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ABSTRACT
In this paper, we present design methods for perfect re-
construction (PR) integer-modulated filter banks, including
biorthogonal (low-delay) filter banks. Both the prototype
filter and the modulation sequences are composed of inte-
gers, thus allowing efficient hardware implementations. To
derive such filter banks, we first extend the PR conditions
known for cosine modulation to other, more general, mod-
ulation schemes. We present solutions where the PR con-
ditions on the prototype and the modulation are entirely de-
coupled and where some simple coupling is introduced. The
conditions are derived for both even and odd numbers of
channels. Design examples are presented for both cases.

1. INTRODUCTION

To implement a filter bank on a processor with finite-
precision arithmetic, one usually needs to quantize the fil-
ter coefficients. This, however, results in loss of the perfect
reconstruction (PR) property. It is therefore of significant
interest to design filter banks directly in such a way that PR
can be achieved with integer arithmetic. Integer-coefficient
prototypes for paraunitary filter banks were designed in [1].
Design methods for PR filter banks with integer modulation
and integer prototypes have been presented in [2–5]. In [2]
the integer modulation sequences are designed on the basis
of the dyadic symmetry principle [6], and the filter lengths,
L, are restricted to the case L = 2M , where M is the num-
ber of bands. In [3,4] prototypes with lengths L � 2M and
even M are considered. The work in [5] considers the sum-
of-powers-of-two implementation of the prototype and the
cosine modulation. Further design methods for integer DCT
matrices suitable for the use in integer filter banks have been
presented in [7]. Thus far, all integer solutions presented in
the literature consider an even number of channels. In this
paper, we generalize the methods from [4] to an arbitrary
number of channels (odd and even). We present solutions
where the PR conditions on the prototype and the modula-
tion are entirely decoupled and where some simple coupling

is introduced. In the coupled case, the requirements on the
prototype and the modulation sequences can be traded off
between the two, resulting in an increased design freedom
compared to the decoupled case.

2. PR CONDITIONS FOR MODULATED FILTER
BANKS

In this section, we present the PR conditions for modulated
filter banks with real-valued modulation sequences. We
start by looking at cosine modulation and then generalize
the conditions to other, more general modulation sequences.
We consider critical subsampling and the case where the
same FIR prototype is used on the analysis and synthesis
sides. The number of channels (M ) may be even or odd.
The overall delay (D) of the analysis/synthesis system is
assumed to be of the form

D = 2sM + 2M � 1 (1)

with s being an integer.
The analysis and synthesis filters, hk(n) and gk(n), k =

0; : : : ;M � 1 are derived from a length-L prototype filter
p(n) as

hk(n) = p(n) t1;k(n); gk(n) = p(n) t2;k(n) (2)

for n = 0; 1; : : : ; L� 1. The sequences t1;k(n) and t2;k(n)

provide the modulation.

2.1. PR Conditions for Cosine Modulation

For cosine modulation the sequences t1;k(n) and t2;k(n) are
considered to be given by

t1;k(n) = 2 cos

�
�

M

�
k +

1

2

��
n�

D

2

�
+ �k

�
; (3)

t2;k(n) = 2 cos
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n = 0; : : : ; L� 1, k = 0; : : : ;M � 1, �k = (�1)k�=4.



To derive the PR conditions, the polyphase matrices
E(z) and R(z) of the analysis and synthesis filter banks
are introduced as

E(z) = T 1
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T T
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The M � 2M modulation matrices T 1 and T 2 in (5) and
(6) are given by

[T 1]k;n = t1;k(n);

[T 2]k;2M�1�n = t2;k(n)
(7)

where k = 0; 1; : : : ;M � 1 and n = 0; 1; : : : ; 2M � 1. The
matrices P 0(z

2), P 1(z
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2), Q1(z
2) are defined as
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with Pj(z) being the type-1 polyphase components of the
prototype: Pj(z) =

P
` p(2`M+j) z�`, j = 0; : : : ; 2M�1.

For the cosine modulation (3) it turns out that

TT
2 T 1 = 2M

�
(�1)sIM + JM 0

0 (�1)sIM � JM

�
(9)

where IM and JM are the M � M identity and counter
identity matrices, respectively.

The PR conditions for a reconstruction of an input signal
with a delay D = 2sM + 2M � 1 can be formulated in the
polyphase domain as

R(z)E(z) = z�2s�1 IM : (10)

Inserting (5) and (6) into (10) and simplifying the expres-
sion obtained using (9) yields
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After substitution of z for �z2 the conditions in (11) be-
come

P2M�1�k(z)Pk(z) + PM+k(z)PM�1�k(z) =
1

2M
z�s

(12)
for k = 0; : : : ; dM

2
e�1, where d e denotes the ceiling oper-

ation. Note that (12) shows the PR conditions on the proto-
type for critically sampled, biorthogonal, cosine-modulated
filter banks with the delay in (1). In the special case of pa-
raunitary filter banks, a linear phase (symmetric) prototype

is required. In this case, Eq. (12) leads to the following
conditions on paraunitary prototypes:

Pk(z)Pk(z
�1) + PM+k(z)PM+k(z

�1) =
1

2M
(13)

for k = 0; : : : ; dM
2
e � 1. Note that, given the delay in (1),

the length of the paraunitary prototype is L = 2(s+ 1)M .

2.2. Generalized, Decoupled PR Conditions

We now generalize the PR conditions from Section 2.1 to
non-cosine modulation. For this we demand that

TT
2 T 1 = "

�
(�1)sIM + JM 0

0 (�1)sIM � JM

�
(14)

with some factor ". Thus, up to a scale factor, the same
overall properties are obtained as with the original cosine
modulation. Consequently, the PR conditions on the proto-
type and the modulation remain completely decoupled. By
relaxing the condition (10) to perfect reconstruction up to a
scale factor 
, which is required due to integer arithmetic,

R(z)E(z) = z�2s�1 
 IM ; (15)

the conditions (12) on the prototype become

P2M�1�k(z)Pk(z) + PM+k(z)PM�1�k(z) =



"
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for k = 0; : : : ; dM

2
e � 1.

We now parameterize the matrices T 1 and T 2 as

T 1 = V 1Y 1; T 2 = V 2Y 2 (17)

where the purpose of the M � 2M matrices Y 1 and Y 2 is
to periodically repeat the columns of the M �M matrices
V 1 and V 2. To describe the scheme for all cases, we will
have to distinguish between even and odd M and s.

Even M and arbitrary s. For even M we define

Y 1 =

�
(�1)sJM=2 IM=2 0 0

0 0 IM=2 �(�1)sJM=2

�
;

Y 2 = (�1)sY 1:

Provided that
V T
2 V 1 = "IM ; (18)

matrices T 1 and T 2 according to (17) will satisfy (14).

Odd M and even s. To describe Y 1 and Y 2 for odd M

it is convenient to express the matrices element wise. For
i = 0; : : : ;M � 1 we define

[Y 1]i;k=

8>><
>>:

Æi;��k; k = 0; : : : ; �
Æi;k��; k = �+ 1; : : : ;M + �� 1
0; k = M + �
�Æi;2M+��k; k = M+�+1; : : : ; 2M�1

(19)



Y 2 = Y 1

where � =
�
M
2

�
. The expression b c denotes the floor op-

eration, and Æi;j is the Kronecker symbol.
As can be easily verified, to satisfy (14), V 1 and V 2

need to satisfy

V T
2 V 1 = " � diag [2; 1; : : : ; 1] : (20)

Odd M and odd s. We define
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for i = 0; : : : ;M � 1 with the same � as for an even s. To
satisfy (14), V 1 and V 2 now need to satisfy

V T
2 V 1 = " � diag [1; : : : ; 1; 2] : (22)

2.3. Coupled Conditions

In this section we show that it is possible to trade off some
of the requirements on the prototype to the modulation se-
quences and vice versa. This gives us an increased design
freedom when looking for integer solutions. We consider
the formulation for T 1 and T 2 in (17) and relax the condi-
tion on V 1 and V 2 to

V T
2 V 1 = � (23)

where� is a diagonal matrix with non-zero diagonal entries.
To further specify � we need to distinguish between even
and odd M .

Even M . For even M , � is chosen as

� = diag
h
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2
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i
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The product T T
2 T 1 then takes on the form
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with

� = diag
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2
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2
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i
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Following the same derivation as in Section 2.1, we obtain
the following PR conditions on the prototype:

wk [Pk(z)P2M�1�k(z)+PM+k(z)PM�1�k(z)] = 
z�s:

(27)

Odd M and even s. For this case we choose
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h
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Again, the product T T

2 T 1 takes on the form (25), but now
with

� = diag
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2
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2
c�1; : : : ; w0

i
:

(29)
The PR conditions on the prototype remain the same as in
(27).

Odd M and odd s. We choose

� = diag
h
wbM

2
c�1; : : : ; w0; w0; : : : ; wbM

2
c�1; 2wbM

2
c

i
:

(30)
The product T T

2 T 1 takes on the form (25) with � as in
(29). The PR conditions on the prototype remain the same
as in (27).

3. DESIGN EXAMPLES

The first example presents a low-delay filter bank with
M = 8 channels, a filter length of L = 32, and an overall
system delay of D = 15 samples. By using a lifting struc-
ture, optimizing, and finally quantizing the the lifting co-
efficients, the following prototype satisfying (16) has been
found:

p(n) = f50; 60; 80; 80; 108; 116; 118; 120; 150; 140; 120; 120;
88; 76; 58; 40; 10; 10; 0; 0; 0; 0; 3; 4;�10;�10; 0; 0; 0; 0; 3; 4g:

Because of limited space, the lifting-based design proce-
dure cannot be presented here in great detail. A complete
description is given in [8].

An 8�8 integer matrix which resembles the symmetries
found in the cosine matrix V c

1 is found as [4]

V =

2
666666664

27 28 24 23 19 14 9 5
�28 �19 �5 14 24 27 23 9
�24 �5 23 28 9 �19 �27 �14
23 �14 �28 5 27 9 �24 �19
19 �24 �9 27 �5 �28 14 23

�14 27 �19 �9 28 �23 �5 24
�9 23 �27 24 �14 �5 19 �28
5 �9 14 �19 23 �24 28 �27

3
777777775

: (31)

The frequency responses of the resulting analysis filters are
depicted in Figure 1(a). Note that the gains of the analysis
filters have been adjusted so that the average maximum gain
of all filters in a graph is 0 dB.

In a second design example the number of subbands is
chosen as M = 5, the overall system delay is D = 9 and
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Figure 1: Normalized frequency response of low-delay integer-modulated filter banks. (a) M = 8, uncoupled design; (b)
M = 5, uncoupled design; (c) M = 4, coupled design.

the prototype filter length is L = 20. A prototype satisfying
(16) has been found as

p(n) = f10; 20; 30; 40; 50; 52; 53; 49; 41; 34;
20; 12; 0; �4; �5; �8; �6; 0; �2; �2g:

A suitable modulation is given by

V =

2
6664

30 30 25 16 9
�30 �16 9 30 25
�32 0 30 0 �30
30 �16 �9 30 �25
30 �30 25 �16 9

3
7775 (32)

Note that all rows of V in (32), except the third one, re-
semble the symmetries found in the corresponding cosine
matrix V c

1. The required matrices V 1 and V 2 are given by
V 1 = V 2 = V . The frequency responses of the resulting
analysis filters for M = 5 are depicted in Figure 1(b).

A third example considers a four-channel filter bank
with symmetric, paraunitary prototype of length L = 8. A
modulation matrix V has been found as

V =

2
664

10 10 5 2
�11 6 8 3
�2 5 �10 10
�3 8 �6 �11

3
775 : (33)

It satisfies V TV = diag [234; 225; 225; 234], which
means that w0 = 225; w1 = 234. A suitable prototype
is given by

p(n) = f1; 3; 4; 5; 5; 4; 3; 1g: (34)

It is easy to see that (27) is satisfied with 
 = w0(p
2(0) +

p2(3)) = w1(p
2(1) + p2(2)) = 5850. The entire filter bank

is paraunitary, although the matrix V is not orthogonal. The
frequency responses of the resulting filters are depicted in
Figure 1(c).

4. CONCLUSIONS

We have presented the PR conditions for non-cosine mod-
ulated filter banks, including paraunitary and biorthogonal,
low-delay filter banks. It was shown that the generalized PR
conditions can be utilized to design integer-modulated filter
banks with perfect reconstruction and very good frequency
selectivity. In the examples presented, the prototypes and
modulation matrices contain fairly small integers, thus al-
lowing efficient hardware implementation.
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