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ABSTRACT

The weights of an optimum PB (Pre-steered broadband) antenna array
processor are often obtained by solving a LCMV (linearly constrained
minimum variance) problem. The objective function is the mean output
power (variance) and the constraints space is a set of linear equations
which ensure a constant gain in a fixed direction known as the look
direction. However, errors in a practical scenario could degrade the
performance of the LCMV processor significantly, namely, mismatches
between the look direction and the actual DOA (direction of arrival) of
the desired signal, positional errors in the sensors and quantization
errorsin the pre-steered front end of the broadband processor. The main
contribution of this paper is the derivation of a new set of constraints,
referred to as the Pre-steering derivative congtraints, which is able to
maintain the processor robustness in the general 3D (three dimensional)
space scenario with all the errors mentioned above.

1. INTRODUCTION

A popular approach for optimizing the weights of the direct form pre-
steered broadband antenna array processor [1-2] shown in Fig 1 with
Ty, ... T, representing the pre-steering delays is to impose linear equality
congtraints which fixes the frequency response of the processor in the
look direction while minimizing the mean output power [1-3]. This
results in the well know linearly constrained minimum variance
(LCMV) processor. However, the performance of the LCMV processor
can be highly degraded when there are imperfections in a practical
scenario, namely, directional mismatches between the look direction of
the PB processor and the actual direction of arrival of the signal (DOA)
of the desired signal, postional errors in sensor locations and
quantization errors in the pre-steering delays. Solutions for alleviating
directional mismatches in the LCMV include the use of additional
multi-point constraints [4]. soft quadratic response constraints and
maximally flat spatial power response derivative constraints [2, 3, 5,
6] in the original LCMV problem. However, the literature has revealed
very few techniques to ensure processor robustness in the face of
multiple imperfections namely, directional mismatch, sensor positional
errors and pre-steering delay quantization errors. Thus a new set of
congtraints referred to as the pre-steering derivative congtraints for use
in the general 3D (three dimensional) space scenario is derived to make
the processor robust in the face of multiple errors. The paper is
organised as follows: we present the basic notations and equations firt,
then we revisit look direction constraints and the NS1 (Necessary and
Sufficient, First order, Conventional derivative) congtraints. After that,
we formulate and derive the NS1-PS (Necessary and Sufficient, First
order, Pre-steering derivative) constraints for combating a multitude
erors in the general 3D-space scenario. Finally we compare the
performance of the PB processor subject to the above mentioned three
types of congtraints under scenarios including directional mismatches,
positional errors in the sensors and quantization errors in the pre-
steering delays.
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Figure1: An L element, K tapsdirect form pre-steered
broadband processor

2. NOTATION
L: Number of sensors; K: number of taps (chosen to be an odd number);

91 : elevation anglein the 3D plane; 6, : azimuth angle;
[J : Kronecker product; R: field of real numbers; Z: set of integer; C:
field of complex numbers; Z:: {x0z:m x b ;1 :nxn

identity matrix; R™™: nxk real dement matrices C™: nxk

complex element matrices, 1 : L-vector with all elements equal to 1;
J_ o K x K null matrix except for a diagonal of 1'slocated on the nth
sub-diagonal; In the following, (6 , ) refers to the DOA of the

signal, and (9
array. It is assumed that the wavefront impinging on the array are plane
waves as illustrated in Figure 2. The Ith sensor position is defined by
coordinate (X, Y,z ) . The propagationdelay 1, (6 ,6,) isevaluated
with respect to the coordinate system origin as follows:

1,(0,,6,)=(x cosf,sin6, +y sing,sing +zcosq)/ vOR (1)

,BZVPB) refers to the look direction of the antenna
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Figure2: Arbitrary Array Structurein 3D Coordinate System
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The state vector of the antenna array is given by:
[a(t)], ., . =a(t+T-kT)OR, kO Z , 0 Z (
The mean output power of the processor is given by

p(w) = w'Rw 2
where R = E[a(t)aT (t)] OR“™ isthe input signal correlation

matrix and is positive semi-definite. And W is the stacked vector of
real weights of the antenna array processor,

[W](k—l)LH = \N\,k DR’ kl:l Zi’ m Zi (3)

3.LINEAR CONSTRAINTS AND NS1 CONSTRAINED PB
PROCESSOR
The frequency response of the PB processor steered in the look direction

(91,»:5 , Gm) can be easily evaluated to be asfollows:

H(f) =w'ld(f)oD(f)]s(f) @
where
o [d(f)], =™ *“" 0C, k0 Z
- D(f) =diag(e 4= ==y OCtt 10 Z*, is the
complex diagonal matrix of pre-steering delays:
-I—\(gl,PB’ 92,PB) = To +

X cos@. _sing _+ysin@ _sin@ +zcosO
| 2,PB 1,PB | 2,PB 1,PB | 1,PB

OR
v

for 'I'G abulk delay parameter ensuring that,
T(6,,..6,,)20,10Z, ad

. [s(f,6,,6,)] =e”"*% oc, 10z

The weights of the look-direction-only PB processor is determined by
the following constrained minimization problem [1]:

min p(w) = min w'Rw (5)

subject to Cw=h. (6)

wheeC =1, 0 1I and for the flat frequency response processor [5-

6], h isdefined follows:

[h], =1,k =(K+1)/2,ad[h] =1, k OZ k* K,

)

3.1 The NS1 constrained PB Processor

The power response p( f ) of the PB processor issimply:
p(f)=H(f)H (f)OR ®

Relying on the mathematical formulation provided in [6], the NS1 set

of congraints include the look direction constraints in (7) plus the

following necessary and sufficient first order maximally flat spatial
power response constraints:

dp(f) - T T O
0md R 90, |ocs, - 9 1h (}k Jfl;) 1L09i bt w O
65265 pg 6,=0,p5
0z, Kz ©)

where A = diag[7,(6,,6,)]OR™ , 10 Z.

4. THE NS1-PS CONSTRAINED PB PROCESSOR
By observation, the three types of errors will eventually amount to
temporal error quantities in the pre-steering delays. Directional
mismatches occur when the pre-steer front end is given imprecise
information on the DOA of the desired signal. Quantization errors occur
when pre-steering delay components are made of discrete components of
certain quantisation levels. For positional errors, we refer to a two
dimensional scenarioin Figure 3. In Figure 3, the desired location of the

sensor element is at (X, Y,) , which is at the center of an imaginary

circle called displacement bound circle with radius d. The radius d is
referred to as the displacement bound of positional errors. However,

the actual location of the sensor position is the point (X', y') within
the circle. When the sensor dement is steered to the azimuth look
direction 92 , its pre-steering delay is designed to be:

T(6,) =T +(x cos@, +y,sinf,)/v. (20)

But in fact should be:
T(6,) =T +(x cosf, +y sn6,)/v. (11)
Hence an error term € isincurred in the pre-steering delays as follows:
e=[T(6)-T'(6)<d/v (12)
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Figure 3: Positional errorsin sensor elements

4.2 Derivation of The NS1-PS Constraints
The definition of Nth order NS-PS constraintsis asfollows:

In a generic 3D-space scenario with directional, positional and
quantization errors, the spatial power response of the PB processor in

the pre-steered direction T , | DZi will remain maximally flat of

order N if and only if al partial derivatives of
p(f) with respect to T, | DZi and evaluated at

T=T,, | DZi up to the Nth order are zero, i.e,
2"p(f
ofa R—p( ) = 0
aror|
noz, oz {¢ gl zZ (13)

The last definition follows from the Taylor Expansion of P( f ) about

the designed pre-steering delay set T|,o' | DZi:

_eie, dn(h) 1
p(f)—zﬁ ZAT = v, 10Z

L)
(14
where v represents the remainder terms of the Taylor series

expanson. For the case of the NS1-PS s, only the first order
derivatives are of concern, namely:

ao( f
o r: 2P0 _

T=T.o

0,0 z (15)



From (16),

dp OJHH oH .0H oH .
—= =H——+H — =2Red —H | 16)
oT a7 T T T

dH
using(5), — = -j2rf w'[d(f) 0@ D(f)]s(f) @7
T

where .Q‘ OR"™ isamatrix with all zeroes except for a single unity-
valued element located at the Ith row and Ith column.With Kronecker

identity [P0 Q]'= PO Q",wehave

ZREI:(?—H H'j| = —arf Re{w'[d(f) 0@ D(f)]s(f }x

oT, (18)

$'(1)[d"(H)yoo"(1)]w}
Using EF OGH= (EJ G)(E H) and(19), we obtain:

2Re|:Z—HH*:|:—4anT Re{ jd(f)d"(f)DO

| Q,D(f)s(f)s"(f)D"(f w @9

-2 71T,

It can beverified that D(f)s(f) =e™™1 and

Re jd(f)d"(f)] = —E(sinankT)(Jk -3.) (20)

min p(w) = min w'Rw (25)

w w

subjectto  Cw = h. (26)

ad [n(-3)o1ele 00z, 8 2, (@)

where (28) can be replaced by (25) for the case of the flat frequency
response PB processor.

4.3 Relation between the NS1 and NS1-PS constraints

We now show that the feasibility space of the NS1-PS congraints lies
entirely within that of the NS1 congtraints. It implies that the NS1-PS
constrained PB processor is, at leadt, as robust as the NS1 constrained
PB processor against directional mismatches. Note that the diagonal

24}
matrix — in (10) can be decomposed as follows:
96

oN = 0T,
- - Z 1 _Q‘
26, T 06,

Using (28) the constraintsin (10) can be decomposed as:

: . ON L o1,
hl (3 -3,)o01r—|m= S—p, (9
a6, To0 "

where

(28)

p,=[n(3 -3)0re w0 RO Z X Z (30
substitute (21) into (20), we have: Clearly,
0 < : T T pk\ = 0’ l DZi, kO Zifl
e =art S (sn2ma){w[(3,-3,) 0@ 11w} '
oT| pary . . oA . (QED)
o o |G- 3 17— |w O
K-1 00
=art y (sn2aa{w[(3,-3,) 00110 1w} |
- 5. NUMERICAL STUDIES
< /. T Performance of the look-direction-only PB processor, the NSI1-
= 4rf Z (Sm ZﬂkT){W ([(Jk - J*k) nye 1L]h)} constrained and the NS1-PS constrained PB processor in a 2D scenario
k=1 are presented. For numerical study, a single 6dB broadband directional
< (. T T | a 6 =90 with waveength ing f
= _arf Z(strfkT){[h (Jk _J,k) 0 1L.Q‘]W} source located , with wavelengths ranging from
k=1 A =0125 to A =025, normalized relaive to the Nyquist
sampling frequency of the processor, -30dB white noise and O dB
’ 21 broadband isotropic noise spanning one octave of bandwidth, i.e.
an

ofd R : g(f) Zakgn(zkaé 0- & 0K Z

k=1

(22)
ap(
hence, Of0 R: p( ) =
a-l—\ T=T
[h(, -3 )orQw 0,02z, 8 Z, 23

For the case of aflat frequency response PB processor with odd number
of taps, then it can be verified that the set of congtraints in (23)
necessarily and sufficiently reduces to the following set:

[h( -3 )orefw 002,k 2 (24)

where vector h satisfies the relationship in (8). In summary, the
weights of NS1-PS constrained PB processor is determined by:

1
(k-1)/2

[0.125Hz, 0.25HZ]. The intertap delay is normalized to 1 second, and
number of tapsis 7. The PB processor is of the flat frequency response
type. The linear array used for numerical study is shownin Figure 4.
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Figure4: 10 Element Equi-Spaced Linear Array

5.1 Classical Error Scenario

The classical error scenario often used in the literature [1-3, 5, 6] is
only directional mismatch with other conditions being ideal. Figure 5
illustrates the resulting spatial power response of the look-direction-only
PB processor, the NS1 constrained PB processor, and the NS1-PS
congtrained PB processor. The spatial power response of the look-
direction-only PB processor sports a sharp and dender needleliketip in



the direction of the broadband signal, thusit is not robust in the face of a
dight directional mismatch. Both the NS1 and NS1-PS constrained
processor have a first order maximally flat tip in the direction of the
broadband signal and hence are more robust in the event of a directional
mismatch.
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Figure5: Linear Array (No position and quantization error)

5.2 Positional Error and Quantization Scenario
Asillustrated in Figure 3, a random point uniformly generated within
the error bound circle serve to be the erred location of the sensor. The

displacement bound d for the linear array is 0.05x 0.4A . For

quantization error, an 8-hit quantizer is used to represent a total of 256
possible pre-steering delay levels. Figure 6, 7 and 8 illugtrate the
resulting spatial power response of the above mentioned three types of
PB processors in the case of positional, quantizational, and multiple
erors.The plots show that the NS1-PS processor remains stoically
unaffected by all the error scenarios. However, the error scenario with
positional errors and scenario with both positional and quantizational
errors lead to abig drop in gain of thelook direction only processor
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Figure6: Linear Array with 5% Positional Error
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Figure7: Linear Array with Quantization Error Effects
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Figure8: Linear Array with Multiple Errors (Positional and
Quantization)
and NS1 constrained processor in the DOA of the signal — larger than
10 dB drop. Quarntization error has significantly reduced the width of
the spatial power response of the look-direction-only PB processor and
the NS1-constrained PB processor in the vicinity of the desired signal.
This enhances the sensitivity of the PB processor to directional
mismatches which is not desirable as far as robustness is concerned.

6. CONCLUSION

This paper has contributed a new set of constraints for the optimum PB
(Pre-steered broadband) array processor to provide robustness againgt a
plethora of errors including directional mismatches, positional errorsin
the sensor locations and quantization errors in the pre-steering delays.
This is a st of necessary and sufficient pre-steering delay derivative
constraints which are conveniently linear in characteristic. The new set
of congtraints also has the property of at least ensuring first order
maximally flat spatial power response in the vicinity of the desired
signal. Simulation results show that the optimum PB processor whose
weights are constrained by the new set of congtraints remains stoically
robugt in the face of multiple errors while the optimum PB processor
whose weights are constrained by conventional derivative constraints
suffer either gain degradation in the vicinity of the desired signal or
result in undesirable needle-like spatial power responses in the vicinity
of the desired signal.
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