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ABSTRACT

In [1], we studied amplitude estimation of one-dimensional
(1-D) sinusoidal signals from measurements corrupted by possibly
colored observation noise. We herein extend the results for two-
dimensional (2-D) amplitude estimation. In particular, we inves-
tigate the 2-D sinusoidal amplitude estimation within the general
frameworks of least squares (LS), weighted least squares (WLS),
and MAtched Fllterbank (MAFI) estimation. A variety of 2-D am-
plitude estimators are presented, which are all asymptotically sta-
tistically efficient. The performances of these estimators in finite
samples are compared numerically with one another. Making use
of amplitude estimation techniques, we introduce a new scheme
for 2-D system identification, which is shown to be computation-
ally simpler and statistically more accurate than the conventional
output error method (OEM), when the observation noise is col-
ored.

1. INTRODUCTION

Consider the noise-corrupted observation of K 2-D sinusoids:

K
x(n, ) =3 ane”TIRHID 4 u(n, 7),
k=1 _
n=0,---,N—1;a2=0,---,N—1,

)

where {ay}i—; is the complex amplitude of the k-th 2-D sinu-
soid at the 2-D frequency pair (fx,fr), and v(n,n) is the 2-D
complex-valued additive observation noise assumed to be station-
ary with zero-mean and unknown finite power spectral density
(PSD) &(f, f). We assume that {f, fx }~—, are known and dis-
tinct from one another. The problem of interest is to estimate the
2-D amplitudes {a, }7, from the observations {z(n,n)}. With
matrix notations, we can express (1) as

X =AAAT 1V, 2)

where X € CNXN, with nni-th element given by z(n, %), V €

CN*N s similarly formed from {v(n,7n)},and A = diag{a1 ---

ax}. Aand A are N x K and N x K Vandermonde matrices with
the k-th column given by a(fi) = [1 e/>"/k ... e/ (N=127fi]T
and a(fy) = [1e27/n ... V=277 regpectively. Vector-
izing both sides of (2) yields:

t=(AcA)a+v2 Ta+w, (3)

where 2 vec{X}, v £ vec{V}, @ £ [a1 - ax]’, and
o is the Khatri-Rao product, which is a column-wise Kronecker
product [2].
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In this paper, we present a number of 2-D sinusoidal ampli-
tude estimation algorithms within the frameworks of LS, WLS,
and MAFI estimation approaches. Making use of 2-D amplitude
estimation techniques, we propose a new approach which has a
simple closed-form solution to the 2-D system identification prob-
lem. The following notational conventions are used to distinguish
among various amplitude estimators. For example, LSE (1,0,1)
denotes the LS estimator that uses a single data “snapshot”, em-
ploys no pre-filtering, and estimates one amplitude at a time. Like-
wise, MAFI(LL, K, K) denotes the MAFI estimator that splits the
data into LL submatrices, utilizes a bank of K pre-filters, and es-
timates K amplitudes simultaneously. The remaining amplitude
estimators are similarly designated.

2. LSAMPLITUDE ESTIMATORS
2.1. LSE(1,0,K)
From (3), the LS estimate of «x is readily obtained as
a= ("o e, @)

where () denotes the conjugate transpose. It can be shown that
LSE(1,0, K) is unbiased. In general, LSE(1, 0, K) is statistically
inefficient with colored noise, but is asymptotically (for large sam-
ples) statistically efficient [3].

2.2. LSE(1,0,1)

Treating (K — 1) sinusoids in (1) as noise, we obtain the LSE
(1,0,1) estimator which estimates only one amplitude at a time:
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The above estimator is the normalized 2-D discrete Fourier trans-
form (DFT) of z(n, n) at frequency (fx, fr). LSE (1,0, 1) is bi-
ased but asymptotically unbiased [3]. Similar to LSE(1,0, K),
LSE(1, 0, 1) is statistically inefficient for colored noise, but is asymp-
totically statistically efficient [3]. Due to its computational sim-
plicity, LSE(1,0, 1) is usually preferred when the number of data
samples is relatively large .
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3. WLSAMPLITUDE ESTIMATORS
3.1 WLSE(LL,0,K)
Let X;; = {w(k,k), k =1, , 1+ M -1, k =1,---,l +
M-1}yec™M |=0,---,L—-1;1=0,---,L — 1, where
LEN-M+1, LEN-M+1,adV,; € C¥*M pe
similarly formed from {v(n,n)}. X, ; can be expressed as

X, =AuA A +V, (6)



where Ay, 2 [am(f1) -+ am(fr)] is a Vandermonde matrix
with @ (fi) 2 [1 el Fr ... @dM-D27fT & - and @y (fi)
are defined similarly to A s and aar(fx), respectively, and A, ; 2
Adiag{ejZW(fllJrfﬂ) ej2f(fxl+fxf)} 2 AQ ;. Lete, =
vec{X, r} and v, ; = vec{V, ;}. Vectorizing (6) yields:

7 2 W Qe+, Q)

where @,y = [ay (f1) @ an(f1) ... @y (fx) ® an(fx)]
The WLS (Markov-like) estimate of « is given by [4]

L—1L-1 -t
a = | D> Qv QT e,

=0 [=0

L-1L-1
x (Z > ﬂ,’i\rﬁMQ‘lml,l> , ®)

=0 [=0

where Q is an estimate of Q 2 E{vljvfl—}. An estimate of Q
is obtained as follows. Assume that the initial phases of the sinu-
soids are independently, identically and uniformly distributed over
[, ), and are independent of the noise term v; rin (7). Then,

A
R = E{z, z)7} = €y P +Q, ©)

where P = diag{|a3| --- |a%]|}. Hence, a straightforward esti-

mate of Q is obtained as
Q=R— ¥, Py, (10)

Ay L-1 L-1 __H ; .
where R £ 7 Yo Yoiso @) is the sample covariance of

x; rand P is some initial estimate of P.

To eliminate the need for an initial estimate P, we note that
for sufficiently large N, N, M, and M [3],

Qil‘I’MMsz

where 3 2 P QW + Ix. Therefore, the estimator
in (8) becomes

L—1L—-1 -t
a = | DD QU R I,
=0 [=0

~R 0, (11)

L-1L-1
x (Z > Q{quﬁMﬁlm,,l> , (12)
=0 [=0

which is an extension of the 2-D Capon spectral estimator (see,
e.g., [5], [6]) to multiple sinusoids.
An alternative estimate of Q, other than (10), can be obtained

as described next. Let @ 7 (fx, fr) £ a7 (fr) ® ar(fi). Then
(7) can be expressed as

K

Tir= Y onbary (fr, fr)e TR Ly (13)
k=1

The LS estimate of o @757 (fx, fx) from (13) is

L-1L-1
LT - 1 —j2n(frl4+frl) &
ak'aMM(fkyfk') = E Z Z x; e 727 (fel+fil) 2 gk'
=0 =0

(14)

It follows from (14) and (9) that a new estimate of Q is

K
Q=R-> &¢&. (15)
The WLSE(LL, 0, K) that uses (8) with Q given in (15) does not
require any initial amplitude estimates. It is an extension of the
2-D APES algorithm [5], [6] to multiple sinusoids with known
frequencies.

3.2. WLSE(LL,0,1)
If we apply the WLS technique as described above but restrict it
to estimate one sinusoid at a time, then the WLSE(LL, 0, K') am-
plitude estimator reduces to WLSE(LL,0,1). In particular, the
WLSE(LL, 0, 1) estimator using (8) and (10) is given by
~H F\p—1
o Bl PRG
@y i (frs fe)R - @nr g (frs fi)

whereas the WLSE(LL, 0, 1) estimator using (8) and (15) is

al e iR-€. 61,
all o (o FR-E,6017 10, o (fe.fi) (17)

K, (16)
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It should be noted that, unlike (12), (16) is exactly equivalent to
using (10) with (8). The amplitude estimators (16) and (17) have
the same form as the 2-D Capon and APES spectral estimators
[5], [6], [7]- It was shown in [6] that though both estimators are
asymptotically efficient, they behave quite differently with finite
samples. Specifically, (16) is biased downward, whereas (17) is
unbiased within a second-order approximation.

4. MAFI AMPLITUDE ESTIMATORS

Let H” € C¥*MM be such that each row of which corresponds
to an M M -tap FIR filter whose center frequencies correspond to

the 2-D frequencies of one sinusoid of interest. Applying H to
both sides of (7), we obtain the filterbank output as

Yii 2 HH‘BIJ = HH‘I’MMQMO! + HH’Uz,i~ (18)
The MAFI approach chooses HY to maximize the output SNR:
H(‘I’MMP‘I’AH/IM)H} .

SNR

H = arg m}zlxxtr {(HHQH)_1

(19)
The solution to (19) is not unique [1]. One that has a simple closed-
formis H = Q7' (TF - Q™1 ¥,, )" [1]. Itis easily
verified that the so obtained H satisfies H? ¥, ; = I, which
implies that each FIR filter in H passes the sinusoid of interest
undistorted while completely eliminates the other sinusoids. As
such, (18) reduces to

Y1 =Q o+ HHvz,i~ (20)

Observe that the covariance matrix of H v, 7 is given by H” QH =
(B Q') ;) "t The MAFI estimate is obtained by using
the WLS (Markov- Ilke) technique to (20) [3]:
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Fig. 1. Empirical MSE and CRB vs. SNRwith N = N =16, M = M = 4. (a) a1. (b) as.

which coincides with (12). Note that the MAFI(LL, K, K) ap-
proach is more general since it includes WLSE(LL,0, K) as a
special case and other MAFI estimators without a WLS interpre-
tation exist [3]. We next derive such a MAFI estimator.

Lety, ;(k) and v, ;(k) be the k-th element of y, rand H%v, ;,
respectively. Then from (20) we have

(k) = apeURERD Ly vy k=1,.. K. (22)
Applying LS to (22) gives the MAFI(LL, K, 1) estimator:
L-1L-1 o
Z Zyl _jQTr(ka_fkl): k= 17"'7K~ (23)

Note that, unlike the other one-at-a-time estimators, MAFI(LL, K,
requires knowledge of the number and frequencies of the sinu-
soids, owing to the need to design the filterbank.

5. NUMERICAL EXAMPLE

For notational simplicity, we adopt the following acronyms for the
2-D amplitude estimators: i. LSE1: using (5); ii. LSEK: using (4);
iii. Caponl: using (16); iv. APES1: using (17); v. CaponK: using
(12); vi. APESK: using (8) along with (15); and vii. MAFI1: using
(23) along with (15). The data consists of K = 3 2-D complex si-
nusoids in a zero-mean complex Gaussian noise. The frequencies
of the sinusoids are (0.45,0.35), (0.235,0.135), and (0.2, 0.1),
and the amplitudes are a; = e/™%, ay = /™3, and a3 = /™%,
respectively. The colored noise is a 2-D autoregressive (AR) pro-
cess: v(n,n) = 0.99v(n— 1,7 —1)+e(n,n), where e(n,n) isa
complex-valued white Gaussian noise with zero-mean and vari-
ance o> = 0.01. The 2SNR of the k-th sinusoid is defined as
SNR; = 10log,o 5(3:L—. [8]. Consider N = N = 16, and

for the WLS and MAFI estimators, M = M = 4. Figure 1(a)
shows the mean squared errors (MSE) of the seven estimators for
a1 as the SNR changes. We see that APES1, APESK, and MAFI1
are close to the Cramér-Rao bound (CRB) [3], while both LS es-
timators are away from the CRB. CaponK is away from the CRB
at high SNRs, which is due to a bias introduced in the approx-
imation of (11) [1]. Caponl is also biased for finite samples [6],
which causes it to deviate from the CRB at high SNRs. The perfor-
mances of the above estimators are somewhat different when some

[y

sinusoids are close to the one of interest, which is the case shown
in Figure 1(b) for as. In particular, LSE1, Caponl, and APES1
degrade considerably while APESL still appears to be consistent.
The performance of APESK becomes quite sensitive for certain
SNRs. In the current case, MAFI1 appears to be the best estima-
tor.

6. SYSTEM IDENTIFICATION

Consider the following 2-D linear discrete-time system:

( ﬁ) = ( 72_1)u(n7 'ﬁ) +P(n: ﬁ): (24)
n=0,---\N—1L;i=0,---,N—1,
where the probing signal is u(n,n) = Y1 ype/2mUkntfin),

v(n

, 1) is the measurement noise, and

Sis Symobigz 7
Zi:o Z]‘:O
where ap,0 = 1, bo,o = 0, and (z~*, 27 1) are the unit-delay oper-
ators. Assume that the system orders r, s, p, and ¢ are known, and
A
K > (pq—l)—l—(rs—l). Leta = [ao,l v ap_l,q_l]T
and b2 [boy - bos_1-- br_1.s1]7. The 2-D system identi-
fication problem is to estimate the system parameters a and b from
the outputs {z(n, n)}.
The output error method (OEM) solves the above problem by
minimizing the nonlinear cost function [4]

B(z"hz 7Y

)
a;,;jz~ iz=J

ag,g—1 "+

=2
)
2

-1
Coem(a,b) =

n=0
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Define o (a, b) £ N H(e 92 fv o=i27fk) Forsufficiently large
N and N such that the transient response in the output can be ig-
nored, (24) can be approximated as

K r o=
z(n,7) =Y ax(a, b)e’ TR 4 y(n,5),  (25)
k=1

from which we can estimate {ax (a, b)}£_, by using any ampli-
tude estimator discussed before. Once the amplitude estimates of



{ak(a, b))}, are available, we select the (pg — 1) + (rs — 1)
largest ones (in magnitude) out of the K amplitude estimates and
denote them by &, k = 1,...,(pg — 1) + (rs — 1). Choose a
and b such that &, = ay(a,b), k=1,---,(pg—1) + (rs —1).
Or, equivalently,

G A I = o B ), o
k:177(pq_1)+(r5_1)7

which is a set of (pg — 1) + (rs — 1) linear equations with (pg —
1)+ (rs—1) unknowns. Solving these equations gives an estimate
of the system parameters a and b.

Now consider a system identification example that involves
colored measurement noise. The system is

ANz =1-3508271 — (0.529 + 50.7281)2 "
—(0.5825 — j0.4232)z 1z 71,
B(z7',z7") =14 (0.2014 — j0.7846)z~"
—(0.2194 + j0.6753)2z~* — (0.574 — j0.0361)2z~ 'z~ .

The probing signal consists of K = 8 2-D complex sinusoids at
frequencies: (—0.45, 0.48), (—0.317, 0.347), (—0.183, 0.213),
(—0.05, 0.08), (0.05, —0.08), (0.183, —0.213), (0.317, —0.347),
and (0.45, —0.48). The noise v(n,n) is an AR process, simi-
larly generated as in Section 5. The performance criteria consid-
ered here are the averaged root mean squared errors (ARMSE) of
the parameter estimates and the number of flops associated with
each method. The ARMSE for the a parameters is defined as
ARMSE{a} = p(;%lzi,j,(i,j#(o,o) RMSE{a;,; }. The ARMSE
for the b parameters is similarly defined. The results are shown in
Figures 2(a) to 2(c). We can see that APES1 and MAFI1 not only
obtain statistically more accurate parameter estimates than OEM
does, but they are also computationally simpler than the latter.
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Fig. 2. Averaged RMSE and the number of flops vs. N = N with
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