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ABSTRACT

Vector-Quantization (VQ) is a widely implemented method for
low-bit-rate signal coding. A common assumption in the design
of VQ systems is that the digital information is transmitted
through a perfect channel. Under this assumption, the
assignment of channel symbols to the VQ Reconstruction
Vectors (RV) is of no importance. However, under physical
channels, the effect of channel errors on the VQ system
performance depends on the index assignment of the RV. For a
VQ of size N, there are !N possible assignments, meaning that
an exhaustive search over all possible assignments is practically
impossible. In this paper, lower and upper bounds on the
performance of VQ systems under channel errors, over all
possible assignments, are presented. A related expression for the
average performance is also discussed. Numerical examples are
given in which the bounds and average performance are
compared with index assignments obtained by the index-
switching algorithm.

1. INTRODUCTION

A typical Vector Quantization (VQ) based communication
system is shown in Fig. 1.
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Destination

( )tx̂
IA-1

Fig.1 - Vector Quantization based Communication system

A discrete-time Source emits signal samples over an infinite (or
densely finite) alphabet. The VQ Encoder translates source
output vectors into Channel digital sequences. The VQ
decoder’s goal is to reconstruct source samples from this digital
information and deliver then to the Destination. Since the analog
information cannot be perfectly represented by the digital
information some Quantization Distortion must be tolerated.
In each channel transmission the VQ encodes a K-dimensional
vector of source samples - ( )tx into a Reconstruction Vector

index ( )ty , where the discrete variable t represents the time
instant or a channel-use counter. The index is taken from a finite

alphabet, ( ) { }1,,1,0 −∈ Nty K , where N is the VQ size (number
of reconstruction vectors and number of possible channel
symbols).
The Index Assignment (IA) is represented in Fig. 1 by a
permutation operator,

( ) { } ( ) { }1,,1,01,,1,0: −∈→−∈Π NtzNty KK
(1)

The number of possible permutations, !N , increases very fast

with N, e.g., for just 4-bits indices there are 13102!16 ⋅≈
possible permutations. For typical values of N , examination of
all possible permutations is therefore impractical.
The channel index ( ) ( ){ }tytz Π= is sent through the channel.

For Memoryless Channels, The channel output ( )tẑ is a random

mapping of its input ( )tz , characterized by the Channel

Probability Matrix Q , defined by:

{ } ( ) ( ){ }inzjnzQ ij === ˆProb (2)

Throughout we shall assume that Q is symmetric (i.e.,
Symmetric Memoryless Channels). For the special case of the
Binary-Symmetric-Channel (BSC):

{ } ( ) ( ){ } ( )( ) ( )jiHLjiH
ij qqinzjnzQ ,, 1ˆProb −−==== (3)

where L is the number of bits ( LN 2= ) per channel use, q is the
Bit-Error-Rate (BER) and ( )jiH , is the Hamming Distance
between the binary representations of i and j.
At the receiver, after inverse-permutation, the VQ Decoder
converts the channel output symbols into one of N possible
reconstruction vectors - ( )tx̂ . The fidelity of the transmission is

defined by a distortion measure between the input and the output
of the VQ system ( )xxd ˆ, .

Knowledge of the source statistics ( )xp or a representing

Training Sequence is assumed. The performance of the overall
system is measured in terms of the average distortion ( )[ ]xxdE ˆ, .

In “classic” discussions of VQ applications, the channel is
assumed to be noiseless ( IQ = , where I is the unity matrix),

[1], so that no errors occur during transmission and ( ) ( )tyty ˆ=
for every t. This assumption is based upon using a channel
encoder-decoder pair to correct channel errors, causing the
distortion due to channel-errors to be negligible. The
permutation Π has no effect in this case.
Upon knowledge of the source statistics, Lloyd’s algorithm [1]
may be used to design the VQ. In Practice, a training sequence
is used and the LBG algorithm [1] is implemented. Both
methods are iterative and alternately apply the Nearest-Neighbor
Condition and the Centroid condition.



In some applications, channel coding is not utilized due to
complexity or bit-rate constraints. In that case, if a channel error
occurs, a wrong reconstruction vector is selected at the decoder.
The distortion due to channel errors can be significant and
affects the design of the VQ system [2-9].
In the literature two main approaches are proposed to improve
the performance of vector quantizers under channel errors. The
first method allows modification of the partition regions and
their corresponding codevectors. This modification results in a
Weighted-Nearest-Neighbor and Weighted-Centroid conditions
[4],[5]. The second approach is trying to reduce channel
distortion by using better index assignments. The search for an
optimal index assignment is a special case of the Quadratic-
Assignment Problem and is known to be NP-Complete [5].
Several suboptimal methods are suggested in the literature. In
[7], [8] an iterative index-switching algorithm is proposed. After
selecting an initial assignment, the algorithm searches for a
better assignment by exchanging indices of codevectors. It keeps
the new assignment if it performs better than its predecessor.
This algorithm can only offer a local minimum. A more
sophisticated algorithm is examined in [5], where Simulated
Annealing is used to search for an optimal index assignment.
For the special case of a Uniform Scalar Quantizer and the
Uniform Source under the Binary Symmetric Channel, it is
shown in [3] that the Natural Binary Code assignment is an
optimal assignment.
The difficulty in obtaining good assignments and the need to
estimate the performance of a given assignment validates the
development of performance bounds and a related expression
for the average performance over all possible index assignment.
Given a VQ structure, upper and lower bounds on the
“Assignment Gain” benefits the VQ designer who is searching
for an efficient assignment. The expression for the average
performance over all index assignments can help in determining
how well a given assignment performs.
The remainder of the paper is organized as follows. In section 2,
the distortion due to channel errors is defined. In section 3,
bounds on the performance of a given VQ system under a
symmetric memoryless channel, over all possible index
assignments, are obtained. A related expression for the average
performance over all index assignments is also presented in
section 3. Numerical results are presented and discussed in
section 5, while conclusions are given in section 6.

2. CHANNEL DISTORTION

The Vector Quantization system consists of a partition of the
signal space Ω of all possible input vectors - x . This space is

partitioned into N regions, iR , 1,,1,0 −= Ni K . These regions

cover the whole signal space and are nonoverlapping. Each
partition region iR has a corresponding Reconstruction (or

Representation) Vector -
i

φ .

The encoder’s input is a K-dimensional source vector - x . The

symbol ( ) ity = is emitted if iRx ∈ . The corresponding channel

symbol, ( ) ( )itz Π= , is transmitted through the channel. The
channel’s output is a random mapping of this transmission.
Upon receiving the channel symbol ( ) jtz =ˆ the decoder emits

the reconstruction vector that corresponds to the index ( )j1−Π .

The overall distortion of the VQ-based communication system
is:
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In (4) the permutation is represented by a permutation matrix -
π , whose entries are 0’s and 1’s and the sum of each of its rows
and columns is 1.
For the perfect channel, IQ = , the permutation matrix π is of
no importance, and the only factor affecting system performance
is the Quantization Distortion:
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In the following analysis, another factor, the Channel Distortion
is defined by:
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where ip is the probability of iRx ∈ :

( ) xdxpp
iR

i ⋅= ∫ (7)

The matrix P in (6) is a diagonal matrix, which contains these
probabilities, i.e., { }110 ,,, −= NpppdiagP K , and the entries of

the matrix D are the distances between all possible pairs of

reconstruction vectors: 




=

jiij dD φφ , .

It is shown in [4] that for the Euclidean distance measure, and
Centroid quantizers the overall distortion is sum of the
quantization and channel distortions: CQT DDD += .

3. AVERAGE PERFORMANCE AND
BOUNDS

In this section we introduce lower and upper bounds on the
channel distortion, as defined in (6), under Symmetric
Memoryless Channels over all possible assignments (or
permutation matrices - π ). A related expression for the average

performance is also obtained. We define a symmetric matrix D̂

as TT DPDPD +=ˆ . Using the symmetry property of the
Channel Matrix, Q , the channel distortion then becomes:

{ }ππ DQtraceD T
C

ˆ
2

1= (7)

A fundamental step in the development of the bounds the

replacement of the matrix D̂ in (7) by another symmetric matrix

D
~

, such that it has the all-one vector [ ]T1111 L= as an

eigenvector, while CD is just changed by a known constant. To

this end, we define a “Column Structured” matrix as:
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Recalling that Q represents probabilities, the sum of any of its

rows is one, so the vector 1 is an eigenvector of Q : 11 =⋅Q .

The same argument is valid for the columns of the matrix iC :

ii CCQ =⋅ , 1,,1,0 −= Ni K .

We now define a symmetric Cross-Structured Matrix to be

( )T
ii CC +α , where α is a scalar. It is shown in [2] that,

regardless of the permutation matrix π , adding a Cross

Structured matrix to the matrix D̂ changes the expression in (7)
just by the addition of the scalar α :

( )[ ]{ } { } απππαπ +=++ DQtraceCCDQtrace T
i

T
i

T ˆ
2

1ˆ
2

1
(9)

Further, let is be the sum of the elements in the i-th row of the

matrix D̂ :

∑
−

=
=

1

0

ˆ
N

j
iji Ds , (10)

and denote by k the index of the row having the largest sum:
{ }i

i
sk maxarg= . In order to achieve the desired property

11
~

0ω=⋅D , for some 0ω , all rows of D
~

must have the same

sum of entries. Let us examine the effect of adding a “Cross

Structured” matrix ( )T
ii CC +α to a general matrix M of size

NN × . The sum of elements in all rows except for the i-th row
is increased by α , while the sum of elements in the i-th row is
increased by ( ) α⋅+1N .

The matrix D
~

is therefore

( )∑
−

=
++=

1

0

ˆ~ N

i

T
iii CCDD α (11)

where
( )iki ssN −=1α . (12)

Having ik ss ≥ by the selection of k, the scalars iα are all

positive, hence all elements of D
~

are positive. By adding at
most N-1 Cross Structured matrices we get a symmetric matrix
where all rows have the same sum of elements, resulting in

11
~

0ω=⋅D . We shall refer to D
~

as the Weighted Distance-

Matrix. The channel distortion is now:

{ } SDQtraceD T
C −= ππ ~

2

1
(13)

where

∑
−

=
=

1

0

N

i
iS α . (14)

As this point, it is interesting to note that both the channel

matrix Q and the Weighted Distance-Matrix D
~

are symmetric,

have nonnegative entries, and have the vector [ ]T1111 L=
as an eigenvector. Moreover, all eigenvalues of both matrices
are real.
It is shown in [2] that the eigenvalue 1 of the matrix Q and the

eigenvalue 00 >ω of the matrix D
~

, both corresponding to the

eigenvector 1 , are the largest in absolute value for each

corresponding matrix.
We now perform a unitary diagonalization on both matrices:
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We define 1,,1,0,, −=Ω=Λ= Niiiiiii Kωλ and, without loss

of generality, we sort the eigenvalues (and corresponding
eigenvectors) in Λ and Ω in decreasing order - 0λ ( 0ω ) is the

largest eigenvalues of the matrix Q ( D
~

).
It is shown then in [2] that the Channel Distortion for all
possible index assignments is bounded by:

SDS
N

i
iiC

N

i
iNi −








+≤≤−








+ ∑∑

−

=

−

=
−

1

1
00

1

1
00 2

1

2

1 ωλωλωλωλ
(16)

It is also shown that the average value of the channel distortion
over all possible index assignments is:
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In conclusion, in order to find the desired bounds and the value
of CD for given Channel Transition Matrix - Q, VQ distance

matrix – D, and a-priori probabilities matrix – P, one should
carry out the following steps:

1. Calculate the scalar S and the Weighted Distance Matrix,

D
~

, using (10), (11), (12) and (14).
2. Calculate the eigenvalues of the Channel Matrix Q and of

the Weighted Distance Matrix D
~

. Sort the eigenvalues in
decreasing order.

3. Calculate the upper and lower bounds using (16) and the
average performance using (17).

4. SIMULATION RESULTS

In the following, the lower and upper bounds are compared with
the average performance as well as with assignments that were
obtained in simulations. We used the sub-optimal index-
switching algorithm [8] to obtain “good” and “poor” simulation
index assignments (IA). After selecting an initial assignment, we
randomly exchange indices of codevectors. When searching for
the good (poor) simulation assignment, the new assignment is
kept if it performs better (worse) than its predecessor.

4.1 A 4 bit Uniform Quantizer and a Uniform Source
under the BSC

We examine the bounds and the average performance (over all
index assignments) for a 4-bit uniform scalar quantizer, a
uniform source and a Binary Symmetric Channel. Two sets of
graphs are shown in Fig. 2, in the first set the 4 bits are sent
through a BSC, and in the second set they are protected against
single-bit error using a (7,4) Hamming Error Correcting Code
(ECC) [9]. It can be seen that the slope of the lines is roughly
10dB/decade for the BSC and 20dB/decade for the ECC case. It
is shown in [2] that the distortion due to the Natural Binary
Code (NBC) coincides in this case with the lower bound. The
upper bound is about 0.5dB higher than the worst assignment
that was found in simulations. The ratio between the upper and
lower bounds is approximately 6dB for the BSC case and 3.6dB
for the ECC. The implementation of the channel protection



brought the bounds closer together, decreasing the importance of
index assignment.
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Fig. 2 – Upper and lower bounds and the average channel-
distortion over all possible index assignments of a 4-bit Uniform
Scalar Quantizer and a uniform source under the BSC and under
the BSC and (7,4) Hamming ECC.

4.2 Three-dimensional, 8-bit PDF-optimized Vector
Quantizer for palette limited Images using the

L*a*b* color space

The L*a*b* color space was developed by the CIE [10] in order
to better represent human vision perception. Pixels’ colors are
organized in three componenet: An achromatic component L*,
and two chroamtic ones: a* and b*. The correlation between the
L*a*b* space and the human perception justifies the use of an
Euclidean distance measure. We examine here an 8-bit L*a*b*
Vector Quantizer from [11]. The bounds are shown in Fig. 3.
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Fig. 3 – Upper and lower bounds and the average channel-
distortion over all possible index assignments of an 8-bit
L*a*b*-space Image Vector Quantizer under the BSC.

The Upper Bound is about 0.6dB higher than channel distortion
due to the worst possible index assignment. The Lower Bound is
1.5dB lower than the distortion for the Best assignment. The
ratio between the Upper and Lower bounds is 8.8dB, suggesting
that a significant performance gain may be achieved by a good
index assignment.

5. CONCLUSIONS

In this paper we have presented upper and lower bounds (and a
related expression for the average performance) of the distortion
due to channel errors for Vector Quantizers, over all possible
index assignments. These results enable the VQ designer to
estimate the gain that may be obtained by a search for an
efficient index assignment and to estimate the performance of a
given index assignment.
Numerical examples were given for the Binary Symmetric
Channel, with and without a channel Error Correcting Code. The
bounds were compared with simulation results that searched for
“good” and “poor” assignments using the sub-optimal index-
switching algorithm. The bounds are reasonably close to the
performance of the assignments found in simulations.
Nevertheless, the tightness characteristic of the proposed bounds
is left to further study. More simulation were performed,
supporting the shown results, but are not shown here because of
lack of space.
Utilization of an Error Correcting Code decreases the gap
between the lower and the upper bounds. This result agrees with
the intuition that channel protection reduces the importance of
index assignment.
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