.Signaly, (t) canbewrittenasy, (t) = >, skha(t —
kTs), wherethe symbol sequences,,) is assumedo bei.i.d.,
whereT; representshe symbol period, andwhereh, (t) is the
impulseresponsef anunknavn finite impulseresponsdilter re-
sulting from the multi-pathchannelandfrom the shapindfilter.

A key problemconsistsin recovering the series(s,, ) from the
sole knowledge of certain statisticsof y,(¢). The related ap-
proachesarecalled”blind” sincethey do not requireary training
sequenceln the literature,mary papersaddresshe blind equal-
izationproblemwhenthesymbolperiodT} is known In particular
thedecowolution approachs now very popular:aftersamplingat
therate1/Ts, the (stationary)seriesis passedhrougha discrete
timefilter - sayG(z); this oneis adaptedn orderto let its output
series’as independenas possible’making the probability distri-
bution of the outputz, = [G(z)]y» ascloseaspossiblefrom the
distribution of (s,) ([1]). This adaptatiorstephasbeenshavn to
reduceto the optimizationof certaincostfunctions,for example
the CMA costfunction [2], the Maximization of Kurtosis(MK)
[3], ... WhenT; is unknown the blind equalizationproblemis
clearly muchharder Sucha blind problemarisesin passie lis-
teningfor instance A solutionconsistdn first estimatingT’s, then
applyingthe abose-mentioneddecowolution technique.The key
point is thereforethe estimationof T,. A classicalmethodre-
liesonthefactthaty,(t) is wide-senseyclo-stationarywith the
multiplesof 1/T, ascyclo-frequenciesAn estimateof T canbe
constructedasthe agumentmaximumof a certainperiodogram-
like costfunction: see[4] for thebasicapproach,[§{6] for amore
elaboratesolution. This approactsufers from a cleardravback:
generally the supportof the Fourier Transformof the channelh,
is anintenal [— 3£, 1] wherey > 0 is calledthe excesshand-
width factor As is well known, y,(t) is stationarywhen~ = 0.
Thereforetheclosery to 0 (i.e. theminimumbandwidthensuring

acorrecttransmissiorfi7]) the”more stationary”y, , hencemaking
thecyclic approachproneto numericalproblemg6].

In this paper we proposea novel approachwhich ratherre-
lies upon the conceptof decowolution. In this respect,let us
considera given samplingperiod 7. andthe associatedliscrete-
time signaly, (nT.). We denoteby a theratioa = % andset
Yn,a = Ya(naTs). Theseries(y, o) is nonstationarybut cyclo-
stationary(or almostperiodicallycorrelated APC). We chooseto
pass(yn,) througha stabledigital filter G(z). Thefilteredtime
seriesis denotedy (zn,« ). In this contribution, we build a family
of costfunctionsJ(G, a) which verify the following property: if
ais notaninteger(i.e. T, is notamultiple of T) then.J is strictly
beyond a certainspecifiedbound;if a = 1, this boundis reached
for G ascaled/delayethverseof the channel Clearly suchacost
functionallows to estimaten asagmin, (ming J(G, «)).

We shav thatsucha costfunctionmayderive from the contrast
functionsusedin a stationarycontet (suchasCMA, MK, ... ).
We provide a sketchof the proof, the full demonstrations out of
the scopeof this paperandis a part of a full forthcomingpaper
We underlinethat the approachis theoreticallyrobust to a lack
of excessbandwidth. Simulationscorroboratethis remark: In a
difficult scenariowhentheusualcyclo-correlatiorbasedapproach
is boundto fail (i.e. v = 0.1, numberN of available symbols
N = 500), we shaw that T} is reliably recosered.

2. CONSTRUCTION OF COST FUNCTIONS

In orderto understandhe constructionof our costfunction, we
briefly recallthe mainpointsof thesimplecasewhena = 1.

2.1. When T isknown (i.e.a« = 1)

Theseriesy,,1 is simply denotedby y,,: it is stationarysinceit is
theconvolutiony, = -, hxsn—, Wherehy = h,(kTs). Weset
H(z) = ¥, hez~*. Supposehat1/H(z) is stable,a condition
which is assumedhroughoutthis paper Many blind decowolu-
tion/equalizatiommethodsconsistin adaptinga filter G(z) making
the probability distribution of the outputz, = [G(z)]y» asclose
aspossiblefrom thedistribution of (s,,) ([1]). As wasshavn sub-
sequentlyonemayfocuson partial statisticsof (z,): specifically
theminimizationof a costfunctionof thetype

¢2(E{¢p2 (2n)})
(the suffix ., standsfor "stationary”) for certainchoicesof the
mappingsyp; : R — R andy; : C — R achievesthe equalization.
We usethefollowing terminology

Js(G)



Definition 1 G — Js(G) is a contrastif 1) J,(G) is uniformly
lower-boundedj.e. if ther existsa real constantx sud that, for
all stablefilter G, J,(G) > & 2) the equalityoccurs whenand
onlywhen@ is scaled/delayethverseof H.

Mary of thecontrastfunctionsareof thetype(1):

e when(s,) hasanegative fourth-ordercumulanttheMK ap-
proachconsistdn minimizing (1) with ¢1(z) = z, ¥1(z) =
|z|*, ¢2(z) = z® andepe(z) = |z|>. Moreover, K =
ka(s) + 3 = E(s*), wherekq(s) is the fourth-ordercu-
mulantof thesource.

e whenthe symbolshave constantmodulus the CMA contrast
functionis of thetype (1) with ¢1 () = z, 1 (z) = (Jz|* —
1)%, ¢2(x) = 1 andyp2 = 1. Thelower boundis x = 0.
Noticethatin theseexamplesp, is concae whereasp is con-
vex. In thesequelwe will restrictto quadruplege1, g2, 11, 12)
verifying:

Assumptionl (@1, ¢2,%1,12) aresud thattheassociated/, of
Eq. (1) is a contrastfunctionof lower bounds.
¢1 (respectivelys) is concaverespectivel\convex).

2.2. Generalization: caseof an unknown T

« isnomoreboundto beone. Theseriesof interestis Now (yn,qa).

Basically we extendthemethodologydepictedn astationarycon-
text: theserie(y» ) is passedhroughadigitalfilter G(z); there-

sultingserieds denotediy (z,,« ). In generalthisseriess notsta-
tionarybut APC. Neverthelessasin the stationarycontext, we fo-

cusontheinferior boundof acostfunctioninvolving certainstatis-
ticsof (z,,q); asis now specifiedthisfunctionis adirectgeneral-
izationof the contrastfunction J, introducedn Section2.1. Con-
siderindeedmappings(¢1, ¢2, %1, ¥2) asdepictedin Assump-
tion 1). As (2n,a) is APC, (E{%); (2n,0)}),, area priori Almost
Periodic deterministicseries; we considernow the zerd”-order
Fouriercoeficient,namelylimy - 0 + SNV E{4i (2n,a) }, and
definethe costfunction J associatedvith J; (i.e. J(G,1) =

Js(@)):

¢1 (im0 & S50 B (20,0)})
P2 (limN—Mxv % Zi::ol E{v2 (zn,a)})

We now addresshe minimizationof J overthevariablesG anda.

J(G,a) = (2)

3. ANALYSIS OF J(G, )

Thechannelh, is assumedband-limited,namelywe considerthe
following (technical)restrictionson h,:

Assumption2 h, € L'(R) and denoteby h,(v) the Fourier
Transformof ha(t) then: ha(t) = [7, ha(v)e®™!dv whee
B= 3R witho <y <1

Themaincontritutionlies in thefollowing
Theorem1 Recall that  is the inferior bound of J,(G) =
J(G, 1), thenunderassumptiorl and 2,

e J(G, a) is beyondtheboundk, whatever G anda

e anecessargonditionfor the boundx to be attainedis that
a is anon-nullinteger

o theboundis attainedfor a. = 1 andG.(z) = 1/H(z).

Dueto thelack of spacewe only provide the main stepsof the
proofin subsection8.1and3.2.

As a preliminaryresult,it is crucialto seethe series(zy,o) as
the sampledversionof a certaincontinuous-timesignal (z, (¢))
with sampleduration7. = aTs. In otherwords, it is possi-
ble to prove that for ary G there exists a certainfilter of im-
pulseresponseg, € L*(R) suchthat z,,, = z(nTe) with
za(t) = >, Sufa(t — nTs) and fo(t) = ga * ha(t). Among
thesesolutionswe pick up thefollowing

D(G,a)(t) = > gxsind4nB(t — kaTy)). 3)
k

We naturally definethe functionalin g, (the existenceis dis-
cussedn Lemmal).

¢ (limyoeo & 205 E(t1 (20(naT2))})
¢ (lim-soo & 22050 Bv2 (sa(nal))})

J(ga, ) = @)

such that we have the following relation between.J and J:
J(G,a) = J(D(G,a),a). In otherwords, this relation legiti-
matesthatwe concentraten J.

3.1. A basicproperty of J

For a given g,, the processz,(t) is cyclostationarywith period
Ts. HenceE{v; (za(t))} is a Ts-periodicmapping.We male the
technicalassumptiorthatt — E{; (24(t))} is continuous.We
candefinethe k*"-orderFouriercoeficient denotedoy \I'z(.k):

Ts
0 (g,) = Ti /0 E{4; (24 (1))} exp (—kais) dt. (5)
We have

Lemmal Assumehatfors: = 1,2 the series(\Ilgk)(ga)) are
k
summablelf o € R\Q, then

. o1 (¥ (90))
T(gar @) = ——omls (6)
$2 (‘I’2 (ga))
Ifa= ;—’ with p, ¢ coprimeintegers, then
. 1 (25 1 (ga)
J(ga, ) = ( - zk) ) (7
¢2 (Ek Ty (ga))

This preliminaryresultcallsfor commentsLemma 1 thusim-
pliesthat,in generalfor afixedg,, themappinga — J(gq, @) is
discontinuousn every a. Moreover, if « is irrational, it is worth
noticingthat J(g., «) doesnotdependon a (see(6)).

3.2. Lower bound of J

Lemma2 Suppos¢hatthetecnical conditionof Lemmal holds
and that Assumptiond (relativeto the consideed costfunction)
and2 (relativeto h,) are fuffilled. For anynon-intger o andany
ga € L*(R), wehave J(ga,a) > K.



As is suggestedy Lemmal, the behaior of .J depend®ssen-
tially ontherationalcharactenof «; thetwo caseq« rationaland
«a irrational) mustbe treatedseparately The proof of this lemma
takesthis remarkinto account.Dueto the lack of spacewe con-
siderthe casex irrational. The othercasecanbetreatedthe same
way. Wemayexpress/ asin (6), with the\Ilgk)(ga)‘sgivenby (5).
As ¢1 is aconcae mapping,it yieldsfrom Jensers inequality

oz " By Gatttat) > - | " o (Bt () .

0
(8)

Foragivenrealt, z.(t) = Y, sk fa(t —kTs) andcanbeseerasa
discrete-timeonvolution. As thecostfunctionJ; in (1) associated
with themappings®,, @2, ¥, ¥, is a contrastfunction,it yields

#1 (E{y1(24(t))}) > K2 (B{tp2 (2a(¢))}) )
for eacht. Hence

o e Gtz ng [ (Bl ) e

> nin (5 [ Bla ot

the last inequality coming from the Jensers formula appliedto
the cornvex mappinge2; this provesthat J(gq, «) > « whaterer
ga € L*(R) anda irrational. We noticethata necessargondition
for the inequality to be an equalityis that (9) is an equality for
almosteveryt € [0, T;]: this givesthefollowing conditionon f,:

fa (t+nTs) = AMt)dn—r(r) (10)

where\(t) arenon-nullconstantsandr(t) integers. The follow-
ing resultcanbe easilyproven: dueto bandwidthlimitation (see
Assumptior2), it is impossibleto find a g, suchthatg, * h, veri-
fies(10). Hencewe eventuallyhave J(g,, @) > k. Thisconcludes
the proofwhene is irrational.

3.3. Minimization of .J

We now focuson the following quantity:  inf¢ J(G, ). Sup-
posethata is notaninteger At afirst glance, Theoreml seems
to provide thatinfe J(G, o) > k. Thisis of coursenot obvious.
This resultcanbe shavn to be true as soonas a certainmathe-
maticalspecificationsre provided (G a compactsubsebf ' (Z),
continuityof g, — J(ga, ) with respecto acertainnorm. ... );
thistaskis donein aforthcomingfull paper Actually, it is possible
to shaw thefollowing strongerresult:

Theorem 2 if the v;’s are polynomialmappings,there exists a
constants’ sud thatfor anynoninteger a:

iIéfJ(G, a) > K > k.

This uniform boundin « hasanimmediateimportanceon a sta-
tistical point of view, sincethe mappinga — infg J(G, a) has
adiscontinuityfor « = 1 (andalsofor the otherintegers),which
malkes the detectionof T easy Of course,the biggerthe gap
k' — K, the morerobust the detectionof T; the theorydoesnot
give ary specificatioron s’ — x; however, simulationresultsillus-
tratethatx’ — k is enoughto ensurea correctdetectionof a.

Remark 1 It canbeshownthatthegapx’ — k is all thebigger as
the channelhasa smallroll-off. Thisimpliesthe lessthe roll-off
thebetterthe performancesThissurprisingresultis confirmedoy
simulation.

4. EXAMPLE AND ALGORITHM

We now presenthepracticalsettingsof our methodwith anexam-
ple: the MK costfunction. We usethe classicalempiricalaverag-
ing to estimate/. Namelywe consider:

N-1
% ano |zn,a|4
N—1
(% Xneo |2n.al?)?

As N is finite, thisjunction is continuousandto estimatel’;, we
have to minimize J(G, «) on G ande. It is notpossibleto obtain
atractableform of the estimatedtostfunctionasa function of a.
Thus,we choosea grid of o which correspondso the searcharea
of Ts. And for eacha in this grid we computethevalueof (11) by
minimizing on G the costfunctionusinga newton algorithm. We
estimaten asthe agumentminimum of all the valuespreviously
computed. The choiceof the stepof the grid is thencrucial and
discussedh section5.

It is quite easyto have anroughideaof the bandwidthof the
receved signal and thus we choosea initial samplingperiod T;
which verify the Shannorsamplingcondition. We samplethe re-
ceived signalat 7;, and getthe sequencdy, (nT;)}. Thanksto
this initial sequencewe are able by the Shannors interpolation
theorento generateary sequencdy, (naTs)} for ary a.

J(G,a) = (11)

5. SIMULATION RESULTS

We now illustratethe goodperformanceof our approachyve first
study the impact of the obsenration duration (i.e. NTs) on the
settingof thegrid of «, thenwe illustratetheinfluenceof theroll-
off on our contrast-functionFinally, we compareour approacto
thecyclo-correlationbasedapproach.

We first presentthe context used for the different simula-
tions. The emittedsignal alwaysoriginatesfrom a digital source
modulatedby a PSK4 i.i.d sequenceshapedby a squareroot
Nyquist filter with roll-off . We considera multi-path chan-
nel with 3 paths. The delaysof the pathsare respectiely :
(0.400467;2.08262T; 2.960087) andthe complex amplitudes
are: (0.89 + 0.43¢; —0.50 — 0.14¢; 0.21 + 0.24:). This channel
is usedfor all thefollowing simulations.Thetwo first simulations
arerunin anoisefree contet. In applyingthe CMA andMK al-
gorithms,we have alwaysuseda 4-tapequalizer Theoreticallythe
inverseof H(z) shouldbe an IR filter, but numerically this in-
verseis well approximatedy a 4-tapequalizer The signaly, (t)
is modeledasabasebandutputof 1 antennaAs shavn in section
4, thechoiseof thegrid is very crucial.

Figure 1 illustratesthe influence of the obseration duration
NT, on f(G, a) arounda = 1: The moresampleswe use,the
sharperthe peakwhich meansthe betterthe estimation. But in
orderto detecta very sharppeak,we needa very densggrid of .

Let now examinetheinfluenceof theroll-off, weset/NV = 1000.
We run 10 simulationswith differentsymbolssequencend plot
in figure 2 the averageof Ming (J(G, ) for two differentroll-
off values:y = 0.1 andy = 0.7. The minimumis reachedor
a =1 andisequalto 0. Fora = k, k > 1, theequalizerg(z) can
not equalizeperfectly and the minimum is not reached. Indeed
whena = k, k > 1, the SISO systemis equialentto a MISO
systemwith k£ sources.In figure 2, we establishthat the roll-off
hasan influenceon the value of the costfunction when ¢ is far
away from 1. Thanksto this numericalillustration, we presume
on the accurag of the estimationof Ts even for small roll-off.



The lessthe roll-off the better the detection. Indeedthe gap
betweenthe minimum of the costfunction andthe value of the
costfunctionwhenT, is faraway from T is greateifor smallroll-
off which meanghatthe detectionis easier In afull bandcontext
(i.e. v = 1), thereexistsanequalizerfor « = k/2, k € Z and
in this case the minimumwill bealsoreachedor a = k/2. This
explainsthe point measuredor aroll-off equalto 0.7 ate = 1/2.
We now focus on the comparison between our method
and the classical clyclostationary based approach. Basically
this latter consistsin : & = ArgMing ozoR®*WR®
where W is a well choosenweighting matrix and R(*) =
(R®)(=n),..., R (n))T a (2n + 1) column vector where
R® (7) istheempiricalestimateof cyclic correlationatfrequeng
« anddelayr of asampledversionof y,(t), the samplingperiod
T. mustverify the Shannorcondition. In practice,the minimiza-
tion versusa is achiered by anexhaustve searctover a grid with
a stepequalto NTT . We studythe probability of detectionof the
peakfor both methods. We assumedo have a correctdetection
when|T, — Ts| < T, /N. We comparethe probabilitiesof correct
detectionversusthe roll-off and versusthe signalto noiseratio
(SNR). We test2 cyclic methodg[6]: the classicalonein which
W = I (noted’cy”) andtheweightedonein which W is choosen
in a optimalway [5][6] (noted”cyw”). We comparethemto our
MK andCMA costfunctions. We test2 differentnoiselevels: 10
and 30 dB, 2 differentroll-offs: 0.2and0.7,andfor N = 500.
We assumehe noiseGaussianWe run 100realizationsandcount
the numberof correctdetection. The resultsare presentedn ta-
ble 1. The baddetectionfor the mk and cmabasedapproachat

v = 0.2 ¥ = 0.7

SNR cy | cyw | mk [ cma| cy | cyw | mk | cma
10dB || 07 [ 43 | 100 | 98 90 | 100 | 58 53

30dB || 12 | 53 | 100 | 100 || 99 | 100 | 100 | 100

Table 1. Numberof correctdetectionsover 100realizations

SNR=10dBandfor aroll-off of ¥ = 0.7 lies ontwo facts:first at
smallSNRandhigh roll-off, it is possibleto confoundthe peakat
a = 1/2 andtheoneata = 1. Secondlyfor large valueof «,
thenumberof sampleaisedto estimatehecostfunctionis smaller
thanfor small« (i.e theobserationdurationstayconstant)which
meansthat the varianceof the estimationof our costfunctionis
greaterfor large «. Thusat small SNR, we will not be ableto
detectthepeakcorrectly

6. CONCLUSION

In this contritution, we developamethodolodgyor theestimation
of the symbolperiod. It relieson the ideaof decowolution. We

setforth somefonctionsthe minimization of which theoretically
providesthe symbolperiod.Moreover, the approactasbeenval-

idatedby extensve simulationswhich confirmits superiorityover

the existing methodswvhenthe excesshandwidthis tiny.
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