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ABSTRACT 2. PROBLEM FORMULATION

In this paper we consider the generic problem of detecting . ) .

a transmitted signal when one af known signals is transmit-  SUPPOSe we have a transmitter that transmits oné/ogignals
ted. Instead of using a classical matched filter (MF) detector, {sm(t),1 < m < M} with equal probability, where the signals
matched to the transmitted signals, we propose using an orthog-i€ in a real Hilbert spacé with inner product(z(t),y(t)) =

onal matched filter (OMF) detector, which is matched to a set of J z(t)y(t)dt. We assume that the signals are linearly independent
orthogonal signals that are closest in a least-squares sense to thend normalized so thaf s7, (¢)dt = 1 for all m. The more gen-
transmitted signals. We show that this approach is equivalent toeral case of linearly dependent signals is considered in [1]. The
optimally whitening the output of the MF demodulator, and then received signat(t) is modeled as'(t) = sm(t) + n(t), where
basing the detection on the whitened output. We provide simu- 72(t) is a stationary white noise process with zero mean and spec-
lation results that suggest that in many cases the OMF detectortral densityo .

outperforms the MF detector. We demodulate the signalt) using a correlation demodu-
lator as depicted in Fig. 1. The received signét) is cross-
correlated withA normalized signalé,,, (t) € #H so thata,, =

(hm (t),r(t)), where the signals,,(¢) are to be determined. The
Signal detection in Gaussian and non-Gaussian noise has beeffétected signal is;(t) wherei = argmaxa,,. The difference
studied extensively in the literature (se., [3] and references betwee_n the OMF detector and the MF detector lies in the choice
therein). A generic problem is one of detecting the transmitted ©f the signalsi., (£).
signal when one oM known signals is transmitted. The detection

is based on the received signal which is typically modeled as the a1
output of an additive noise channel with the transmitted signal as f(')dt

its input. hi(t)

When the additive noise is white and Gaussian, itis well known f(~)dt =
(seee.qg., [4]) that the optimal signal demodulator consists of a r(t) hs(t)
bank of matched filters, referred to as a matched filter (MF) de-
modulator, followed by an optimal detector that is designed to min-
imize the probability of error. The detector chooses as the detected f(~)dt
signal the one for which the output of the matched filter is maxi- har(t)
mized. We refer to this combined demodulator and detector as the
MF detector. Figure 1: Correlation demodulator.

If the noise is not Gaussian, then the MF detector does not
necessarily minimize the probability of error. However, it is still
used as the detector of choice in many applications. One justifi- f the transmitted signal is; (¢), then
cation for its use is that if a signal is corrupted by additive white
noise, then the filter matched to that signal maximizes the output 4, = (han (£),7(£)) = (ham (1), 5:(£)) + (B (t),n(t)). (1)
signal-to-noise ratio (SNR).

In this paper we propose an orthogonal matched filter (OMF) The detected signal will be the transmitted signalt) if
detector for detecting signals in additive white non-Gaussian noise.max, (hm (t),si(t) + n(t)) = (hi(t), si(t) + n(t)). There-
Specifically, we propose filtering the signals with a bank of filters fore we would like to choose the signals, (t) to maximize
matched to a set of orthogonal signals that are closest in a least{h, (t), sm(t)) for 1 < m < M. Itis well known that the sig-
squares sense to the given signals. We show that this approach isalsh. (t) = s (t) maximize this inner product. The resulting
equivalent to optimally whitening the output of the MF demodula- demodulator is then equivalent to the well known MF demodula-
tor, and then basing the detection on the whitened output. We pro-tor [4]. We note thath,,(t) = s, (t) also maximizes the sum
vide simulation results that suggest that in certain cases the OMFR, . = Zi‘f_l (hm(t), sm(t)), since the individual terms are
detector outperforms the MF detector. maximized by this choice. We will see shortly that when addi-
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tuitively, it seems that eliminating this common (linear) informa- of the correlation demodulator whén, (t) = s (t). From (2) it

tion can improve the performance of the detector. We therefore follows that the covariance matrix & denotedC,, is given by
would like to choose the signals, (t) so that the outputs,, are

uncorrelated. We will show that when the noise is non-Gaussian C. =0%5"S, (5)
this approach does in fact lead to improved performance over con-
ventional MF detection in many cases. where themkth element ofS* S is (Sm(t), Sk(t». If the signals
Let co(a,ar) denote the cross-covariance @f, anday. sm (t) are not orthonormal, the@, is not diagonal and the ele-
Then, ments ofa are correlated. Suppose we whitensing a whitening
transformationW to obtain the random vectds = Wa, where
COV(am,ar) = E({(hm(t),n(t))(n(t), he(t))) the covariance matrix db is given byC, = &I, and then base
PN ONION @) our detection orb. Thus the components,, of b are the inputs

to the detector, and the detected signak;ig) if = argmax b,»,.
From (2) it follows that the outputs of the demodulator are uncor- Since the detector bases its decision on the vdsteve choose a
related if and only if the signals,, (t) are orthonormai,e.,if and whitening transformatioiW that minimizes the MSE given by
only if (hm (t), hi(t)) = dmr for all m, k. We therefore propose
to choose the signals,, (t) to be orthonormal. 9
As before, we would also like to choose the signia)s(t) Emse = Z B ((bm — @m) ) , 6)
to maximize (hn, (1), sm (t)) for 1 < m < M. However, we

now have an additional constraint, namely that the sigh .
Y gnalel) wherea,, = @, — E(a) andb), = b, — E(b,,). Thatis, from

are orthonormal. If the signals, (t) are not orthonormal, then 4 v i
we cannot maximize the inner products individually subject to this eII possible whitening transformations we seek the one that results

constraint. Instead, we consider maximizing the sum of the inner N & White vectob as close as possible to the original vedior
products. Thus we seek a set of signfits, (t),1 < m < M}

such that a b

M 46?* [()dt o !
Ris =Y (hm(t), sm(t)) 3) s

m=1 612 ) ) b2

is maximized, subject to the constraint 6? J Gt whitening
r(t) —  sa2(t)
(hn (8), b () = Sry 1 <myk < M. Q) : w
. -
3. EQUIVALENT PROBLEMS @ [(yde 22

SM(t)

In this section we formulate the design problem of (3) and (4) in
two equivalent ways that provide further insight into the problem.
Specifically, we show that the following problems are the same:

1. Find a set of orthonormal signa{é..(t),1 < m < M}

Figure 2: Correlation demodulator followed by whitening.

that maximizeRns =3, (sm (), hm (1)); We now show that the demodulator depicted in Fig. 2 is equiv-
2. find an optimal whitening transformatioW that mini- alent to the correlation demodulator of Fig 1 where the signals
mizes the total mean squared error (MSE) between the hn (t) areorthonormaland given byh., (t) = 3, W sk (t

whitened outpub = Wa and the inpuf, wherea denotes where W ;. denotes thenkth element ofW. In other Words
the vector output of the conventional MF demodulator. the outputs of Fig. 1 and 2 are equal, provided that(t) =
Then choose the signafdi, (t),1 < m < M} to be the >, Wisk(t

orthonormal signals given by (t) Zk Sk (t The outpulb of Fig. 2 is given by

3. find a set of orthonormal signa{g.»(t),1 < m < M}

that are closest in a least-squares sense to the signals b =Wa=W§5'rt)=Hr() )
{sm(t),1 < m < M}, namely that minimizes;; = whereH: CM — H is given byH = SW*. Thereforeb can
Zm (sm () = hn (£), sm (£) = b (£))- be viewed as the output of a correlation demodulator with signals
In section 4 we determine the signals, (¢) through problem hom ( Zk ok Sk (t
2 above,i.e., by first determining the optimal whitening transfor- We now need to show that the signals (¢) are orthonormal.
mation. Problen3 has been solved in [2] in the context of quantum It is sufficient to show thati*H = WS*SW* = 1. By def-
detection. inition, C, = ¢2I. In addition,C, = WC,W* and from (5)

In the remainder of this section we show the equivalence be- C, = 0>5*S. ThereforeH*H = WS*SW* = 1/0201, =1
tween the three problems above. In summary, the output of Fig. 2 may be obtained using the
Let S: CM — ‘H denote the linear transformation defined correlation demodulator of Fig 1, where the signajs(t) are

by Sx = E%zl Tmsm(t), wherex € CM is an arbitraryM - orthonormal and given bi,,, (t) = 3, Wi, sk (t).
dimensional vector and,, denotes thenth component ok. Let We now show that minimization ef,,s. given by (6), is equiv-
S*: H — CM denote the adjoint transformation so thatif= alent to maximization ofz;s given by (3). Using (7) we have

S*y(t) for arbitraryy(t) € H, thenz,, = (sm(t),y(t)). Leta
denote the vector witlth componené ., wherea,, is the output b—a=(H"-8)r({t)=(H"—S")(sit)+n(t) (@8



and

by = Gy = (hn () = s (t), (1)) 9)
Substituting (9) into (6) we have
M
Emoe = D B((hm(t) = s (1), n(1))*). (10)

m=1

Leten = B ((sm(t) — hm(t), n(t))*). Then

o’ /(sm(t) — hm (£))dt

(8 (t) = hn(t), 5m (t) = hn (1)).

Combining (10) and (11) we see that minimizationegfs. is
equivalent to minimization of; s, where

(11)

gie = (sm(t) = hm(t),sm(t) = b (b)) (12)

Therefore, the optimal whitening problem is equivalent to the
problem of finding a set of orthonormal signa{é.. (t),1 <

m < M} that are closest in the least-squares sense to the signals

{sm(t),1 <m < M}

Finally, we show that this least-squares problem is equivalent

to our original design problem of (3) and (4). Expanding we
have

Els

[]=

((sm(t), sm(t)) + (hm (£), hin (1)) — 2{sm (L), hm (£)))

3
I

M=

(2 = 2sm(t), hm (1)) - (13)

3
I

From (3) and (13) it follows that minimization ef; is equivalent

to maximization ofR},s. Since minimization ot ., . is equivalent

to minimization ofe;s, we conclude that these three problems are
equivalent.

Note, that if the transmitted signals, (t) are orthonormal,
then the output of the MF demodulatér is white. Thus, in
this caseW I and the OMF detector is equivalent to the
MF detector. Alternatively, if the signals,,(t) are orthonor-
mal then the residual least-squares etrgris minimized when
hm(t) = sm(t), and again the OMF detector reduces to the MF
detector.

4. OPTIMAL WHITENING

Since the optimal whitening problem is equivalent to the
problem of (3)-(4), we choose to determine the signals
{hm(t),1 < m < M} by solving this problem.

We first restate the optimal whitening problem in its most gen-
eral form. Leta € R be a random vector witmth com-
ponenta,, and positive-definite covariance matr®,, and let

3
an, = amn — E(amn). We seek a whitening transformatid?® such

that the white vectob = Wa has a covariance matri®;, = o1,
and is as close as possibleaan the MSE sense. Thus, we seek
the transformatio®¥” that minimizes

M
Emse = Z E ((a;n - b;'n)z) ;
m=1

whereb,,, is themth component ob, andb), = b,, — E(bm),
subject to the constraint

(14)

C, = WC,W* =¢°1, (15)
whereC, is the covariance matrix db. SinceW must be invert-
ible (15) reduces to

(W'W)™! = C,. (16)

We solve this minimization problem using the eigendecompo-
sition of C, and the singular value decomposition (SVD) [5] of
W.

Let the vectors/,, denote the orthonormal eigenvectord,
so that

Cavk = )\kvk, 1 S k S M (17)

where )\, > 0. We can then decompogg, asC, = VDV~
whereV denotes the unitary matrix of colummg, andD denotes
the diagonal matrix with diagonal elements. Then

W Wv, = 02Cy vy = a2>\;1vk. 18)

From the properties of the SVD (se=g.,[5]) it then follows that

vazakuk, ISkSM (19)
whereo;, = o/v/Ax and the vectorsy, are orthonormal.

Since theM vectorsv, € C™ are orthonormal, they span
the spaceC™, and anyx € CM may be expressed as =
>, (vi,x)vi, where the inner product o™ is defined as
(vi,x) = vix. Leta’ = a — E(a) andb’ = b — E(b). Then

E (vk,a’)vy and

a'—
= 2k

b'—a' =Wa' —a' = Z (vi,a Y opug — Vi),
k

(20)

where we used (19). We can now express. of (14) as
emse = E((b' —a’,b’ —a’')?)
= 3" B((vma )@, vid)(onuk — Vi, omtim — vim). (21)
k,m

Now,

E((vim,a' @', vi)) = (vin, CaVi) = A (Vin, Vi) = MeOmik.
(22)
Substituting (22) in (21) results in

Z)\k<0'kuk — Vi, OpUg — Vi)
&

Z)\k (O';i +1- QU)C?R“U]Q-,V)C))) s (23)

k

Emse

where $(-) denotes the real part. From (23) it follows
that minimizing e.,sc iS equivalent to maximizing A



> okR((ug, vi)). Using the Cauchy-Schwartz inequality we
have,

A Zak%((uk,vk)) (24)
k

> oul(ue, vi))
:

Y oe({uewlvi, vi) P = o (26)
k k

IA

(25)
<

with equality in (25) if and only if(ux,vy) is real and non-
negative, and equality in (26) if and only if, = c¢ivy for
some nonzero constants. Since the vectorsi, are orthonor-
mal (ux, ur) = 1. We therefore conclude that < Zk o With
equality if and only ifuy = vi. Thusem,se is minimized when
‘W is given by

ag
va = 0OrVE = —F—Vk (27)
VAR
or ) )
W =oVD ?V* =5C, /2. (28)

In summary, the optimal whitening transformation that min-
imizes the MSEe,,,,. defined in (14) for an inpua with co-
varianceC, and an outputb with covarianceC, 0’1, is
W = UCa71/2.

In Fig. 2 the input to the whitening transformationas= a
with C, = ¢25*S. Thus, the optimal whitening transformation in
this case i3V = (S*S)~'/2, and the optimal orthonormal signals
h.m (t) that maximizeRy,; are given byh.,, (t) = 3, W, .sk(t),
or hom (t) = Hi,, whereH = S(S5*S)~Y2 andip, (k) = Gk

5. SIMULATION RESULTS

Gaussian| Beta +1 with
Mixture equal prob.
P,/P < .65 0 0 0
.65 < P,/P < .95 0.075 0.013 0.323
.85 < P,/P < .95 0.835 0.755 0.532
95 < P,/P < 1.05 0.090 0.232 0.145
1.05 < P, 0 0 0

Table 1: Comparison between the OMF and the MF detecfeys.
and P denote the probability of error using the OMF detector and
the MF detector, respectively. For each noise distribution we show
the fraction of the simulations that resulted in relative probabilities
of error in the given ranges.

for each distribution was determined as the fraction of successful
detections. The simulation results summarized in Table 1 suggest
that the OMF detector outperforms the MF detector in many cases.
The simulations were repeated for various SNRs and the results
indicate that the relative improvement in performance of the OMF
detector over the MF detector increases with increasing SNR.
More extensive simulations are presented in [1], which
strongly suggest that when the additive noise is hon-Gaussian the
OMF detector can significantly decrease the probability of error
over the MF receiver and when the additive noise is Gaussian, the
degradation in performance using the OMF detector is minor.

6. CONCLUSION

We considered the problem of detecting a transmitted signal when
one of M known signals is transmitted. We proposed an orthogo-
nal matched filter detector, which can be viewed as a MF demod-
ulator followed by optimal whitening of the demodulators output.

In this section we provide simulation results suggesting the behay-Alternatively, we may view the OMF detector as a bank of filters
ior and performance of the OMF detector, in comparison to the MF matched to a set of orthogonal signals that are closest in the least-
detector. squares sense to the transmitted signals. We provided simulations

We compared the performance of the OMF and MF detectors that suggest that the OMF detector outperforms the MF detector in

for random signal constellations. Specifically, we generated ran-
dom covariance matrices, = ¢>5* S with uniformly distributed
elements. We then generatéd00 realizations of random noise
vectors (from a given distribution) with zero mean and covariance
C,, for each realization o€,. The vector output of the MF de-
modulator was then taken to be the sum of one of the columns of
C, and the random noise. To obtain the output of the OMF de-
tector, the output of the MF demodulator was whitened using the
whitening transformatio®W = oC, /2. We then determined
the probability of error for both the MF and the OMF detector by
recording the number of successful detections.

In Table 1 we show the fraction of the simulations for which
the ratio of the probabilities of error using the MF and OMF detec-
tors was found to be in the given ranges. We denote the probability
of error using the OMF and the MF detectors By and P, re-
spectively. The results are shown for three noise distributions, (a)
a Gaussian mixture of two components with variariceentered
at+1, (b) a Beta distribution with parametess=.1 andB=.1, and
(c) a discrete-time signal taking on the valuets with equal prob-
ability. The parameters of the distributions were chosen such that
the SNR isdb. For each distribution we evaluated the probability
of error by generated000 random covariance matric&s,, and
corresponding to eacl, we generated000 random noise vec-
tors with zero mean and covarian€g,. The probability of error

many cases.
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