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ABSTRACT

In this paper, we present design methods for perfect re-
construction (PR) integer-modulated filter banks, including
biorthogonal (low-delay) filter banks. Both the prototype
filter and the modulation sequences are composed of inte-
gers, thus alowing efficient hardware implementations. To
derive such filter banks, we first extend the PR conditions
known for cosine modulation to other, more general, mod-
ulation schemes. We present solutions where the PR con-
ditions on the prototype and the modulation are entirely de-
coupled and where some simple coupling isintroduced. The
conditions are derived for both even and odd numbers of
channels. Design examples are presented for both cases.

1. INTRODUCTION

To implement a filter bank on a processor with finite-
precision arithmetic, one usually needs to quantize the fil-
ter coefficients. This, however, results in loss of the perfect
reconstruction (PR) property. It is therefore of significant
interest to design filter banks directly in such away that PR
can be achieved with integer arithmetic. Integer-coefficient
prototypes for paraunitary filter bankswere designedin [1].
Design methods for PR filter banks with integer modulation
and integer prototypes have been presented in [2-5]. In [2]
the integer modulation sequences are designed on the basis
of the dyadic symmetry principle[6], and the filter lengths,
L, arerestricted to the case L = 2M, where M isthe num-
ber of bands. In[3, 4] prototypeswith lengths L > 2M and
even M are considered. Thework in [5] considers the sum-
of -powers-of-two implementation of the prototype and the
cosine modulation. Further design methodsfor integer DCT
matrices suitable for the usein integer filter banks have been
presented in [7]. Thusfar, al integer solutions presented in
the literature consider an even number of channels. In this
paper, we generalize the methods from [4] to an arbitrary
number of channels (odd and even). We present solutions
where the PR conditions on the prototype and the modula-
tion are entirely decoupled and where some simple coupling
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isintroduced. In the coupled case, the requirements on the
prototype and the modulation sequences can be traded off
between the two, resulting in an increased design freedom
compared to the decoupled case.

2. PR CONDITIONSFOR MODULATED FILTER
BANKS

In this section, we present the PR conditions for modul ated
filter banks with real-valued modulation sequences. We
start by looking at cosine modulation and then generalize
the conditionsto other, more general modul ation sequences.
We consider critical subsampling and the case where the
same FIR prototype is used on the analysis and synthesis
sides. The number of channels (A1) may be even or odd.
The overal delay (D) of the analysis/synthesis system is
assumed to be of the form

D =2sM+2M -1 (2)

with s being an integer.

Theanalysisand synthesisfilters, i (n) and g, (n), k =
0,...,M — 1 are derived from a length-L prototype filter
p(n) as

he(n) =p(n)tik(n), gr(n) =pn)tar(n) (2

forn =0,1,...,L — 1. Thesequencestq i(n) and t2 x (n)
provide the modul ation.

2.1. PR Conditionsfor Cosine M odulation

For cosine modulation the sequencest; . (n) andt, ;(n) are
considered to be given by

() (-
to.x(n) = 2 cos {% (k + %) (n -

n=0,...,L—1,k=0,...,M—

t1,x(n) = 2cos




To derive the PR conditions, the polyphase matrices
E(z) and R(z) of the analysis and synthesis filter banks
areintroduced as

Be) = | Tl ©
R(z) = [27'Qi(z%), Qy(z»)] T5. (6

The M x 2M modulation matrices T'; and T'» in (5) and
(6) are given by

[T1]y,,, = tirn),
Tl 1 n = t2a(n) ¥

wherek =0,1,..., M —1landn =0,1,...,2M —1. The
matrices Py (22), P1(2%), Qy(2?), Q,(2?) are defined as

Po(z2):dag[P0( Z PM 1( 2’2)],

Q,(z?) = diag [Py - 1( L Py(=2%)], ®

P1(22):dag[PM( 2?), P2M71(_Z2)],

Q. (2%) = diag [Popr—1(—=2%), - .-, Pu(—27)]

with P;(z) being the type-1 polyphase components of the
prototype: P;j(z) =5, p(2(M+j) 2%, j =0,...,2M-1.
For the cosine modulation (3) it turns out that

T . (—1)SIM +Jp 0
TIT, =2M 0 (—1)*Tay — T ur 9)
where Iy and J s are the M x M identity and counter
identity matrices, respectively.

The PR conditionsfor areconstruction of aninput signal
withadelay D = 2sM + 2M — 1 can beformulated in the
polyphase domain as

R(2)E(z) =z 2 1 Iy (10)
Inserting (5) and (6) into (10) and simplifying the expres-
sion obtained using (9) yields

2 s
Q)] | TN | = S
(11)
After substitution of z for —z2 the conditions in (11) be-
come

Porr 1 #(2)Pr(2) + Paryr(2) P11 1(2) = YV 2z~ °
(12)
fork=0,...,[%]—1,where[ ] denotesthe ceiling oper-
ation. Note that (12) shows the PR conditions on the proto-
type for critically sampled, biorthogonal, cosine-modul ated
filter banks with the delay in (1). In the specia case of pa-
raunitary filter banks, a linear phase (symmetric) prototype

is required. In this case, Eq. (12) leads to the following
conditions on paraunitary prototypes:

1
1
- Q@
) Wi (13)
fork =0,...,[4] — 1. Notethat, given the delay in (1),

the length of the paraunitary prototypeis L = 2(s + 1) M.

Pi(2)Pe(27") + Pary(2) Paryr (2~

2.2. Generalized, Decoupled PR Conditions

We now generalize the PR conditions from Section 2.1 to
non-cosine modulation. For this we demand that

T - (—I)SIM +J 0
T, T =« 0 (—1)*Iy — T

with some factor . Thus, up to a scale factor, the same
overall properties are obtained as with the original cosine
modulation. Consequently, the PR conditions on the proto-
type and the modulation remain completely decoupled. By
relaxing the condition (10) to perfect reconstruction up to a
scale factor ~y, which is required due to integer arithmetic,

R(z)E(z) = 27> "y I, (15)
the conditions (12) on the prototype become

Port—1-4(2)Pu(2) + Parss (=) Pa—1 () = 2 27

(14)

(16)
fork=0,...,[4] -
We now parameterize the matrices T, and T'; as
T, =VYy, T>=V5Y, an

where the purpose of the M x 2M matricesY ; and Y ;s is
to periodically repeat the columns of the M x M matrices
V1 and V5. To describe the scheme for all cases, we will
have to distinguish between even and odd M and s.

Even M and arbitrary s. For even M we define

Y, = (=T ary2 Iargz 0 0
0 0 Iyp —(=D°JTnp |’
Y, =(-1)°Y;.
Provided that
VIV, =ely, (18)

matrices T'; and T', according to (17) will satisfy (14).
Odd M and even s. To describeY ; and Y, for odd M
it is convenient to express the matrices element wise. For

i=0,...,M —1wedefine
Oip—k k=0,...,u
) ik k=p+1,....M+p—1
[Yl]z,k— 0, k':M—F,U,
~CioMip—tk, k=M+p+1,... 2M~1
(19)



Y,=Y

where u = |2 ]. The expression | | denotes the floor op-
eration, and d; ; is the Kronecker symbol.

As can be easily verified, to satisfy (14), V', and V,
need to satisfy

VIV, =e-diag[2,1,...,1]. (20)

Odd M and odd s. We define

Gipr1, k=0,...,pu—1
_ 07 k:,u
Yilie= Oik—p—1, k=p+1,...,M+p

SioMap—t—1, k=M+pu+1,...,2M—1

Y.=-Y,
(21)
fori =0,..., M — 1 with the same u asfor an even s. To
satisfy (14), V1 and V' now need to satisfy

vIv, =¢-diag[1,...,1,2]. (22)

2.3. Coupled Conditions

In this section we show that it is possible to trade off some
of the requirements on the prototype to the modulation se-
guences and vice versa. This gives us an increased design
freedom when looking for integer solutions. We consider
the formulation for 7', and T'5 in (17) and relax the condi-
tiononV,and V, to

viv, =T (23)

whereI" isadiagonal matrix with non-zero diagonal entries.
To further specify I' we need to distinguish between even
and odd M .

Even M. Foreven M, T ischosen as
r:diwI:W%il,...,’lUg,’lUg,...,lU%il]. (24)

The product Tng then takes on the form

Al(-1D)T+J 0
e A[(_l)sI_J]} =

T%’Tl:{
A:diag[wg,...,w%_l,w%_l,...,wg]. (26)

Following the same derivation as in Section 2.1, we obtain
the following PR conditions on the prototype:

wy, [Py (2) Pong1-#(2) + Prryr (2) Prr—1 -1 (2)] = v27°.
(27)

Odd M and even s. For this case we choose

T = dlw [QwL%J’wL%Jfl’ .oy Wo,Woy . .. ,wL%Jil] .
(28)
Again, the product T'] T'; takes on the form (25), but now
with

A :d|® |:'LU0,...,U}L%J_I,ML%J,ML%J_I,...,'LU():I .
(29)
The PR conditions on the prototype remain the same as in
(27).

Odd M and odd s. We choose

T =diag [“{%J—l’ e, WO, WY,y .. ,wL%Jfl,QwL%J] .
(30)
The product T'1 T, takes on the form (25) with A as in
(29). The PR conditions on the prototype remain the same
asin (27).

3. DESIGN EXAMPLES

The first example presents a low-delay filter bank with
M = 8 channels, afilter length of L = 32, and an overall
system delay of D = 15 samples. By using alifting struc-
ture, optimizing, and finally quantizing the the lifting co-
efficients, the following prototype satisfying (16) has been
found:

p(n) = {50, 60,80, 80,108, 116, 118, 120, 150, 140, 120, 120,
88,76, 58, 40, 10, 10,0, 0,0, 0, 3, 4, —10, —10, 0,0, 0,0, 3, 4}.

Because of limited space, the lifting-based design proce-
dure cannot be presented here in great detail. A complete
descriptionis givenin [8].

An 8 x 8 integer matrix which resemblesthe symmetries
found in the cosine matrix V¢ isfound as [4]

27 28 24 23 19 14 9 5]
—28 19 -5 14 24 27 23 9
—24 =5 23 28 9-19-27-14

23 -14-28 5 27 9-24-19 (31)
19 —24 -9 27 —-5-28 14 23|~
—-14 27-19 -9 28 -23 -5 24
-9 23 -27 24-14 -5 19 -28
5 —9 14 -19 23 —24 28 —27|

The frequency responses of the resulting analysis filters are
depicted in Figure 1(a). Note that the gains of the analysis
filters have been adjusted so that the average maximum gain
of al filtersin agraphis0 dB.

In a second design example the number of subbandsis
chosen as M = 5, the overall system delay isD = 9 and



0.2 0.3
normalized frequency

@

0.2 0.3
normalized frequency

0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
normalized frequency

(©

Figure 1: Normalized frequency response of low-delay integer-modulated filter banks. (a) M = 8, uncoupled design; (b)

M =5, uncoupled design; (c) M = 4, coupled design.

the prototypefilter lengthis L = 20. A prototype satisfying
(16) has been found as

p(n) = {10, 20, 30, 40, 50, 52, 53, 49, 41, 34,
20, 12, 0, —4, —5, —8, —6, 0, —2, —2}.

A suitable modulation is given by

30 30 25 16 9
—30-16 9 30 25
V=|-32 030 0-30 (32)
30 =16 —9 30 —25
30 —30 25 —16 9

Note that all rows of V' in (32), except the third one, re-
semble the symmetries found in the corresponding cosine
matrix V'{. Therequired matrices V'; and V , are given by
V1 =V, = V. Thefrequency responses of the resulting
analysisfiltersfor M = 5 are depicted in Figure 1(b).

A third example considers a four-channel filter bank
with symmetric, paraunitary prototype of length L = 8. A
modul ation matrix V' has been found as

1010 5 2
-1 6 8 3

V= -2 5-10 10" (33)
-3 8 —6-11

It satisfiess V'V = diag[234, 225, 225, 234], which
means that wg = 225, w; = 234. A suitable prototype
is given by

p(n) ={1,3,4,5,5,4,3, 1}. (34)

It is easy to see that (27) is satisfied with v = wq (p*(0) +
p?(3)) = w1 (P*(1) + p*(2)) = 5850. The entire filter bank
is paraunitary, although the matrix V" isnot orthogonal. The
frequency responses of the resulting filters are depicted in
Figure 1(c).

4. CONCLUSIONS

We have presented the PR conditions for non-cosine mod-
ulated filter banks, including paraunitary and biorthogonal,
low-delay filter banks. It was shown that the generalized PR
conditions can be utilized to design integer-modulated filter
banks with perfect reconstruction and very good frequency
selectivity. In the examples presented, the prototypes and
modulation matrices contain fairly small integers, thus al-
lowing efficient hardware implementation.
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