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ABSTRACT

Theblind estimationof thesymbolperiodof anunknown linearly
modulatedsignalis addressed.We proposeanoriginal methodol-
ogy relyingon theconceptof blind deconvolution,whichdoesnot
suffer from thedrawbacksof theclassicalapproachesrelyingupon
thecyclostatinarityof thereceivedsignal.Undersuitabletechnical
conditions,weshow thattheoptimizationof certaincostfunctions
leadsto the identificationof the symbol rate. Simulationresults
illustratetheexcellentperformanceof themethod.

1. INTR ODUCTION AND NOTATIONS

Let ��������� denotethecomplex envelopeof thecontinuous-timesig-
nal transmittedby communicationsystemthat employs a linear
modulation.Signal � � ����� canbewrittenas � � ���	��

�
��� ��� � ���������� � , where the symbol sequence������� is assumedto be i.i.d.,
where

� �
representsthe symbol period, and where

� � ����� is the
impulseresponseof anunknown finite impulseresponsefilter re-
sultingfrom themulti-pathchannelandfrom theshapingfilter.

A key problemconsistsin recovering the series ��� � � from the
sole knowledge of certain statisticsof ��������� . The relatedap-
proachesarecalled”blind” sincethey do not requireany training
sequence.In the literature,many papersaddresstheblind equal-
izationproblemwhenthesymbolperiod

���
is known. In particular,

thedeconvolutionapproachis now verypopular:aftersamplingat
the rate � � � � , the (stationary)seriesis passedthrougha discrete
time filter - say ! �#"�� ; this oneis adaptedin orderto let its output
series”as independentaspossible”makingtheprobabilitydistri-
bution of theoutput " � 
%$ ! �#"���&'� � ascloseaspossiblefrom the
distribution of ������� ([1]). This adaptationstephasbeenshown to
reduceto the optimizationof certaincost functions,for example
the CMA cost function [2], the Maximizationof Kurtosis(MK)
[3], (�()( When

���
is unknown, the blind equalizationproblemis

clearly muchharder. Sucha blind problemarisesin passive lis-
teningfor instance.A solutionconsistsin first estimating

���
, then

applyingtheabove-mentioneddeconvolution technique.Thekey
point is thereforethe estimationof

� �
. A classicalmethodre-

lies on thefact that ��������� is wide-sensecyclo-stationary, with the
multiplesof � � � � ascyclo-frequencies.An estimateof

� �
canbe

constructedastheargumentmaximumof a certainperiodogram-
likecostfunction: see[4] for thebasicapproach,[5][6] for amore
elaboratesolution. This approachsuffers from a cleardrawback:
generally, thesupportof theFourierTransformof thechannel

� �
is aninterval $*�,+.-�/021�354 +.-�/02163 & where7,8:9 is calledtheexcessband-
width factor. As is well known, � � ����� is stationarywhen 7 
 9 .
Therefore,thecloser7 to 9 (i.e. theminimumbandwidthensuring

acorrecttransmission[7]) the”morestationary”� � , hencemaking
thecyclic approachproneto numericalproblems[6].

In this paper, we proposea novel approachwhich rather re-
lies upon the conceptof deconvolution. In this respect,let us
considera given samplingperiod

��;
andthe associateddiscrete-

time signal ������< ��; � . We denoteby = the ratio = 
 1�>1 3 andset� ��? @ 

� � ��< = � � � . Theseries��� ��? @ � is nonstationary, but cyclo-
stationary(or almostperiodicallycorrelated,APC).We chooseto
pass��� ��? @ � througha stabledigital filter ! �#"�� . Thefiltered time
seriesis denotedby �#" ��? @�� . In thiscontribution,we build a family
of costfunctions A � ! 4 = � which verify the following property: if= is notaninteger(i.e.

� ;
is notamultipleof

� �
) then A is strictly

beyonda certainspecifiedbound;if = 
 � , this boundis reached
for ! a scaled/delayedinverseof thechannel.Clearly, suchacost
functionallows to estimate= asargmin@ � minBCA � ! 4 = �	� .

Weshow thatsucha costfunctionmayderive from thecontrast
functionsusedin a stationarycontext (suchasCMA, MK, ()(D( ).
We provide a sketchof theproof, the full demonstrationis out of
the scopeof this paperandis a part of a full forthcomingpaper.
We underlinethat the approachis theoreticallyrobust to a lack
of excessbandwidth. Simulationscorroboratethis remark: In a
difficult scenario,whentheusualcyclo-correlationbasedapproach
is boundto fail (i.e. 7 
 9�('� , number E of available symbolsE 

F 9�9 ), we show that

� �
is reliably recovered.

2. CONSTRUCTION OF COST FUNCTIONS

In order to understandthe constructionof our cost function, we
briefly recallthemainpointsof thesimplecasewhen = 
 � .
2.1. When

� �
is known (i.e. = 
 � )

Theseries�G��? + is simply denotedby ��� : it is stationarysinceit is
theconvolution �G�H
I� � ��� � ��J � where

��� 
 � �K� ����� � . We setL �#"��M
%�
� ��� " J � ( Supposethat ��� L �#"�� is stable,a condition
which is assumedthroughoutthis paper. Many blind deconvolu-
tion/equalizationmethodsconsistin adaptingafilter ! �#"N� making
theprobabilitydistribution of theoutput " � 
O$ ! �#"N��&P� � asclose
aspossiblefrom thedistributionof ������� ([1]). As wasshown sub-
sequently, onemayfocuson partialstatisticsof �#" � � : specifically,
theminimizationof acostfunctionof thetype

A � � ! �Q
SR + �UTWV X + �#" � �	Y��R 0 �UTWV X 0 �#" � �	Y�� (1)

(the suffix ( � standsfor ”stationary”) for certainchoicesof the
mappingsR�Z�[�\:]^\ and X Z�[N_`]a\ achievestheequalization.
We usethefollowing terminology



Definition 1 !cb] A � � ! � is a contrast if d � A � � ! � is uniformly
lower-bounded,i.e. if there existsa real constante such that, for
all stablefilter ! , A � � ! � 8fehg � the equalityoccurs whenand
onlywhen ! is scaled/delayedinverseof

L
.

Many of thecontrastfunctionsareof thetype(1):i when ��� � � hasanegative fourth-ordercumulant,theMK ap-
proachconsistsin minimizing (1) with R + ��jk�Q
lj , X + ��jk�Q
m j m n , R 0 ��jk�o
pj 0 and X 0 ��jk�`
 m j m 0 . Moreover, e 
e n �����rqIst
vuw��� n � , where e n ����� is the fourth-ordercu-
mulantof thesource.i whenthesymbolshaveconstantmodulus,theCMA contrast
functionis of thetype(1) with R + ��jk�Q
lj , X + ��jk�x
I� m j m 0 �� � 0 , R 0 ��jk�x
 � and X 0 
 � . Thelower boundis e 
 9 .

Noticethatin theseexamplesR + is concave whereasR 0 is con-
vex. In thesequel,we will restrictto quadruples� R + 4 R 0 4 X + 4 X 0 �
verifying:

Assumption 1 � R + 4 R 0 4 X + 4 X 0 � aresuch thattheassociatedA � of
Eq.(1) is a contrastfunctionof lower bounde .R + (respectivelyR 0 ) is concave(respectivelyconvex).

2.2. Generalization: caseof an unknown
� �

= is nomoreboundto beone.Theseriesof interestis now ��� ��? @ � .
Basically, weextendthemethodologydepictedin astationarycon-
text: theseries��� ��? @ � ispassedthroughadigital filter ! �#"N� ; there-
sultingseriesis denotedby �#" ��? @�� . In general,thisseriesis notsta-
tionarybut APC.Nevertheless,asin thestationarycontext, we fo-
cusontheinferior boundof acostfunctioninvolving certainstatis-
ticsof �#" ��? @�� ; asis now specified,this functionis adirectgeneral-
izationof thecontrastfunction A � introducedin Section2.1.Con-
sider indeedmappings � R + 4 R 0 4 X + 4 X 0 � as depictedin Assump-
tion 1). As �#"���? @k� is APC, �UTkV X Z �#" ��? @k�	Y�� � area priori Almost
Periodicdeterministicseries;we considernow the zeroy�z -order
Fouriercoefficient,namely{}|}~��r��� +� � � J +�G��� TkV X Z �#" ��? @k�	Y , and
define the cost function A associatedwith A � (i.e. A � ! 4 � ��
A � � ! � ) :

A � ! 4 = �5
 R + � {}|}~ ����� +� � � J +���k� TkV X + �#" ��? @ �	Y �
R 0 � {}|}~������ +� � � J +���k� TkV X 0 �#" ��? @k�	Y � (2)

Wenow addresstheminimizationof A over thevariables! and = .

3. ANALYSIS OF A � ! 4 = �
Thechannel

� � is assumedband-limited,namelywe considerthe
following (technical)restrictionson

� � :

Assumption 2
� �f��� + � \ � and denoteby �� ���#��� the Fourier

Transformof
� �K���	� then:

� ��������
����J � �� ���#����� Z 02��� y.� � where� 
 +.-�/021 3 with 9���7,�
�
Themaincontribution lies in thefollowing

Theorem1 Recall that e is the inferior bound of A � � ! �c
A � ! 4 � � , thenunderassumption1 and2,i A � ! 4 = � is beyondthebound e , whatever ! and =i a necessaryconditionfor thebound e to beattainedis that= is a non-nullinteger

i theboundis attainedfor =5� 
 � and !�� �#"��Q
 ��� L �#"�� .
Dueto thelack of space,we only provide themainstepsof the

proof in subsections3.1and3.2.
As a preliminaryresult,it is crucial to seetheseries�#" ��? @k� as

the sampledversionof a certaincontinuous-timesignal �#" � �����	�
with sampleduration

� ; 
 = � � . In other words, it is possi-
ble to prove that for any ! there exists a certain filter of im-
pulse response� � � � 0 � \ � such that " ��? @ 
¡" � ��< � ; � with" � ���	�¢
 � � � �K£�� ���¤�:< � � � and £ � �����w
 � ��¥ � � ����� . Among
thesesolutions,we pick up thefollowing¦ � ! 4 = �§�����Q

¨ � � � sinc��©Gª � ���W� � = � � �	� ( (3)

We naturallydefinethe functional in � � (the existenceis dis-
cussedin Lemma1).

«A � � � 4 = �5
 R + � {}|}~ ����� +� � � J +���k� TkV X + �#" � ��< = � � �	�	Y �
R 0 � {}|}~ ����� +� � � J +���k� TkV X 0 �#" � ��< = � � �	�	Y � (4)

such that we have the following relation between A and
«A :A � ! 4 = �¬
 «A � ¦ � ! 4 = � 4 = � . In otherwords, this relationlegiti-

matesthatwe concentrateon
«A .

3.1. A basicproperty of
«A

For a given � � , the process"�������� is cyclostationarywith period���
. HenceTWV X Z �#" �������	�	Y is a

���
-periodicmapping.We make the

technicalassumptionthat � b] TWV�X Z �#" � ���	�	�	Y is continuous.We
candefinethe

� y�z -orderFouriercoefficient denotedby ­¬® �)¯Z :

­ ® �D¯Z � � � �Q
 �� �M° 1 3� TWV X Z �#" � �����	�	Y²±D³�´¶µW�¸·.¹�ª � �� �Kº»� � ( (5)

We have

Lemma 1 Assumethat for ·¼
 � 4 ¹ the series
� ­ ® �)¯Z � � � ��� � are

summable. If = � \¾½ ¿ , then

«A � � � 4 = �5
 R + � ­ ® � ¯+ � � � ���
R 0 � ­¬® � ¯0 � � �N� �¼À (6)

If = 
cÁÂ with Ã 4	Ä coprimeintegers, then

«A � � � 4 = �Q
 R + � �
� ­ ® � Â ¯+ � � � ���
R 0 � � � ­ ® � Â ¯0 � � �N� � ( (7)

This preliminaryresultcallsfor comments.Lemma 1 thusim-
pliesthat,in general,for a fixed � � , themapping=Åb] «A � � � 4 = � is
discontinuousin every = . Moreover, if = is irrational, it is worth
noticingthat

«A � � � 4 = � doesnotdependon = (see(6)).

3.2. Lower bound of
«A

Lemma 2 Supposethat thetechnical conditionof Lemma1 holds
and that Assumptions1 (relativeto the considered costfunction)
and2 (relativeto

� � ) are fulfilled. For anynon-integer = andany� ���,� 0 � \ � , wehave
«A � � � 4 = ��Æ eW(



As is suggestedby Lemma1, thebehavior of
«A dependsessen-

tially on therationalcharacterof = ; thetwo cases( = rationaland= irrational)mustbe treatedseparately. Theproof of this lemma
takesthis remarkinto account.Dueto the lack of space,we con-
siderthecase= irrational. Theothercasecanbetreatedthesame
way. Wemayexpress

«A asin (6),with the ­ ® �)¯Z � � � � ’sgivenby (5).
As R + is a concave mapping,it yieldsfrom Jensen’s inequality

R + µ �� � ° 1�3� TkV�X + �#" � ���	�	�	Y � � º 8 �� � ° 1�3� R + �UTWV X + �#" � �����	�	Y�� � � (
(8)

For agivenreal � , " � �����Q

�
��� � £ � ���N� ��� � � andcanbeseenasa
discrete-timeconvolution. As thecostfunction A � in (1)associated
with themappingsÇ + 4 Ç 0 4 ­ + 4 ­ 0 is a contrastfunction,it yieldsR + �UT�V�X + �#" �������	�	Y6� 8:e R 0 �UTWV�X 0 �#"��������	�	Y6� (9)

for each� . Hence����M° 1 3� R + �UTWV�X + �#"��������	�	Y6� � � 8Èe ����M° 1 3� R 0 �UTkV X 0 �#" �������	�	Y6� � �
8Èe R 0 µ �� �M° 1�3� TWV X 0 �#" � ���	�	�	Y � � º

the last inequality coming from the Jensen’s formula appliedto
the convex mappingR 0 ; this provesthat

«A � � � 4 = � 8fe whatever� � �»� 0 � \ � and = irrational.Wenoticethatanecessarycondition
for the inequality to be an equality is that (9) is an equality for
almostevery �r��$ 9 4 ��� & : this givesthefollowing conditionon £ � :£ �¾���kqo< ��� ��

É²�����.Ê ��J�Ë ® y ¯ (10)

where É²���	� arenon-null constantsand Ì ���	� integers.The follow-
ing resultcanbe easilyproven: dueto bandwidthlimitation (see
Assumption2), it is impossibleto find a � � suchthat � ��¥ � � veri-
fies(10). Henceweeventuallyhave

«A � � � 4 = �rÆ e . Thisconcludes
theproof when = is irrational.

3.3. Minimization of A
We now focuson the following quantity: |}Í�ÎÏB�A � ! 4 = � . Sup-
posethat = is not an integer. At a first glance,Theorem1 seems
to provide that |'Í�Î B A � ! 4 = �¼Æ eW( This is of coursenot obvious.
This result can be shown to be true assoonasa certainmathe-
maticalspecificationsareprovided( ! a compactsubsetof Ð + ��ÑÒ� ,
continuityof � � b] «A � � � 4 = � with respectto a certainnorm ()(D( );
thistaskis donein aforthcomingfull paper. Actually, it is possible
to show thefollowing strongerresult:

Theorem2 if the X Z ’s are polynomialmappings,there exists a
constanteKÓ such that for anynoninteger = :|'Í�ÎB A � ! 4 = � 8le Ó Æ ek(
This uniform boundin = hasan immediateimportanceon a sta-
tistical point of view, sincethe mapping =Ôb] |'Í�Î B A � ! 4 = � has
a discontinuityfor = 
 � (andalsofor theotherintegers),which
makes the detectionof

���
easy. Of course,the bigger the gape Ó � e , the morerobust the detectionof

���
; the theorydoesnot

giveany specificationon e Ó � e ; however, simulationresultsillus-
tratethat eKÓ � e is enoughto ensurea correctdetectionof = .

Remark 1 It canbeshownthat thegap e Ó � e is all thebigger as
the channelhasa small roll-off. This impliesthe lessthe roll-off
thebettertheperformances.Thissurprisingresultis confirmedby
simulation.

4. EXAMPLE AND ALGORITHM

Wenow presentthepracticalsettingsof ourmethodwith anexam-
ple: theMK costfunction. We usetheclassicalempiricalaverag-
ing to estimateA . Namelyweconsider:

�A � ! 4 = ��
 +� � � J +�G��� m " ��? @ m n� +� � � J +���k� m " ��? @ m 0 � 0 (11)

As E is finite, this function is continuousandto estimate
� �

, we
have to minimize �A � ! 4 = � on ! and = . It is notpossibleto obtain
a tractableform of theestimatedcostfunctionasa functionof = .
Thus,we choosea grid of = which correspondsto thesearcharea
of

� �
. And for each= in thisgrid wecomputethevalueof (11)by

minimizing on ! thecostfunctionusinga newton algorithm.We
estimate= astheargumentminimumof all thevaluespreviously
computed.The choiceof the stepof the grid is thencrucial and
discussedin section5.

It is quite easyto have an roughideaof the bandwidthof the
received signal and thus we choosea initial samplingperiod

� Z
which verify theShannonsamplingcondition. We samplethere-
ceived signalat

� Z , andget the sequenceV � � ��< � Z �	Y . Thanksto
this initial sequence,we areableby the Shannon’s interpolation
theoremto generateany sequenceV � � ��< = � � �	Y for any = .

5. SIMULA TION RESULTS

We now illustratethegoodperformanceof our approach,we first
study the impact of the observation duration(i.e. E � �

) on the
settingof thegrid of = , thenwe illustratetheinfluenceof theroll-
off on our contrast-function.Finally, we compareour approachto
thecyclo-correlationbasedapproach.

We first presentthe context used for the different simula-
tions. Theemittedsignalalwaysoriginatesfrom a digital source
modulatedby a PSK4 i.i.d sequenceshapedby a squareroot
Nyquist filter with roll-off 7 . We considera multi-path chan-
nel with 3 paths. The delays of the paths are respectively :� 9�( © 9�9 ©�Õ ��� À ¹ ( 96Ö ¹�ÕG¹ ��� À ¹ ( × Õ 969�Ö � � andthe complex amplitudes
are: � 9�( Ö�× q 9�( ©�s6· À � 9�( F 9 � 9�(}� ©�· À 9�( ¹ � q 9�( ¹�©6·�� . This channel
is usedfor all thefollowing simulations.Thetwo first simulations
arerun in a noisefreecontext. In applyingtheCMA andMK al-
gorithms,wehavealwaysuseda4-tapequalizer. Theoreticallythe
inverseof

L �#"�� shouldbe an IIR filter, but numerically, this in-
verseis well approximatedby a 4-tapequalizer. Thesignal � � �����
is modeledasabasebandoutputof � antenna.As shown in section
4, thechoiseof thegrid is very crucial.

Figure 1 illustratesthe influenceof the observation durationE � �
on �A � ! 4 = � around = 
 � : The moresampleswe use,the

sharperthe peakwhich meansthe betterthe estimation. But in
orderto detecta verysharppeak,we needa very densegrid of = .

Letnow examinetheinfluenceof theroll-off, weset E 
 ��969�9 .
We run 10 simulationswith differentsymbolssequenceandplot
in figure 2 the averageof Min B � �A � ! 4 = �	� for two differentroll-
off values: 7 
 9�(}� and 7 
 9�( Ø . The minimum is reachedfor= 
 � andis equalto 9 . For = 
 �

,
� Æ � , theequalizer� �#"N� can

not equalizeperfectly and the minimum is not reached. Indeed
when = 
 �

,
� Æ � , the SISOsystemis equivalent to a MISO

systemwith
�

sources.In figure 2, we establishthat the roll-off
hasan influenceon the valueof the cost function when = is far
away from � . Thanksto this numericalillustration, we presume
on the accuracy of the estimationof

���
even for small roll-off.



The lessthe roll-off the better the detection . Indeedthe gap
betweenthe minimum of the cost function and the value of the
costfunctionwhen

� ;
is farawayfrom

� �
is greaterfor smallroll-

off which meansthatthedetectionis easier. In a full bandcontext
(i.e. 7 
 � ), thereexists an equalizerfor = 
 � � ¹ , � �lÑ and
in this case,theminimumwill bealsoreachedfor = 
 � � ¹ . This
explainsthepointmeasuredfor a roll-off equalto 9�( Ø at = 
 ��� ¹ .

We now focus on the comparison between our method
and the classical clyclostationarybasedapproach. Basically
this latter consists in : �= 
 ArgMin @�? @kÙ��� �Ú ® @ ¯ �)Û �Ú ® @ ¯
where Û is a well choosenweighting matrix and �Ú ® @ ¯ 
� �Ú ® @ ¯ �2�¸<²� 4 ()()( 4 �Ú ® @ ¯ ��<²�	� 1 a ��¹ <lq � � column vector where�Ú ® @ ¯ � Ì � is theempiricalestimateof cyclic correlationatfrequency= anddelay Ì of a sampledversionof � � ����� , thesamplingperiod��Ü

mustverify theShannoncondition. In practice,theminimiza-
tion versus= is achievedby anexhaustive searchover a grid with
a stepequalto

1�Ý� 1 3 . We studytheprobabilityof detectionof the
peakfor both methods.We assumedto have a correctdetection
when

m �� � � � � m � � � �DE . Wecomparetheprobabilitiesof correct
detectionversusthe roll-off and versusthe signal to noiseratio
(SNR). We test2 cyclic methods[6]: the classicalonein whichÛ 
tÞ (noted”cy”) andtheweightedonein which Û is choosen
in a optimalway [5][6] (noted”cyw”). We comparethemto our
MK andCMA costfunctions.We test2 differentnoiselevels: 10
and30 dB, 2 different roll-offs: 0.2 and0.7, andfor E 
ßF 9�9 .
WeassumethenoiseGaussian.Werun100realizationsandcount
the numberof correctdetection. The resultsarepresentedin ta-
ble 1. The baddetectionfor the mk andcmabasedapproachatàÅáãâ�ä*å à,áæâ�ä*ç

SNR cy cyw mk cma cy cyw mk cma
10dB 07 43 100 98 90 100 58 53
30dB 12 53 100 100 99 100 100 100

Table 1. Numberof correctdetectionsover 100realizations

SNR=10dBandfor a roll-off of 7 
 9�( Ø lies on two facts:first at
smallSNRandhigh roll-off, it is possibleto confoundthepeakat= 
 � � ¹ andthe oneat = 
 � . Secondly, for large valueof = ,
thenumberof samplesusedto estimatethecostfunctionis smaller
thanfor small = (i.e theobservationdurationstayconstant),which
meansthat the varianceof the estimationof our cost function is
greaterfor large = . Thus at small SNR, we will not be able to
detectthepeakcorrectly.

6. CONCLUSION

In thiscontribution,wedevelopamethodolodgyfor theestimation
of the symbolperiod. It relieson the ideaof deconvolution. We
set forth somefonctionsthe minimizationof which theoretically
providesthesymbolperiod.Moreover, theapproachhasbeenval-
idatedby extensive simulationswhich confirmits superiorityover
theexistingmethodswhentheexcessbandwidthis tiny.
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Fig. 1. ZoomontheMK costfunctionin aneighborhoodof = 
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Fig. 2. Influenceof theroll-off on theCMA costfunction


