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ABSTRACT
In this paper we consider the generic problem of detecting

a transmitted signal when one ofM known signals is transmit-
ted. Instead of using a classical matched filter (MF) detector,
matched to the transmitted signals, we propose using an orthog-
onal matched filter (OMF) detector, which is matched to a set of
orthogonal signals that are closest in a least-squares sense to the
transmitted signals. We show that this approach is equivalent to
optimally whitening the output of the MF demodulator, and then
basing the detection on the whitened output. We provide simu-
lation results that suggest that in many cases the OMF detector
outperforms the MF detector.

1. INTRODUCTION

Signal detection in Gaussian and non-Gaussian noise has been
studied extensively in the literature (seee.g., [3] and references
therein). A generic problem is one of detecting the transmitted
signal when one ofM known signals is transmitted. The detection
is based on the received signal which is typically modeled as the
output of an additive noise channel with the transmitted signal as
its input.

When the additive noise is white and Gaussian, it is well known
(seee.g., [4]) that the optimal signal demodulator consists of a
bank of matched filters, referred to as a matched filter (MF) de-
modulator, followed by an optimal detector that is designed to min-
imize the probability of error. The detector chooses as the detected
signal the one for which the output of the matched filter is maxi-
mized. We refer to this combined demodulator and detector as the
MF detector.

If the noise is not Gaussian, then the MF detector does not
necessarily minimize the probability of error. However, it is still
used as the detector of choice in many applications. One justifi-
cation for its use is that if a signal is corrupted by additive white
noise, then the filter matched to that signal maximizes the output
signal-to-noise ratio (SNR).

In this paper we propose an orthogonal matched filter (OMF)
detector for detecting signals in additive white non-Gaussian noise.
Specifically, we propose filtering the signals with a bank of filters
matched to a set of orthogonal signals that are closest in a least-
squares sense to the given signals. We show that this approach is
equivalent to optimally whitening the output of the MF demodula-
tor, and then basing the detection on the whitened output. We pro-
vide simulation results that suggest that in certain cases the OMF
detector outperforms the MF detector.
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2. PROBLEM FORMULATION

Suppose we have a transmitter that transmits one ofM signals
fsm(t); 1 � m � Mg with equal probability, where the signals
lie in a real Hilbert spaceH with inner producthx(t); y(t)i =R
x(t)y(t)dt. We assume that the signals are linearly independent

and normalized so that
R
s
2

m(t)dt = 1 for all m. The more gen-
eral case of linearly dependent signals is considered in [1]. The
received signalr(t) is modeled asr(t) = sm(t) + n(t), where
n(t) is a stationary white noise process with zero mean and spec-
tral density�2.

We demodulate the signalr(t) using a correlation demodu-
lator as depicted in Fig. 1. The received signalr(t) is cross-
correlated withM normalized signalshm(t) 2 H so thatam =

hhm(t); r(t)i, where the signalshm(t) are to be determined. The
detected signal issi(t) wherei = argmaxam. The difference
between the OMF detector and the MF detector lies in the choice
of the signalshm(t).
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Figure 1: Correlation demodulator.

If the transmitted signal issi(t), then

am = hhm(t); r(t)i = hhm(t); si(t)i+ hhm(t); n(t)i: (1)

The detected signal will be the transmitted signalsi(t) if
maxm hhm(t); si(t) + n(t)i = hhi(t); si(t) + n(t)i. There-
fore we would like to choose the signalshm(t) to maximize
hhm(t); sm(t)i for 1 � m � M . It is well known that the sig-
nalshm(t) = sm(t) maximize this inner product. The resulting
demodulator is then equivalent to the well known MF demodula-
tor [4]. We note thathm(t) = sm(t) also maximizes the sum
Rhs =

PM

m=1

hhm(t); sm(t)i, since the individual terms are
maximized by this choice. We will see shortly that when addi-
tional constraints are imposed it will be useful to consider maxi-
mizing the sum rather than the individual terms.

In general, the outputsam of the demodulator are correlated
since they share information regarding the noise processn(t). In-
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tuitively, it seems that eliminating this common (linear) informa-
tion can improve the performance of the detector. We therefore
would like to choose the signalshm(t) so that the outputsam are
uncorrelated. We will show that when the noise is non-Gaussian
this approach does in fact lead to improved performance over con-
ventional MF detection in many cases.

Let cov(am; ak) denote the cross-covariance ofam andak.
Then,

cov(am; ak) = E(hhm(t); n(t)ihn(t); hk(t)i)
= �

2hhm(t); hk(t)i: (2)

From (2) it follows that the outputs of the demodulator are uncor-
related if and only if the signalshm(t) are orthonormal,i.e., if and
only if hhm(t); hk(t)i = �mk for all m; k. We therefore propose
to choose the signalshm(t) to be orthonormal.

As before, we would also like to choose the signalshm(t)

to maximizehhm(t); sm(t)i for 1 � m � M . However, we
now have an additional constraint, namely that the signalshm(t)

are orthonormal. If the signalssm(t) are not orthonormal, then
we cannot maximize the inner products individually subject to this
constraint. Instead, we consider maximizing the sum of the inner
products. Thus we seek a set of signalsfhm(t); 1 � m � Mg
such that

Rhs =

MX
m=1

hhm(t); sm(t)i (3)

is maximized, subject to the constraint

hhm(t); hk(t)i = �mk; 1 � m; k �M: (4)

3. EQUIVALENT PROBLEMS

In this section we formulate the design problem of (3) and (4) in
two equivalent ways that provide further insight into the problem.
Specifically, we show that the following problems are the same:

1. Find a set of orthonormal signalsfhm(t); 1 � m � Mg
that maximizeRhs =

P
m
hsm(t); hm(t)i;

2. find an optimal whitening transformationW that mini-
mizes the total mean squared error (MSE) between the
whitened outputb =W~a and the input~a, where~a denotes
the vector output of the conventional MF demodulator.
Then choose the signalsfhm(t); 1 � m � Mg to be the
orthonormal signals given byhm(t) =

P
k
W

�

mksk(t);

3. find a set of orthonormal signalsfhm(t); 1 � m � Mg
that are closest in a least-squares sense to the signals
fsm(t); 1 � m � Mg, namely that minimize"ls =P

m
hsm(t)� hm(t); sm(t)� hm(t)i.

In section 4 we determine the signalshm(t) through problem
2 above,i.e., by first determining the optimal whitening transfor-
mation. Problem3 has been solved in [2] in the context of quantum
detection.

In the remainder of this section we show the equivalence be-
tween the three problems above.

Let S: CM ! H denote the linear transformation defined
by Sx =

PM

m=1

xmsm(t), wherex 2 CM is an arbitraryM -
dimensional vector andxm denotes themth component ofx. Let
S
�: H ! CM denote the adjoint transformation so that ifx =

S
�

y(t) for arbitraryy(t) 2 H, thenxm = hsm(t); y(t)i. Let ~a
denote the vector withmth component~am, where~am is the output

of the correlation demodulator whenhm(t) = sm(t). From (2) it
follows that the covariance matrix of~a, denotedCa, is given by

Ca = �
2

S
�

S; (5)

where themkth element ofS�S is hsm(t); sk(t)i. If the signals
sm(t) are not orthonormal, thenCa is not diagonal and the ele-
ments of~a are correlated. Suppose we whiten~a using a whitening
transformationW to obtain the random vectorb = W~a, where
the covariance matrix ofb is given byCb = �

2

I, and then base
our detection onb. Thus the componentsbm of b are the inputs
to the detector, and the detected signal issi(t) if i = argmax bm.
Since the detector bases its decision on the vectorb, we choose a
whitening transformationW that minimizes the MSE given by

"mse =

MX
m=1

E
�
(b
0

m � ~a
0

m)
2

�
; (6)

where~a0m = ~am �E(~am) andb0m = bm �E(bm). That is, from
all possible whitening transformations we seek the one that results
in a white vectorb as close as possible to the original vector~a.
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Figure 2: Correlation demodulator followed by whitening.

We now show that the demodulator depicted in Fig. 2 is equiv-
alent to the correlation demodulator of Fig. 1 where the signals
hm(t) areorthonormaland given byhm(t) =

P
k
W

�

mksk(t),
whereWmk denotes themkth element ofW. In other words,
the outputs of Fig. 1 and 2 are equal, provided thathm(t) =P

k
W

�

mksk(t).
The outputb of Fig. 2 is given by

b =W~a =WS
�

r(t) = H
�

r(t); (7)

whereH: CM ! H is given byH = SW
�. Therefore,b can

be viewed as the output of a correlation demodulator with signals
hm(t) =

P
k
W

�

mksk(t).
We now need to show that the signalshm(t) are orthonormal.

It is sufficient to show thatH�

H = WS
�

SW
� = I. By def-

inition, Cb = �
2

I. In addition,Cb = WCaW
� and from (5)

Ca = �
2

S
�

S. ThereforeH�

H =WS
�

SW
� = 1=�2Cb = I.

In summary, the output of Fig. 2 may be obtained using the
correlation demodulator of Fig. 1, where the signalshm(t) are
orthonormal and given byhm(t) =

P
k
W

�

kmsk(t).
We now show that minimization of"mse given by (6), is equiv-

alent to maximization ofRhs given by (3). Using (7) we have

b� ~a = (H
� � S

�

)r(t) = (H
� � S

�

)(si(t) + n(t)) (8)
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and

b
0

m � ~a
0

m = hhm(t)� sm(t); n(t)i: (9)

Substituting (9) into (6) we have

"mse =

MX
m=1

E(hhm(t)� sm(t); n(t)i2): (10)

Let em = E
�
hsm(t)� hm(t); n(t)i2

�
. Then

em = E

�Z
t

(sm(t)� hm(t))n(t)dt

�
2

=

Z
t;t0

(sm(t)� hm(t))(sm(t
0

)� hm(t
0

))E(n(t)n(t
0

))dtdt
0

= �
2

Z
t

(sm(t)� hm(t))
2

dt

= �
2hsm(t)� hm(t); sm(t)� hm(t)i: (11)

Combining (10) and (11) we see that minimization of"mse is
equivalent to minimization of"ls, where

"ls =

MX
m=1

hsm(t)� hm(t); sm(t)� hm(t)i: (12)

Therefore, the optimal whitening problem is equivalent to the
problem of finding a set of orthonormal signalsfhm(t); 1 �
m � Mg that are closest in the least-squares sense to the signals
fsm(t); 1 � m �Mg.

Finally, we show that this least-squares problem is equivalent
to our original design problem of (3) and (4). Expanding"ls we
have

"ls =

=

MX
m=1

(hsm(t); sm(t)i+ hhm(t); hm(t)i � 2hsm(t); hm(t)i)

=

MX
m=1

(2� 2hsm(t); hm(t)i) : (13)

From (3) and (13) it follows that minimization of"ls is equivalent
to maximization ofRhs. Since minimization of"mse is equivalent
to minimization of"ls, we conclude that these three problems are
equivalent.

Note, that if the transmitted signalssm(t) are orthonormal,
then the output of the MF demodulator~a is white. Thus, in
this caseW = I and the OMF detector is equivalent to the
MF detector. Alternatively, if the signalssm(t) are orthonor-
mal then the residual least-squares error"ls is minimized when
hm(t) = sm(t), and again the OMF detector reduces to the MF
detector.

4. OPTIMAL WHITENING

Since the optimal whitening problem is equivalent to the
problem of (3)-(4), we choose to determine the signals
fhm(t); 1 � m �Mg by solving this problem.

We first restate the optimal whitening problem in its most gen-
eral form. Leta 2 RM be a random vector withmth com-
ponentam and positive-definite covariance matrixCa, and let

a
0

m = am�E(am). We seek a whitening transformationW such
that the white vectorb =Wa has a covariance matrixCb = �

2

I,
and is as close as possible toa in the MSE sense. Thus, we seek
the transformationW that minimizes

"mse =

MX
m=1

E
�
(a

0

m � b
0

m)
2

�
; (14)

wherebm is themth component ofb, andb0m = bm � E(bm),
subject to the constraint

Cb =WCaW
�

= �
2

I; (15)

whereCb is the covariance matrix ofb. SinceW must be invert-
ible (15) reduces to

�
2

(W
�

W)
�1

= Ca: (16)

We solve this minimization problem using the eigendecompo-
sition ofCa and the singular value decomposition (SVD) [5] of
W.

Let the vectorsvk denote the orthonormal eigenvectors ofCa,
so that

Cavk = �kvk; 1 � k �M (17)

where�k > 0. We can then decomposeCa asCa = VDV
�

whereV denotes the unitary matrix of columnsvk, andD denotes
the diagonal matrix with diagonal elements�k. Then

W
�

Wvk = �
2

Ca
�1

vk = �
2

�
�1

k vk: (18)

From the properties of the SVD (see,e.g.,[5]) it then follows that

Wvk = �kuk; 1 � k �M (19)

where�k = �=
p
�k and the vectorsuk are orthonormal.

Since theM vectorsvk 2 CM are orthonormal, they span
the spaceCM , and anyx 2 CM may be expressed asx =P

k
hvk;xivk, where the inner product onCM is defined as

hvk;xi = v
�

kx. Let a0 = a � E(a) andb0 = b � E(b). Then
a
0 =

P
k
hvk; a0ivk and

b
0 � a0 =Wa

0 � a0 =
X
k

hvk; a0i(�kuk � vk); (20)

where we used (19). We can now express"mse of (14) as

"mse = E(hb0 � a0;b0 � a0i2)
=
X
k;m

E(hvm; a0iha0;vki)h�kuk � vk; �mum � vmi: (21)

Now,

E(hvm; a0iha0;vki) = hvm;Cavki = �khvm;vki = �k�mk:

(22)
Substituting (22) in (21) results in

"mse =
X
k

�kh�kuk � vk; �kuk � vki

=
X
k

�k
�
�
2

k + 1� 2�k<(huk;vki)
�
; (23)

where <(�) denotes the real part. From (23) it follows
that minimizing "mse is equivalent to maximizingA =



4P
k
�k<(huk;vki). Using the Cauchy-Schwartz inequality we

have,

A =
X
k

�k<(huk;vki) (24)

�
X
k

�kjhuk;vkij (25)

�
X
k

�k(huk;ukihvk;vki)1=2 =
X
k

�k (26)

with equality in (25) if and only ifhuk;vki is real and non-
negative, and equality in (26) if and only ifuk = ckvk for
some nonzero constantsck. Since the vectorsuk are orthonor-
mal huk;uki = 1. We therefore conclude thatA �P

k
�k with

equality if and only ifuk = vk. Thus"mse is minimized when
W is given by

Wvk = �kvk =
�p
�k
vk (27)

or
W = �VD

�1=2
V

�

= �Ca
�1=2

: (28)

In summary, the optimal whitening transformation that min-
imizes the MSE"mse defined in (14) for an inputa with co-
varianceCa and an outputb with covarianceCb = �

2

I, is
W = �Ca

�1=2.
In Fig. 2 the input to the whitening transformation isa = ~a

withCa = �
2

S
�

S. Thus, the optimal whitening transformation in
this case isW = (S�S)�1=2, and the optimal orthonormal signals
hm(t) that maximizeRhs are given byhm(t) =

P
k
W

�

mksk(t),

or hm(t) = Him whereH = S(S�S)�1=2 andim(k) = �mk.

5. SIMULATION RESULTS

In this section we provide simulation results suggesting the behav-
ior and performance of the OMF detector, in comparison to the MF
detector.

We compared the performance of the OMF and MF detectors
for random signal constellations. Specifically, we generated ran-
dom covariance matricesCa = �

2

S
�

S with uniformly distributed
elements. We then generated1000 realizations of random noise
vectors (from a given distribution) with zero mean and covariance
Ca, for each realization ofCa. The vector output of the MF de-
modulator was then taken to be the sum of one of the columns of
Ca and the random noise. To obtain the output of the OMF de-
tector, the output of the MF demodulator was whitened using the
whitening transformationW = �Ca

�1=2. We then determined
the probability of error for both the MF and the OMF detector by
recording the number of successful detections.

In Table 1 we show the fraction of the simulations for which
the ratio of the probabilities of error using the MF and OMF detec-
tors was found to be in the given ranges. We denote the probability
of error using the OMF and the MF detectors byPo andP , re-
spectively. The results are shown for three noise distributions, (a)
a Gaussian mixture of two components with variance:2 centered
at�1, (b) a Beta distribution with parametersA=.1 andB=.1, and
(c) a discrete-time signal taking on the values�1 with equal prob-
ability. The parameters of the distributions were chosen such that
the SNR is0db. For each distribution we evaluated the probability
of error by generated1000 random covariance matricesCa, and
corresponding to eachCa we generated1000 random noise vec-
tors with zero mean and covarianceCa. The probability of error

Gaussian Beta �1 with
Mixture equal prob.

Po=P < :65 0 0 0
:65 < Po=P < :95 0.075 0.013 0.323
:85 < Po=P < :95 0.835 0.755 0.532
:95 < Po=P < 1:05 0.090 0.232 0.145

1:05 < Po 0 0 0

Table 1: Comparison between the OMF and the MF detectors.Po

andP denote the probability of error using the OMF detector and
the MF detector, respectively. For each noise distribution we show
the fraction of the simulations that resulted in relative probabilities
of error in the given ranges.

for each distribution was determined as the fraction of successful
detections. The simulation results summarized in Table 1 suggest
that the OMF detector outperforms the MF detector in many cases.
The simulations were repeated for various SNRs and the results
indicate that the relative improvement in performance of the OMF
detector over the MF detector increases with increasing SNR.

More extensive simulations are presented in [1], which
strongly suggest that when the additive noise is non-Gaussian the
OMF detector can significantly decrease the probability of error
over the MF receiver and when the additive noise is Gaussian, the
degradation in performance using the OMF detector is minor.

6. CONCLUSION

We considered the problem of detecting a transmitted signal when
one ofM known signals is transmitted. We proposed an orthogo-
nal matched filter detector, which can be viewed as a MF demod-
ulator followed by optimal whitening of the demodulators output.
Alternatively, we may view the OMF detector as a bank of filters
matched to a set of orthogonal signals that are closest in the least-
squares sense to the transmitted signals. We provided simulations
that suggest that the OMF detector outperforms the MF detector in
many cases.
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