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ABSTRACT

Estimation of the instantaneous frequency by using quadratic
distributions from the general Cohen class is analyzed. Fre-
quency modulated signals corrupted with a white stationary
noise are considered. Expression for the variance is derived.
It is shown that the variance is closely related to the non-
noisy distribution of a predefined signal.

1. INTRODUCTION

Instantaneous frequency (IF) estimation is an important
research topic in signal analysis [2, 3, 5, 6, 7, 9]. There
are several approaches to the IF estimation, one of them
being based on time-frequency distributions (TFD) [2, 3, 9].
TFDs concentrate the signal’s energy at and around the
IF in the TF plane [2, 3, 5, 6, 7, 9]. Consequently, peak
detection of TFDs’ is used as an IF estimator.

The IF estimation based on TFDs maxima is analyzed
in [2, 5, 6, 7, 9]. Only the most frequently used TFDs: the
Wigner distribution (WD) for linear frequency-modulated
(FM) signal, and the spectrogram (SPEC) for signals whose
IF could be considered as a constant within the lag window,
are presented there. It has been shown that the IF estimate
is highly dependent on signal, noise, and lag window length.

In this paper we present a general analysis of an arbi-
trary shift covariant quadratic TFD as an IF estimator, for
any FM signal corrupted by white stationary noise. The
exact expression for the IF estimator variance is derived.
Expressions for some frequently used TFDs from the Cohen
class (CD) are obtained as special cases, as well. Variance
for the SPEC as an IF estimator of a linear FM signal is
presented. This signal is considered in the cases of other
commonly used TFDs, such as the Born-Jordan and Choi-
Williams distributions. It has been shown that the reduced
interference distributions outperform the WD, but only in
the case when the IF is constant or its variations are small.
For highly nonstationary signals the WD can produce bet-
ter IF estimation.

In Section 2, the IF estimator based on quadratic distri-
butions is defined and analyzed. In Section 3 the analysis
of the estimation error is performed. The variance of the
estimation error, in the cases of commonly used quadratic
TFDs, is presented next. The obtained results are checked
numerically and statistically in Section 5.

2. BACKGROUND THEORY

Consider discrete-time observations,
a(nT) = f(nT) + €(nT), f(t) = Aexp(jo(t)) (1)

where: n is an integer; T is a sampling interval; e(nT)
is a stationary, complex, white, Gaussian noise, with the
variance o2; and A is the amplitude of analyzed signal. By
definition, [3, 5, 6, 7], the IF is the first derivative of the
signal phase, w(t) = ¢'(t) = d¢(t)/dt. It can be estimated
from the discrete-time observations (1). Here we assume
that w(t) is an arbitrary smooth differentiable function of
time, with bounded derivatives }w(r)(t)} = |¢(T+1)(t)} <
M,(t), r > 1.

General form of the quadratic shift-covariant TFD’s in
the discrete time domain is given by

Ca(t,w; pn) = Z Z en(mT,nT)x

n=—00 M=—00

xz(t +mT 4+ nT)z" (t + mT — nT)e 7" (2)

where @p(mT,nT) = (T/h)%p(mT/h,nT/h), with sym-
metric time-lag kernel (¢, 7). Suppose that (¢, 7) has a
finite length along both directions, (¢, 7) = 0, for |t| > 1/2
and |7| > 1/2. It means that @5 (mT,nT) is limited in both
directions by h, h > 0. Note that h is used in definition of
the CD in order to localize the estimate.

Let us analyze the CD of the signal f(t). Expanding
¢(t + mT + nT) into the Taylor series around ¢ (up to the
third order term), we get:

Crtywson) = AP Y Y pn(mT,nT)x

N=—00 M=—00

¢ 9208/ (D) -261) (D) (WD)~ Ap(tmTinD)] (3

where A¢(t, mT,nT) is the residue of the phase. It may be
represented as:

= 4 (1) < (s R
Agt,mT,nT) =Y ¢ Sl(t) > <k> (mT)*~*(nT)*x

x[1—(=1)F]. (4)



Note that TFDs from the CD would have a maximum at
w = ¢'(t) if ¢'*)(t) = 0 for s > 2. The IF estimate will be
obtained as a solution of [5, 6, 7, 9]:

wn(t) = arg[;gfgi {Ca(t,w; n)}] (5)

where Qu = {w : 0 < |w| < ®/2T'} is a basic frequency
interval. The estimation error, at the time-instant ¢, is [5,
6, 7]:

ADR(t) = w(t) — On(t). (6)

3. ANALYSIS OF THE ESTIMATION ERROR

Since the IF estimate wp(t) is defined by the stationary
point of C, (t,w; ¢r), its value follows from 0C, (¢, w; ¢n)/Ow
= 0. The linearization of C% (t,w; ¢n)/Ow = 0 with respect
to: 1) The small estimation error, Awy(t); 2) The residual
of the phase deviation, A¢; and 3) Noise ¢, gives:

OCa(t,wipn) | | 0°Cult,w; on)

Ow ‘ w2 ‘OA&J\h(t)‘F
0C% (t,w; pn) OC(t,w; pn) B
t—a loAbrg + — a0 lobe =0 (7)

where |o means that the above derivatives are calculated at
the point w = ¢'(t), e= 0, and A@(t,mT,nT) = 0. The last
two terms in (7) determine the variations of 9C, (¢, w; ¢ ) /Ow
caused by A¢, and ¢, respectively. The terms from (7) are:

eoelpemenly = |AP 30 3 en(mT,nT)x
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(8)
The term %g’:ﬂl |o8e will be considered separately. Note

that 2%elbwien) |, — 0 follows from the kernel o, (mT, nT)

symmetry. Using notation, Q) = 2<= é’:’;"’h |o6e, we have:
1 _Qn
Awp(t .

In order to get the IF estimator variance, the term
9Cq (twien) |o8e will be calculated by using the inner-product

o
form of CD, [4]:

Ow(ta wa Soh) =

Z Z on(mT,nT)x
x[z(t +mT)e 7" [z (t + nT)e 71" (10)

where @5, (mT,nT) = pp((m+n)T/2,(m —n)T/2). Conse-
quently,

OCa(t,wipn) 5 _ - —
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For the white noise e(nT"), F{Qr} = 0. Thus, the esti-

mation variance is:

var{Qn} (12)

var{ A0} = FerE B

where Ry (t) is defined in (8). By expanding function exp(j

26 (t)(mT)(nT)) into a power series, exp(z) = > a'/il,
i—0

we may represent Ry () as:

1/2 1/2

9 2¢( )
—h Z(J (2z(t /

—1/2-1/2

o(t, T)t2i72i+2dtd7'

(13)
when h — 0, T — 0, h/T — co.

Proposition: Let Wx(t) be a solution of (5). For small
estimation errors and an FM signal f(t) corrupted by the
stationary, white, Gaussian noise, the IF' estimators’ vari-
ance 18

02C4(0,0; || @)
BA [Ru(0

var{ ADn(t)} = (14)

where C¢(0,0, o), ) is a quadratic distribution (with the
h ’) of the signal s(t) = f(t) exp[—j
(¢'(0)t + ¢(0))] at the origin of time-frequency (TF) plane,
and H\Tlh)
elements on(mT,nT), while ||An_m| is a matriz with ele-
ments A(m, n) = n —m, for m,n = 1,2,.... N (N repre-
sents assumed finite limits for m and n). Operator .x denotes
element-by-element matriz multiplication.

Proof:

For real and symmetric kernel ¢, (mT, nT') variance may
be presented as:

new kernel 5}; = —

= || An—ml| - * |@r]l. The ||@nl is a matriz with

var{Qr} =

Z Z Z Z on(miT,nyT) g (mo T, noT)-
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X[f(t+maT)f*(t + moT)Rec(t + na T, t +noT)+

+f* (t + an)f(t + nzT)R“(t +miT,t + sz)} ‘0. (15)

Applying @n(miT,nT) = on(nT, m1T) and Ree(t+mT,t+
nT) = g28(m — n), we get:

var{Qr} = 2 Z Z gh(mlT, maT") X
x[s(m1T)][s(m2T)]" = 2C(0,0, ), (16)

where C¢(0,0, ®;) is a quadratic TFD (with the new kernel
D (m1 T, meT) = ®p((m1+me)T/2,(m1—m2)T/2)) at the
origin of TF plane of the signal ¢(¢). Note that for a linear



FM signal f(t) = Aexp(jat®/2), we have ¢(t) = f(t). For

the assumed noise,

&1, (my T, maT) = o2 Z on(maT, nT) g (maT, nT) x
x(n—ml)(n—mg)T2. (17)

For finite summation limits this is a matrix multiplication
form,

where ||An_m| is a matrix with elements A(m,n) = n —
m, for m,n = 1,2,..,N. Elements of matrix ||pn| are

O | = oL | Anmll % [1Gnll] X [ Am—nll. % 1£n]l] ~ (18)

@n(mT,nT). Let us introduce H(I;hH = [An—mll - * [|@n]|-

Because of symmetry and realness of the kernel @y, (mT, nT),
o1, (m2T,nT) = pn(nT,maT), and the asymmetry of ma-

2% | Anmll, [An-mll = — [ Am_n], we have
~ —~ 2
H‘l)h :70'3 \I/h (19)
Thus,
2
Var{Qh}:20'52Cg(O,0;f’\I/h ). (20)

Substitution of eq.(20) into (12) proves the Proposition. ll

4. SPECIAL CASES OF QUADRATIC
DISTRIBUTIONS

The IF estimation variances for the most important and
frequently used TFDs follow as special cases from (14).
1. Pseudo Wigner distribution: For this distrib-

ution @ (MT,nT) = wp(mT)§(m + n)wp(nT), Ry(t) =

co 1/2

> wip, (nT) — Th [ w?(r)7°dr, where wy(nT) is
n=-—oo —1/2
the real and even window function. Thus, we get

o2W D (t,0;why) o2 T

ar{ ATy (1)} = o2l = Te o, — (21

Vr{ Wh( )} 2|A‘4|Rh(t)‘2 2‘A|2 h3 ( )

where wp,, (nT) = wi(nT)(nT), wh, (nT) = wi(nT) - (nT),
1/2 1/2 2

and Wy, = [ w*(r)r2dr/ J w?(1)7%dr | is the win-

—-1/2 —1/2

dow w(7) dependent constant. Its values for rectangular,
Hanning, Hamming and triangular windows are 12, 54.4631,
41.6581 and 34.2857, respectively. Note that for the rec-
tangular window wp(nT) and stationary, white, Gaussian
noise, we get the well known expression from [6]. It can
be easily concluded that var{A&y(t)} is not dependent on
#P () in the case of linear FM signal.

2. Spectrogram: In this case pp(mT,nT) = wy(mT)
wp(nT). Thus

var{Qn} = 202 {ThM{"") SPEC,(0, 0wy )+

T (%) (22)
+5-Mg" 'SPEC,(0,0; wn, )}

, 1/2
where M) = [ w?(r)7"dr is the r-th moment of the
~1/2

squared window w?(7). The Ry(t), eq.(13), is

1

Ru(t) = W{Re[STFTg(O, 0; why ) STFTY (0, 0wy )] —

—~SPEC,(0,0; wn, )} (23)

where wy, (nT) = wi(nT)(nT)?. Substitution of eqgs.(22)-
(23) into (12) gives the IF estimator variance in the case of
SPEC for any FM signal. In the above equations, STFT(t,
w;wp) represents the short-time Fourier transform, while
SPEC(t,w;wy) = |STFT(t,w;ws)|*. For the linear FM
signal, f(t) = A exp(jat®/2), we have SPEC(0,0;wp,) =
0. Thus,
~ 2Th ('
var{AD (1)} = T My I
« SPECf(O, 0; wh)
Re?[STFTy(0,0; why ) STFT}(0,0; wn)]

(24)

where, for example, STFT¢(0,0;wn) = A >, wa(nT)exp
(ja(nT)?/2). Since parameter ¢‘? () = a occurs in the ex-
ponent of all terms from (24), we can approximate this ex-
pression by the exponential form o2 exp(P(a)), where P(a)
is a polynomial in a. Expanding In(var{A&y(¢)}) into the
Taylor series, the coefficients of the polynomial P(a) may
be obtained. This polynomial contains only even powers of
a. For relatively small a (Cwa®h* < 5) we may take first
two terms of P(a), resulting in very simple approximative
expression for the variance

~ ~ ol T a?C,ht
var{Awp ()} = 2 JAP FSwe ) (25)
_ o pw?) w2
where Sy, = M," 7’ /(M3")* and
LMy, Mg MY
O‘”_4 <(Mg”) +M§“ 2M5“> (26)

are the window w(7) dependent constants. The M’ repre-
sents the r-th moment of the window w(7). Relative error
made by approximation (25) is 1—exp(O(a*h®)), where O(-)
is the Landau symbol. The approximative formula for large
values of @ may be obtained by applying stationary phase
method, [8, 10]. Values of S, for rectangular, Hanning,
Hamming and triangular windows are 12, 28.1135, 19.7324
and 19.2, respectively.

Due to the kernel ¢, (mT,nT) symmetry the same val-
ues of variance hold for negative a with a — |a|. Note that
in the case of SPEC the IF estimation variance is highly
signal dependent. Namely, as a increases, var{Awx(t)} ex-
ponentially increases (25) from the value

oe

~ T
var{Awy, ()} = 5 |A\25wﬁ ,

fora — 0 (27)

that has been derived in the literature [5]. Of course, it
holds only for a — 0, while for other values of a the more
general relations (24)-(25) derived in this paper hold.
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Figure 1: The IF variance obtained theoretically (thick line)
and statistically (thin line) for different values of ¢® () = a
for a) SPEC, b) BJD and PWD, ¢) CWD and PWD.

5. NUMERICAL IMPLEMENTATION

The derived expressions for variance are checked statisti-
cally and presented in Figs.1a)-c). The following quadratic
TFDs are considered: pseudo WD (PWD), with the Han-
ning window w(7); spectrogram; Born-Jordan (BJD), o(mT,
nT) = W ; and Chot- Williams distribution

a'-mT)Z]’ o =

(CWD), o(mT,nT) = 3%= - rr exp[— (527

mT
rect } T

V27, In order to compare these TFDs their parameters are
chosen according to the results from [10]. The general ex-
pression (14) is used in the numerical analysis. Linear FM

signal f(t) = e i16mat? corrupted by the stationary white
noise with variance o, = 0.25 is considered. The values of
#P(t) = a with a € [0,1] are taken in the case of spectro-
gram, while a € [0,0.5] in the case of other TFDs, when
the oversampling is necessary. The signal is considered
within time interval t € [—2,2), with the sampling period
T = 1/64. Symmetric kernels, —h/2 < (mT), (nT) < h/2,
with h =1 (i.e. 64 samples kernel width) are used.

A very high agreement of theoretical and statistical data
may be easily noted from these figures. Statistical data are
obtained by running 128 simulations. Note that var{ A&y ()}
in the BJD and CWD cases increases (as in the case of the
SPEC), as a increases. For small a — 0 they have lower
variance than the PWD, while by increasing a they per-
form worse than the PWD. These conclusions are expected
since the RID distributions significantly reduce noise en-
ergy located far from the 0,7 axes. For the signals whose
ambiguity function lies along the 0,7 axes (as in the case
of linear FM signals with a — 0) the RID distributions do
not degrade signal representation. On the other hand, for a
linear FM signals with larger values of a, RID distributions

significantly degrade representation of the analyzed signal.
Consequently, in this case it may happen that the TFDs
from RID class have worse performance than the WD. A
decrease in variance for the BJD, for a between 0.3 and 0.4,
is due to its pseudo form.

6. CONCLUSION

In this paper we have performed analysis of the IF estima-
tion based on the general quadratic shift-covariant class of
TFD’s. The exact variance expressions are derived. The
obtained results are checked numerically and statistically.
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