
AN ATTRACTOR SPACE APPROACH TO BLIND IMAGE DECONVOLUTION

Kim-Hui Yap and Ling Guan

School of Electrical and Information Engineering,
Building J03, University of Sydney, NSW 2006, Australia

khyap@ee.usyd.edu.au, ling@ee.usyd.edu.au

ABSTRACT

In this paper, we present a new approach to adaptive blind image
deconvolution based on computational reinforced learning in
attractor-embedded solution space.   A new subspace optimization
technique is developed to restore the image and identify the blur.
Conjugate gradient optimization is employed to provide an
adaptive image restoration while a new evolutionary scheme is
devised to generate the high-performance blur estimates. The new
technique is flexible as it does not suffer from various image or
blur constraints imposed by most traditional blind methods.
Experimental results show that the new algorithm is effective in
blind deconvolution of images degraded under different blur
structures and noise levels.

1. INTRODUCTION

Blind image restoration is a process of recovering the visual
clarity from the degraded image without the prior knowledge of
the blur.  Its wide applications range from photography deblurring,
medical imaging, remote sensing, multimedia processing, among
others.  Linear image degradation process is commonly modeled
by [1]

g = Hf + n (1)

where g, f and n are the lexicographically ordered degraded
image, original image and additive white Gaussian noise (AWGN)
respectively.  H is the linear distortion operator determined by the
point spread function (PSF), h.  Blind image deconvolution is an

inverse problem of inferring the best estimates, f̂ and ĥ  to the

original image and the actual blur based on linear degradation
model.  It is a difficult, ill-posed problem as the stability and
uniqueness of the solution is not guaranteed.
   Over the years, various techniques have been proposed to
address blind image deconvolution.  These include a priori blur
identifications, auto regressive moving average (ARMA) methods,
iterative support constraint techniques, and symmetrical double
regularization approaches.  A priori blur identifications are
inflexible as they require the parametric structures of the blur to be
known exactly, and are tailored specifically for the targeted blur
type [2], [3].  In addition, they are ineffectual in identifying blurs
that do not exhibit prominent frequency nulls.  ARMA methods

require both the AR and MA support dimensions to be small to
have a manageable computational load [4], [5].  This inadvertently
undermines their modeling effectiveness. The ARMA image
stationarity constraint is inconsistent with some real-life images
consisting of inhomogeneous smooth, textured, and edge regions.
    Iterative support constraint techniques alternate between the
spatial and frequency domains, imposing constraints onto the
image and blur estimates repeatedly [6], [7].  These approaches
require the image object to have a known support dimension lying
in a uniform background.  This is clearly restrictive as most
applications do not satisfy the precondition.  The symmetrical
double regularization approaches extend the blind problem into
two symmetrical processes of image restoration and blur
identification [8].  They do not take into account different
characteristics of the image and blur, thereby ignoring the priority
and knowledge in each domain.
   In view of this, we propose a new approach to blind image
deconvolution based on computational reinforced learning in
attractor-embedded solution space.  An extended evolutionary
scheme that integrates priority-based subspace deconvolution is
developed.  The new technique incorporates the blur knowledge
by embedding them as dynamic attractors in the solution space.  A
maximum a posteriori (MAP) estimator is employed to predict
these attractors, and their relevance is assessed.
   We develop a novel reinforced learning scheme that combines
stochastic search and pattern acquisition throughout the blur
identification.  It enhances the algorithmic convergence and
reduces the computational cost significantly.  In addition, it
alleviates the formulation dilemma encountered by other methods,
namely integrating the information of well-known blurs without
compromising their flexibility.  Unlike most iterative schemes
where the restoration results are highly dependent on the previous
estimated solutions, the new scheme provides a multithreaded
restoration that is robust towards divergence and poor local
minima trapping.

2. PROBLEM FORMULATION

Blind image deconvolution is commonly formulated as the

minimization of a multimodal cost function )  |  ( ghf ˆ,ˆJ .  Due to

the distinctive characteristics of the image and blur domains, we
project the cost function into their respective subspaces as:
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functions, and 
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Pˆ  are the projection operators with

respect to the image and blur domains.  A recursive scheme can be
developed to restore the image and identify the blur by minimizing
the cost functions in (2) and (3) iteratively.  However, the
alternating minimization procedure experiences intersubspace
dependency, and tends to converge poorly.  To address this
difficulty, we extend the minimization procedure into an
evolutionary scheme.
     The mathematical formulation of the new algorithm is given as:

(i) Initialize Φ0

(ii) For i-th generation, determine the dynamic image and
blur solution spaces, Ωi and Φi  :
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(iii) Stop when convergence or the maximum number of
generation is reached

The blur solution space Φi is generated based on concatenation of
the performance evaluation operator F, the candidate selection
operator S, the recombination operator R, and the reinforced
learning operator L.  The new technique preserves the algorithmic
simplicity of the projection-based deconvolutions by performing
image restoration in (4) and blur identification in (5).  Moreover, it
exploits the virtue of the evolutionary scheme to alleviate
interdomain dependency and poor convergence, thereby enhancing
the robustness of the deconvolution scheme.

3. BLUR IDENTIFICATION IN
ATTRACTOR SPACE

3.1 Dynamic Attractor Estimation

It is well documented that most real-life PSF satisfy up to a certain
degree of parametric structure [1-3].  Therefore, it is most
appropriate that we incorporate blur knowledge as dynamic
attractors in our restoration scheme.  The MAP estimator for the
soft parametric blur can be expressed as:
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where Η~  is the parametric solution space, and )( hh ˆ|
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p  is the

conditional probability density function of h
~

 given the

observation ĥ .

     Assuming that n = h
~

− ĥ  follows an iid. multivariate Gaussian
distribution, we can rewrite (6) in terms of its covariance matrix,
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The estimator attempts to provide the unbiased parametric

estimate to the evolved blur from Η~ .  The solution space can be
tailored to encompass various parametric structures such as
uniform and Gaussian blurs.  The parametric estimates will
function as the attractors in Φi, thereby induce reinforce learning
towards them.

3.2 Reinforced Learning

Conventional evolutionary schemes perform mutation to provide a
random search through the solution spaces [9]-[11].  The major
disadvantage lies in its slow convergence, particularly for high
dimensional problem such as image restoration.  To alleviate this
difficulty and enhance the convergence of the algorithm, we
introduce a novel attractor-based reinforced learning to perform
the blur estimation.
   The reinforced learning operator involves the functional

mapping of NMNM ×× ℜ→ℜ    : L  given by:
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where i
kĥ  and 1+i

kĥ  are the k-th blur estimate for i-th and (i+1)-th

generations, i
kĥ∆  is the stochastic perturbation, i

k¨
*

 is the

reinforced parametric vector, )(̈ i
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domain cost function.
   The reinforced learning paradigm offers a compromise between
the stochastic search and pattern acquisition towards the dynamic
attractors. It is observed from (9) that the stochastic search and
steepest descent learning form a complementary pair.  If the
evolved blur matches the attractors closely, it will boost the
confidence that the actual blur follows a parametric structure.
Therefore, learning towards the soft estimate is emphasized, and
the stochastic search is reduced.  The reverse applies when a poor
proximity occurs between the evolved blurs and the soft estimates.
   The learning rate, α functions as a confidence measure between
the evolved blur and the attractors. The terms α and
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where β is the field strength factor that determines the extent of
reinforced learning.

3.3 Recombination

The recombination operator NMNM ×× ℜ→ℜ    : R  involves the
selection of random candidates, and the application of global
intermediary recombination.  If the candidates have different
support dimensions, either a random candidate is chosen or a
scaling process among the candidates is performed.

4. IMAGE RESTORATION

The image-domain solution space Ωi given in (4) is generated
based on the evolved blur population Φi:
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where Λ is the new image-domain regularization matrix, D is the
Laplacian high-pass operator, and Cf is the projection constant.
The cost function in (12) consists of data fidelity measure,
regularization term and the projection constant.  The data fidelity
criterion functions as a restoration measure.  However, it is
susceptible to ringing and noise amplification in the smooth image
background.  The regularization term is introduced to suppress
these undesirable effects.  The regularization matrix, Λ provides
an adaptive restoration by preserving the fine details at the
textured and edge regions while suppressing noise and ringing in
the smooth backgrounds.  Conjugate gradient optimization is
employed due to its computational efficiency and robustness.

5. PERFORMANCE EVALUATION

Evolutionary algorithms are often employed to solve difficult
optimization problems where most traditional path and volume-
oriented methods fail to address adequately.  Its main advantages
lie in its robustness and flexibility, enabling the most tangible
performance measure to be adopted.  In view of this, we propose a

novel entropy-based objective function ℜ→ℜ ×+×    : NMQPF
that functions as the restoration performance indicator:
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where u and v are the entropy and inverse-entropy vectors, and Wu

and Wv are the corresponding weight matrices.  The new objective

function utilizes the intuitive local entropy statistics to assess the
performance of the restored images.  The entropy and inverse-
entropy vectors are the lexicographically ordered visual activity
measure for the local image neighborhood.  The weight matrix Wu

has large values in the smooth backgrounds and small values at the
textured regions.  This is combined with entropy vector to ensure
ringing and noise amplifications are penalized in the smooth
backgrounds.  The reverse argument applies for weight matrix Wv.
   A combination of deterministic and stochastic selection process

NMQP ×+×ℜ→ℜ    : S  is adopted to choose the offspring for the
future generation. Due to the multithreaded nature of evolutionary
scheme, the algorithm is more robust towards poor local minima
trapping and does not rely heavily on the previous estimate.  The
scheme continues until either the convergence or the maximum
number of iteration is reached.

6. EXPERIMENTAL RESULTS

We illustrate the effectiveness of our proposed algorithm by using
the well-known “Lena” image in Fig. 1.  The original image
shown in Fig. 1(a) was degraded by the 5×5 Gaussian blur given
in Fig. 1(f), coupled with 40dB additive noise to form the
degraded image in Fig. 1(b).  We applied the algorithm with µ=10
parents, υ=10 offspring, ρ=2 ancestors, and β=150 field strength
factor.  The final restored image after the convergence is reached
is given in Fig. 1(c).
   It is observed that the restored image achieves very good
restoration by recovering the visual clarity and sharpness of the
image.  The algorithm is effective in preserving the fine details
near the feather texture regions of the hat as well as the edges.
There is no visible ringing and noise amplification in the smooth
backgrounds.  The initial and final blur estimates after 6
generations are given in Figs. 1(d) and 1(e) respectively.  They are
the estimates with the best fitness function from their respective
population pools.  We notice that the blur estimate evolves from
the initial random pattern to the final structure that closely
resembles the actual Gaussian blur shown in Fig. 1(f).  This
illustrates the advantages of employing  reinforced learning in the
attractor-based solution space to achieve good deconvolution
results.

7. CONCLUSIONS

We present a new approach to adaptive blind image deconvolution
based on computational reinforced learning in attractor space.  The
new technique formulates the problem into the image subspace
optimization and blur solution space construction.  Conjugate
gradient optimization is adopted to provide an adaptive
restoration.   An evolutionary scheme is devised to generate the
high-performance blur estimates.  The information of well-known
blurs is incorporated into the scheme by embedding the best-fit
parametric estimates as the attractors in the solution space.
Experimental results show that the new technique is effective in
restoring the degraded image without the prior knowledge of the
blur.
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        (d)              (e)       (f)

Figure 1.  Blind image deconvolution of an image degraded by Gaussian blur
(a) original image, (b) degraded image, (c) restored image, (d) initial random blur, (e) identified blur, (f) actual blur
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