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ABSTRACT
The weights of an optimum PB (Pre-steered broadband) antenna array
processor are often obtained by solving a LCMV (linearly constrained
minimum variance) problem. The objective function is the mean output
power (variance) and the constraints space is a set of linear equations
which ensure a constant gain in a fixed direction known as the look
direction. However, errors in a practical scenario could degrade the
performance of the LCMV processor significantly, namely, mismatches
between the look direction and the actual DOA (direction of arrival) of
the desired signal, positional errors in the sensors and quantization
errors in the pre-steered front end of the broadband processor. The main
contribution of this paper is the derivation of a new set of constraints,
referred to as the Pre-steering derivative constraints, which is able to
maintain the processor robustness in the general 3D (three dimensional)
space scenario with all the errors mentioned above.

1.  INTRODUCTION
A popular approach for optimizing the weights of the direct form pre-
steered broadband antenna array processor [1-2] shown in Fig 1 with
T1, …TL representing the pre-steering delays is to impose linear equality
constraints which fixes the frequency response of the processor in the
look direction while minimizing the mean output power [1-3]. This
results in the well know linearly constrained minimum variance
(LCMV) processor. However, the performance of the LCMV processor
can be highly degraded when there are imperfections in a practical
scenario, namely, directional mismatches between the look direction of
the PB processor and the actual direction of arrival of the signal (DOA)
of the desired signal, positional errors in sensor locations and
quantization errors in the pre-steering delays. Solutions for alleviating
directional mismatches in the LCMV include the use of additional
multi-point constraints [4]. soft quadratic response constraints and
maximally flat spatial power response derivative constraints [2, 3, 5,
6] in the original LCMV problem. However, the literature has revealed
very few techniques to ensure processor robustness in the face of
multiple imperfections namely, directional mismatch, sensor positional
errors and pre-steering delay quantization errors. Thus a new set of
constraints referred to as the pre-steering derivative constraints for use
in the general 3D (three dimensional) space scenario is derived to make
the processor robust in the face of multiple errors. The paper is
organised as follows: we present the basic notations and equations first,
then we revisit look direction constraints and the NS1 (Necessary and
Sufficient, First order, Conventional derivative) constraints. After that,
we formulate and derive the NS1-PS (Necessary and Sufficient, First
order, Pre-steering  derivative) constraints for combating a multitude
errors in the general 3D-space scenario. Finally we compare the
performance of the PB processor  subject to the above mentioned three
types of constraints under scenarios including directional mismatches,
positional errors in the sensors and quantization errors in the pre-
steering delays.

Figure 1: An L element, K taps direct form pre-steered
broadband processor

2.  NOTATION
L: Number of sensors; K: number of taps (chosen to be an odd number);

θ
1

: elevation angle in the 3D plane; θ
2
: azimuth angle;

⊗ : Kronecker product; R: field of real numbers; Z: set of integer; C:

field of complex numbers; Zn

m
: x Z m x n∈ ≤ ≤{ }, : ; I

n n×
: n n×

identity matrix;  R
n k×

: n k×  real element matrices; C
n k×

: n k×
complex element matrices; 1

L
: L-vector with all elements equal to 1;

J
n

: K K×  null matrix except for a diagonal of 1’s located on the nth

sub-diagonal;  In the following, ( θ
1
, θ

2
) refers to the DOA of the

signal, and θ θ
1 2, ,

,
PB PB

a f refers to the look direction of the antenna

array. It is assumed that the wavefront impinging on the array are plane
waves as illustrated in Figure 2. The lth sensor position is defined by

coordinate ( , , )x y z
l l l

. The propagation delay τ θ θ
l
( , )

1 2
 is evaluated

with respect to the coordinate system origin as follows:

τ θ θ θ θ θ θ θ νl l l l
x y z R1 2 2 1 2 1 1, cos sin sin sin cos /b g b g= + + ∈

     
(1)

Figure 2: Arbitrary Array Structure in 3D Coordinate System
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The state vector of the antenna array is given by:

a t a t T kT R k l
k L l l K L

Z Z( ) ( )
−( ) +

= + − ∈ ∈ ∈
1

1 1
, ,  (1)

The mean output power of the processor is given by

p
T

( )w w Rw= (2)

where R a a= ∈( ) ( ) ×
E t t R

T KL KL
 is the input signal correlation

matrix and is positive semi-definite. And w  is the stacked vector of
real weights of the antenna array processor,

w
k L l l k K L

w R k Z l Z
−( ) +

= ∈ ∈ ∈
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1 1

,
, , (3)

3. LINEAR CONSTRAINTS AND NS1 CONSTRAINED PB
PROCESSOR

The frequency response of the PB processor steered in the look direction

θ θ
1 2, ,

,
PB PB

a f  can be easily evaluated to be as follows:

          H f f f f
T

( ) ( )= ⊗ ( ) ( )w d D s              (4)
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complex diagonal matrix of pre-steering delays:
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The weights of the look-direction-only PB processor is determined by
the following constrained minimization problem [1]:

                        min ( ) min
w w

w w Rwp
T=                 (5)

subject to         C w h
0

= .                 (6)

where C I 1
0

= ⊗K L

T
 and for the flat frequency response processor [5-

6], h  is defined follows:                  

h
k

k K
0

1 1 20= = +, ( ) / , and h
k

k Z k kK= ∈ ≠1
1

0, ,   

(7)
3.1 The NS1 constrained PB Processor

The power response ρ f( )  of the PB processor is simply:

                        ρ( ) ( ) ( )
*

f H f H f R= ∈                  (8)

Relying on the mathematical formulation provided in [6], the NS1 set
of constraints include the look direction constraints in (7) plus the
following necessary and sufficient first order maximally flat spatial
power response constraints:
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where Λ = ∈ ∈( ) ×diag τ θ θ
l

L L

L
R l Z

1 2

1
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4.  THE NS1-PS CONSTRAINED PB PROCESSOR
By observation, the three types of errors will eventually amount to
temporal error quantities in the pre-steering delays. Directional
mismatches occur when the pre-steer front end is given imprecise
information on the DOA of the desired signal. Quantization errors occur
when pre-steering delay components are made of discrete components of
certain quantisation levels. For positional errors, we refer to a two
dimensional scenario in Figure 3. In Figure 3, the desired location of the

sensor element is at ( , )x y
l l

, which is at the center of an imaginary

circle called displacement bound circle with radius d. The radius d is
referred to as the displacement bound of positional errors. However,

the actual location of the sensor position is the point ′ ′( )x y
l l
,  within

the circle. When the sensor element is steered to the azimuth look

direction θ
2
, its pre-steering delay is designed to be:

                     T T x y vl l
( ) ( cos sin ) /θ θ θ

2 0 2 2= + + .            (10)

But in fact should be:

     ′ = + ′ + ′T T x y vl l
( ) ( cos sin ) /θ θ θ

2 0 2 2 .           (11)

Hence an error term ε  is incurred in the pre-steering delays as follows:

                   ε θ θ= − ′( <T T d v( ) ) /
2 2

                 (12)

Figure 3: Positional errors in sensor elements

4.2 Derivation of The NS1-PS Constraints
The definition of  Nth order NS-PS constraints is as follows:
      In a generic 3D-space scenario with directional,   positional and
quantization errors, the spatial power response of the PB processor in

the pre-steered direction T
l , 0

, l Z
L

∈ 1
 will remain maximally flat of

order N if and only if all partial derivatives of

ρ f( )  with respect to T
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, l Z
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∈ 1
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The last definition follows from the Taylor Expansion of ρ fa f  about

the designed pre-steering delay set T
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where υ
R
 represents the remainder terms of the Taylor series

expansion. For the case of the NS1-PS set, only the first order
derivatives are of concern, namely:
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From (16),
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∂
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substitute (21) into (20), we have:
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For the case of a flat frequency response PB processor with odd number
of taps, then it can be verified that the set of constraints in (23)
necessarily and sufficiently reduces to the following set:
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where vector h  satisfies the relationship in (8). In summary, the
weights of NS1-PS constrained PB processor is determined by:

                      min ( ) min
w w

w w Rwp
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T

k k L

T

l L K
l Z k Z− ⊗ = ∈ ∈

− −
( ) Ω 0

1

1

1

, ,   (27)

where (28) can be replaced by (25) for the case of the flat frequency
response PB processor.

4.3 Relation between the NS1 and NS1-PS constraints

We now show that the feasibility space of the NS1-PS constraints lies
entirely within that of the NS1 constraints. It implies that the NS1-PS
constrained PB processor is, at least, as robust as the NS1 constrained
PB processor against directional mismatches. Note that the diagonal

matrix 
∂

∂θ
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i

 in (10) can be decomposed as follows:
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Using (28) the constraints in (10) can be decomposed as:
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5. NUMERICAL STUDIES
Performance of the look-direction-only PB processor, the NS1-
constrained and the NS1-PS constrained PB processor in a 2D scenario
are presented. For numerical study, a single 6dB broadband directional

source located at θ
2

90=
o

 with wavelengths ranging from

λ
L

= 0125.  to λ
u

= 0 25. , normalized relative to the Nyquist

sampling frequency of the processor, -30dB white noise and 0 dB
broadband isotropic noise spanning one octave of bandwidth, i.e.
[0.125Hz, 0.25Hz]. The intertap delay is normalized to 1 second, and
number of taps is 7. The PB processor is of the flat frequency response
type. The linear array used for numerical study is shown in Figure 4.

Figure 4: 10 Element Equi-Spaced Linear Array

5.1 Classical Error Scenario
The classical error scenario often used in the literature [1-3, 5, 6] is
only directional mismatch with other conditions being ideal. Figure 5
illustrates the resulting spatial power response of the look-direction-only
PB processor, the NS1 constrained PB processor, and the NS1-PS
constrained PB processor. The spatial power response of the look-
direction-only PB processor sports a sharp and slender needle-like tip in

 θ
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 0 4. λ
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the direction of the broadband signal, thus it is not robust in the face of a
slight directional mismatch. Both the NS1 and NS1-PS constrained
processor have a first order maximally flat tip in the direction of the
broadband signal and hence are more robust in the event of a directional
mismatch.

Figure 5: Linear Array (No position and quantization error)

5.2 Positional Error and Quantization Scenario
As illustrated in Figure 3, a random point uniformly generated within
the error bound circle serve to be the erred location of the sensor. The

displacement bound d for the linear array is 0 05 0 4. .× λ
u

. For

quantization error, an 8-bit quantizer is used to represent a total of 256
possible pre-steering delay levels. Figure 6, 7 and 8 illustrate the
resulting spatial power response of the above mentioned three types of
PB processors in the case of positional, quantizational, and multiple
errors.The plots show that the NS1-PS processor remains stoically
unaffected by all the error scenarios. However, the error scenario with
positional errors and scenario with both positional and quantizational
errors lead to a big drop in gain of the look direction only processor

Figure 6: Linear Array with 5% Positional Error

Figure 7: Linear Array with Quantization Error Effects
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Figure 8: Linear Array with Multiple Errors (Positional and
Quantization)

and NS1 constrained processor in the DOA of the signal – larger than
10 dB drop. Quantization error has significantly reduced the width of
the spatial power response of the look-direction-only PB processor and
the NS1-constrained PB processor in the vicinity of the desired signal.
This enhances the sensitivity of the PB processor to directional
mismatches which is not desirable as far as robustness is concerned.

6. CONCLUSION
This paper has contributed a new set of constraints for the optimum PB
(Pre-steered broadband) array processor to provide robustness against a
plethora of errors including directional mismatches, positional errors in
the sensor locations and quantization errors in the pre-steering delays.
This is a set of necessary and sufficient pre-steering delay derivative
constraints which are conveniently linear in characteristic. The new set
of constraints also has the property of at least ensuring first order
maximally flat spatial power response in the vicinity of the desired
signal. Simulation results show that the optimum PB processor whose
weights are constrained by the new set of constraints remains stoically
robust in the face of multiple errors while the optimum PB processor
whose weights are constrained by conventional derivative constraints
suffer either gain degradation in the vicinity of the desired signal or
result in undesirable needle-like spatial power responses in the vicinity
of the desired signal.     

REFERENCES
[1] O. L. Frost III, “An Algorithm for Linearly Constrained Adaptive

Antenna Array Processing”, Proc. IEEE, vol. 60, no. 8, August
1972, pp. 926-935.

[2] K. M. Buckly and L. J. Griffiths, “An Adaptive Generalized
Sidelobe Canceller with Derivative Constraints”, IEEE
Transactions of Antennas and Propogation, vol. 34, no.3, Mar
1986, pp. 311-319

[3] J. Tuthill, Y. H. Leung and I. L. Thng, “Adaptive RLS Filters with
Linear and Quantization Constraints”, Proc. ICASSP’95, Detroit,
USA, 1st April 1995, pp. 1424-1427.

[4] D. Nunn, “Performance assessments of a time-domain        adaptive
antenna processor in a broadband environment”, Proc. Inst. Elect.
Eng., vol. 130, pts. F and H, no. 1, Feb. 1983.

[5]  M. H. Er and A. Cantoni, “Derivative constraints for broad-band
element space antenna array processors”, IEEE Transactions on
Acoustic, Speech and Signal Processing, vol. 31, Dec 1983, pp.
1378-1393.

[6] I. Thng, A. Cantoni and Y. H. Leung, “Constraints for
Maximally Flat Optimum Broadband Antenna Arrays”, IEEE
Trans. Signal Processing, vol. 43, no.6, June 1995, pp. 1334-
1347.

         Look Direction
         constraints only
+++ NS1-PS Constraints
         NS1 Constraints

         Look Direction
         constraints only
+++ NS1-PS Constraints
         NS1 Constraints

         Look Direction
         constraints only
+++ NS1-PS Constraints
         NS1 Constraints

         Look Direction
         constraints only
+++ NS1-PS Constraints
         NS1 Constraints


