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ABSTRACT

A new state-space method for spectral estimation that
performs decimation by factor two while it makes use
of the full set of data available is presented in this pa-
per. The proposed method, called DESE2, is based
on Singular Value Decomposition in order to estimate
frequency, damping factor, amplitude and phase of ex-
ponentially damped sinusoids in the presence of noise.
The DESE2 method is compared against some previ-
ously proposed methods for spectral estimation that
lie among the most promising methods in the field of
spectroscopy, where accuracy of parameter estimation
is of utmost importance. Experiments performed on a
typical simulated NMR signal prove the new method
to be more robust, especially for low signal to noise ra-
tio. The new method outperforms the other two not
only by presenting lower failure rates but also by incor-
porating enhanced discriminative analysis while at the
same time it benefits from the use of the full data set.

1. INTRODUCTION

Exponential sinusoidal models, often employed in order
to represent a signal segment as a sum of exponentially
damped complex-valued sinusoids ([5]), are used in var-
ious applications of digital signal processing, including
speech processing [4] as well as spectroscopy, i.e. quan-
tification of NMR signals. The generalised sinusoidal
model we use is given by

s(n) =
p∑

i=1
(biej(φ0+φi))e(−di+j2πfi)n

=
p∑

i=1
gi z

n
i , n = 0, ..., N − 1

(1)

where p is the model order, i.e. the number of sinusoids
that comprise the measured signal. The objective is to
estimate the frequencies fi, damping factors di, ampli-
tudes bi and phases φ0 + φi, i = 1, · · · , p. φ0 is the

zero order phase, whereas φi represents extra degrees
of freedom.
The new method proposed here is called DESE2

(DEsimative Spectral Estimation2), performs decima-
tion by factor two while it exploits the full data set
and makes use of decimated Hankel derived matrices
and Singular Value Decomposition. DESE2 has been
tested and compared to HTLS [3], the latter being one
of the most promising methods for parameter estima-
tion which is based on the use of total least squares.
Moreover, DESE2 has been tested and compared to
MATPEN [2], that also makes use of a Hankel ma-
trix and SVD. Description of the proposed method fol-
lows and the superior performance of DESE2 is shown
through Monte-Carlo based experiments.

2. THE DESE2 METHOD

2.1. Description and Proof

Let SH be the L×M Hankel signal observation matrix
of our deterministic signal of p exponentials s(n).

SH =




s(0) s(1) · · · s(M − 1)
s(1) s(2) · · · s(M)
...

...
...

s(L− 1) s(L) · · · s(N − 1)


 (2)

with L− 2 < M , p < L− 2 and L+M − 1 = N .
Let s̃n be the column vectors of SH , i.e. SH =

[s̃0s̃1 · · · s̃M−1], where s̃n = [snsn+1 · · · sL+n−1]T , for
n = 0, 1, · · · ,M − 1.
We consider the L×K matrix S formed as a column

rearrangement of the Hankel SH , where all column vec-
tors s̃n with even indices are moved to the left part of
the matrix, while the odd column vectors are moved to
the right part, R=floor((M − 2)/2) and K = 2(R+1).

S = [s̃0s̃2 · · · s̃2R

...s̃1s̃3 · · · s̃2R+1] (3)



Let the L− 2×K matrix S↓↓ be the second order
lower shift (top two rows deleted) equivalent of S and
S↑↑ be the second order upper shift (bottom two rows
deleted) equivalent of S.

S↓↓ = [ŝ2ŝ4 · · · ŝ2R+2
...ŝ3ŝ5 · · · ŝ2R+3]

S↑↑ = [ŝ0ŝ2 · · · ŝ2R

...ŝ1ŝ3 · · · ŝ2R+1]
(4)

where column vectors ŝn (of length L − 2), for n =
0, 1, · · · ,M − 1 are the column vectors s̃n with their
two last components removed.
Because of the fact that SH is rank deficient and

any row of S↓↓ can be written as a linear combination
of the rows of S↑↑, there is an (L -2) order matrix X,
such that,

XS↑↑ = S↓↓ (5)

We will now prove that all the signal’s poles are
contained in the eigenvalues of X. Since ŝn are the
column vectors of S↑↑, Eq.(5) can be expressed as

Xŝ0 = ŝ2
Xŝ2 = ŝ4

...
Xŝ2R = ŝ2R+2
Xŝ1 = ŝ3
Xŝ3 = ŝ5

...
Xŝ2R+1 = ŝ2R+3

(6)

which can be written as ŝn = Xkŝ0, if n = 2k and
ŝn = Xkŝ1, if n = 2k + 1 ∀n, n = 0, 1, · · · , 2R+ 3.
Note that we can also deduce the set of equations

in (6), which is derived from (5), if we consider an
alternative rearrangement of matrix SH . Let the L−2×
M matrix S↓2 be the second order lower shift (top two
rows deleted) equivalent of SH and S↑2 be the second
order upper shift (bottom two rows deleted) equivalent
of SH . The set deriving from equation XS↑2 = S↓2 is
identical to (6).
In general, matrix X can be diagonalised as follows

X = UΛU−1 (7)

thus, the set of equations in (6), can be expressed as
ŝn = UΛkU−1ŝ0, if n = 2k and ŝn = UΛkU−1ŝ1, if
n = 2k + 1 ∀n, n = 0, 1, · · · , 2R+ 3.
The above implies that signal s can be written as

a linear combination of the eigenvalues of matrix X,

i.e. sn =
L−2∑
j=1

cjλj
n, ∀n, if the decimated poles are

converted to signal poles by appropriate adjustment.

Note that all λj ’s correspond to the signal. How-
ever, by definition, the signal s consists of p sinusoids
and is expressed as a function of its poles z’s: sn =

p∑
k=1

gk z
n
k , ∀n.

Given that the signal can be uniquely expressed as
a function of its exponentials, it is now easily deduced
that p of the λj ’s correspond to the signal’s poles (the
rest of the λj ’s are associated to zero gain cj).

Finally we assign X = S↓↓pinv(S↑↑), which satis-
fies Eq.(5), and we deduce the decimated poles of the
signal s by computing the eigenvalues of X.
In the presence of noise, which is the case of real life

signals, the rank of matrix S is full. Moreover, since the
signal does not obey linear models the equality (5) does
not hold any longer. In such cases, matrix S↑↑ can be
enhanced by reducing its rank to p (p being the number
of complex peaks to estimate). For that purpose we
employ the SVD of S↑↑ and we retain the p largest
singular values. The resulting matrix S↑↑e has rank
p. Then X is computed from XS↑↑e≈S↓↓ which gives
rise to an overdetermined system of equations with the
following solution X = S↓↓pinv(S↑↑e).
Since matrix S↑↑e has rank p, X is also of rank

p. Hence only p of the eigenvalues of X are non-
zero and correspond to the decimated signal poles es-
timates. Thus, the desired decimated estimates of fre-
quencies and damping factors are calculated as the an-
gles and magnitudes respectively of the eigenvalues of
X. These decimated estimates are converted to their
non decimated equivalents fi (frequency estimates) and
di (damping factor estimates) and a computation in
a total least squares sense of estimates gi takes then
place. Furthermore, amplitude bi and phases φ0 + φi

estimates are determined as the magnitudes and angles
of gi respectively.

2.2. Algorithmic Presentation

The proposed algorithm for decimation factor two in-
volves the following five steps:

Step 1: We compute the L×M matrix SH of Eq.(2)
from the N data points s(n) of Eq.(1).

Step 2: We compute the S↓2 and S↑2 as the 2nd
order lower shift (top 2 rows deleted) and the 2nd order
upper shift (bottom 2 rows deleted) equivalents of SH .
The best results are obtained when we use the L−2×M
matrices S↓2 and S↑2 as square as possible ([3]).

Step 3: We compute the enhanced version S↑2e of
S↑2 in the following way: We employ the SVD of S↑2,
S↑2 = U↑2Σ↑2V ↑T

2 and we truncate to order p by re-
taining only the largest p singular values.

Step 4: We compute matrix X = S↓2pinv(S↑2e).
The eigenvalues λ̂i of X give the decimated signal pole



estimates, which in turn give the estimates for the
damping factors and frequencies of Eq. (1).

Step 5: The last step is to compute the phases and
the amplitudes. This is done by finding a least squares
solution to Eq. (1), with zi replaced by the estimates
and s(n) given by the signal data points.

2.3. Special Cases

The above presented method can also serve as a state-
space method for spectral estimation, if seen and imple-
mented with no decimation whatsoever. In this case,
matrices S1↓ and S1↑ are respectively the first order
lower shift (top row deleted) and first order upper shift
(bottom row deleted) of the original Hankel SH of Eq.
(2) with L < M , p < L− 1 and L+M − 1 = N .
A variation of such a non decimative method, called

CSE, had been proposed in [1]. In this case both matri-
ces S1↓ and S1↑ (of Step 2) were enhanced (truncated
to order p) with the use of SVD, resulting in matrices
S1↓e and S1↑e respectively. Thus, matrix X of Step 4
is computed by X = S1↓epinv(S1↑e).
If only matrix S1↑ is enhanced, the non decimative

method is identical to a method proposed in [2], which
we call MATPEN in the discussion that follows and
for which calculation of X (in Step 4) is achieved by
X = S1↓pinv(S1↑e).

3. EXPERIMENTAL RESULTS

All three methods, namely DESE2, MATPEN and HTLS
have been tested via simulations on a typical five peak
31P NMR signal of perfused rat liver, in order to eval-
uate both robustness as well as the improvement in
accuracy of parameter estimation when using the three
methods in the modelling problem defined by Eq.(1).
This 31P NMR signal comprises a fifth-order model
function given in Table 1 by which N data points uni-
formly sampled at 10KHz are exactly modelled. The
data points of the signal are perturbed by Gaussian
noise whose real and imaginary components have stan-
dard deviation σv.

peak i fi (Hz) di (rad/s) bi ψ
(a)
i

1 -1379 208 6.1 15
2 -685 256 9.9 15
3 -271 197 6.0 15
4 353 117 2.8 15
5 478 808 17.0 15

(a) ψi = φ0 � 180π expresses the phase in degrees

Table 1: Exact parameter values of the five peak simu-
lated 31P NMR signal, modelled by Eq.(1) with φi = 0.

Root mean squared errors of the estimates of all
signal parameters are computed using 500 noise real-
izations (excluding failures) for different noise levels.
We consider that a failure occurs when not all peaks
are resolved within specified intervals lying symmet-
rically around the exact frequencies. For our signal,
the halfwidths of the intervals are respectively 82, 82,
82, 43 and 82 Hz, the values being derived from the
Cramer-Rao bounds of peaks 4 and 5 at the noise stan-
dard deviation where these intervals are touching each
other. The estimated model order is set to 5. The
Cramer-Rao lower bounds are derived from the exact
parameter values and σv.

In Fig. 1 failure rate of the three methods is de-
picted as a function of noise standard deviation (N=128
and M = N/2 = 64). Clearly DESE2 and MAT-
PEN are more robust than HTLS. Comparison between
DESE2 and MATPEN proves DESE2 more robust, where
a decimative approach is expected to outperform any
non decimative one. This is due to the fact that deci-
mation brings peaks further apart, thus, increasing the
discriminative capacity of spectral estimation methods.
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Figure 1: Percentage of times that that DESE2 (solid),
MATPEN (dashdot) and HTLS (dashed) fail to resolve
all peaks of the five peak simulated 31P NMR signal as
a function of noise standard deviation σv.

Noise standard deviation as well as root mean squared
errors of frequency and damping factor are shown be-
low in tabular format. Table 2 presents the results for
peak 1 and peak 5 of the five peak simulated 31P NMR
signal. Peak 5 of this signal is considered the most dif-
ficult to estimate since it is relatively close to peak 4.
The results suggest that the decimative approach per-
forms similarly (to MATPEN and HTLS) for high S/N
ratio. However, for low S/N ratio, despite the similarity



of the root mean squared errors of all parameters esti-
mated, DESE2 performs better due to its lower failure
rate and is, thus, more robust.
Note that there are cases where DESE2 outper-

forms, in terms of root mean squared errors, HTLS and
MATPEN despite the fact that it has smaller number
of bad runs. In some cases, however, the results pre-
sented in the tables are better for HTLS and MATPEN
because they present higher number of bad runs than
DESE2.

4. CONCLUSION

A new state-space decimative method, called DESE2,
for spectral estimation was presented. The proposed
method makes use of decimation factor two and SVD,
in order to estimate the parameters (frequencies, damp-
ing factors, amplitudes and phases) of exponentially
damped complex-valued sinusoids in the presence of
noise. DESE2 was tested in spectroscopy, the latter
lying among the most demanding applications of digi-
tal signal processing in terms of accuracy. DESE2 was
compared to two state-of-the-art non decimative meth-
ods in spectroscopy, the MATPEN and HTLS methods.
Examples on a typical five peak 31P NMR signals were
presented and the superior performance of DESE2 over
the other methods was shown, especially for low signal
to noise ratio.
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Estimates for Peak 1 Peak 5
σv/Method f1 (Hz) d1 (rad/s) f5 (Hz) d5 (rad/s)
0.2/DESE2 0.4931 0.0290 2.0755 0.0193
0.2/MATPEN 0.4945 0.0158 2.0554 0.0174
0.2/HTLS 0.4933 0.0158 2.1295 0.0166
0.4/DESE2 1.0512 0.0335 4.1865 0.0322
0.4/MATPEN 1.0377 0.0333 4.2146 0.0316
0.4/HTLS 1.0379 0.0333 3.9962 0.0437
0.6/DESE2 1.4939 0.0473 6.2757 0.0748
0.6/MATPEN 1.4989 0.0468 6.0667 0.0482
0.6/HTLS 1.4967 0.0465 6.3048 0.0473
0.8/DESE2 2.0393 0.0652 9.1107 0.0759
0.8/MATPEN 2.0261 0.0656 8.9001 0.0647
0.8/HTLS 2.0192 0.0649 9.2478 0.0614
1.0/DESE2 2.7210 0.0789 11.2764 0.1004
1.0/MATPEN 2.7020 0.0789 11.0553 0.0869
1.0/HTLS 2.7323 0.0778 10.6887 0.0818
1.2/DESE2 3.2078 0.0954 14.3753 0.1714
1.2/MATPEN 3.1576 2.6293 14.3304 0.1150
1.2/HTLS 3.1669 0.0939 13.7155 0.0988
1.4/DESE2 3.9644 0.1178 16.7876 0.1324
1.4/MATPEN 3.9646 0.1170 16.9051 0.1263
1.4/HTLS 3.9645 0.1132 15.5581 0.1095
1.6/DESE2 4.3295 0.1328 21.7850 0.1684
1.6/MATPEN 4.3441 0.1331 22.6016 0.1735
1.6/HTLS 4.3390 0.1297 20.1668 0.1480

1.8/DESE2 5.0269 0.1499 26.5238 0.2227
1.8/MATPEN 5.0484 0.1507 28.3658 0.2877
1.8/HTLS 5.0948 0.1457 25.0569 0.1672
2.0/DESE2 5.5988 0.1770 30.3730 0.4047
2.0/MATPEN 5.6167 0.1798 30.5536 0.3695
2.0/HTLS 5.5942 0.1639 27.5575 0.1792
2.2/DESE2 6.1303 0.1974 32.1792 0.3596
2.2/MATPEN 6.1611 0.1955 33.4734 0.4611
2.2/HTLS 6.5434 0.1827 29.1000 0.2130
2.4/DESE2 7.6502 0.2220 35.0694 0.3805
2.4/MATPEN 7.4973 0.2244 34.1181 0.4270
2.4/HTLS 7.5257 0.2050 33.1237 0.2770

Table 2: Root mean squared errors of frequency and damp-
ing factor for peak 1 and peak 5 of the five peak simulated
31P NMR signal described in Table 1 as a function of noise
standard deviation σv. The values below the double (triple)
horizontal line correspond to smaller number of bad runs for
DESE2 compared to HTLS (MATPEN), whereas the values
above to the same number.


