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ABSTRACT

In this paper, we propose a new high resolution method with
polarization diversity for the characterization of the scat-
tering centers of a radar target, using a stepped-frequency
radar system. The proposed method is based on the polyno-
mial rooting technique. It allows to optimally use the infor-
mation contained in the polarization of the received wave
while keeping the calculation cost moderate. Moreover, it
can estimate the range and the polarization parameters of
each scattering center in only one step. Simulation results
are presented to show the performance of the algorithm.

1. INTRODUCTION

In this paper, the radar target is modeled by an array of dis-
crete scattering centers. Each scattering center is character-
ized by its range and its complex amplitude. It is known that
the characterization of the scattering centers is equivalent to
the spectral analysis problem. In section 2, we briefly revise
this theory.

The amplitude, the phase and the polarization are needed
for a complete characterization of a radar target. The clas-
sical radar system works with a single polarization, but it
is shown that the use of polarization diversity can consider-
ably improve the system performance. Moreover, the wave
polarization provides additional information about the radar
target. The polarization characterization of a radar target is
presented in section 3.

In section 4, we present a new high resolution method
with polarization diversity. This method is based on the
polynomial rooting technique. We show that this method
allows a full characterization of the target by estimating the
amplitude, the phase, the range and the polarization of the
scattering centers of the radar target, and it provides also a
better performance in terms of resolution power.

Finally, some simulation results and conclusions are pre-
sented.

2. DATA MODEL

Assuming that the radar target is modeled bym independent
scattering centers, letq be the transmitted polarization,p
the received polarization and� the incident wave frequency.
The received signal of the radar target can be expressed as :

spq(�) =

mX
i=1

bpqie
j 4�
c
Ri� (1)

wherebpqi is the complex amplitude,Ri the range of theith

scattering center.
A stepped-frequency radar system is considered in this

paper. The radar emits a series of bursts of narrow band
pulses, where each burst consists ofN pulses stepped in
frequency from pulse to pulse by a fixed frequency step size
@�: So for thenth pulse, the emitted frequency is�n =
�0+n@�, with n = 0; 1; � � � ; N�1; and the received signal
is given by :

spq(n) =

mX
i=1

bpqie
j 4�
c
Ri�n =

mX
i=1

apqie
j2�( 2@�c Ri)n (2)

(2) can be rewritten in the following more convenient nor-
malized manner :

spq(n) =
mX
i=1

apqie
j2�( RiRa )n =

mX
i=1

apqie
j2�fin (3)

whereRa � c
2@� is the well known unambiguous range.

This received signal model allows us to introduce the
normalized frequency concept :fi = Ri

Ra
(i = 1; 2; � � � ;m).

Normalizing the sampling frequency to 1,spq(n) can be
considered as the sample at instantn of a signal composed
of the sum ofm complex sinusoids with frequency equals
to fi =

Ri

Ra
:

Of course the received signal is corrupted by a noise, so
the characterization of the scattering centers is equivalent to
the estimation of the parameters of a signal composed of the
sum of sinusoids embedded in noise.



3. POLARIZATION CHARACTERIZATION

The polarization properties are completely described by the
scattering matrix which gives the relationship between the
polarization of the scattered wave and that of the incident
wave. This matrix can be obtained by estimating the polar-
ization of the scattered waves for two incident waves with
orthogonal polarizations. The most important point then,
is the estimation of the polarization of the received wave,
whatever the polarization of the incident wave. For estimat-
ing the received wave’s polarization, it is necessary to have
polarization diversity at the receiver allowing the reception
simultaneously of the horizontally and vertically polarized
waves. Let’s denote the polarization vector of the incident
wave by the following Jones vector :

q =

�
qh
qv

�
(4)

In frequency domain, the received wave for an incident wave
of polarizationq can be written as :�

shr(n)
svr(n)

�
=

�
shh(n) shv(n)
svh(n) svv(n)

��
qh
qv

�
(5)

Using(3), and(5) it is straightforward that the received sig-
nal vector can be expressed as :�

shr(n)
svr(n)

�
=

mX
i=1

�
ahi
avi

�
ej2�fin (6)

whereahi andavi contain the polarization information of
theith scattering center.

The wave polarization is usually represented by the po-
larization ellipse, characterized by the ellipticity angle�i
(j�ij � �=4) and by the tilt angle�i (0 � �i < �) : These
two parameters can be calculated fromahi andavi by the
following equations [1] :


i = arctan

� javi j
jahi j

�
(7)

Æi = arg (avi)� arg (ahi)

�i =
1

2
arcsin [sin (2
i) sin (Æi)]

�i =
1

2
arctan [tan (2
i) cos (Æi)]

�i =

�
�i +

�
2 si 
i >

�
4

�i + � si 
i � �
4 ; �i < 0

4. HIGH RESOLUTION METHOD

Recently, many high resolution methods have been proposed
in order to overcome the limitations of the classical FFT
method. While they have found successful application in

the case of scalar signal waves where the polarization prop-
erties of received waves are ignored, very little application
can be found in the presence of polarization diversity [1],
[2]. The wave polarization diversity is however an addi-
tional information, which can be used to improve the per-
formance of classical methods. We can note that the polar-
ization properties have been used with success for estimat-
ing the directions of arrival of multiple plane waves with an
array of antennas [3], [4], [5]. In the following, we present
a new high resolution method with polarization diversity.

Assuming that we haveN samples of the received signal
vector(6), let’s consider the two following matrices utiliz-
ing all the available data :

Sh =

266664
shr(0) shr(1) � � � shr(N � p)

shr(1) shr(2)
...

...
. . .

shr(p� 1) shr(N � 1)

377775 (8)

Sv =

266664
svr(0) svr(1) � � � svr(N � p)

svr(1) svr(2)
...

...
. . .

svr(p� 1) svr(N � 1)

377775 (9)

In order to exploit the information contained in the two
matricesSh et Sv , we propose to use the matrixS con-
structed in the following manner :

S =

�
Sh
Sv

�
(10)

According to the structure of the matricesSh andSv and
that of the received signal(6), the matrixS can be written
as :

S =

mX
i=1

2666666664

ahi � � � ahie
j2�fi(N�p)

...
. . .

ahie
j2�fi(p�1) ahie

j2�fi(N�1)

avi � � � avie
j2�fi(N�p)

...
.. .

avie
j2�fi(p�1) avie

j2�fi(N�1)

3777777775
which can be factorized as :

S =

mX
i=1

g2p (ahi ; avi ; fi)d
T
n1 (fi) (11)

with g2p (ah; av; f) ; dn1 (f) two vectors of dimension2p
andn1 = N � p+ 1 respectively :

dn1 (f) =
�
1 ej2�f � � � ej2�(n1�1)f

�T
g2p (ah; av ; f) =

�
ahd

T
p (f) avd

T
p (f)

�T



It can be shown that ifp > m andn1 > m, the ma-
trix S is rank deficient. Moreover iffi 6= fj ;8i 6= j; for
i; j = 1; 2; � � �m; the rank of the data matrixS is equal to
the number of scattering centersm. Consequently, the high
resolution method principle can be applied to the matrixS:

Let U1 be the matrix of dimension(2p;m) formed by
the m left singular vectors associated with them largest
singular values ; andU2 the matrix of dimension(2p; 2p�
m) formed by the remaining(2p�m) left singular vectors
of the matrixS. Also let �b = U2U

H
2 : The frequency

(range) and the polarization parameters can be estimated by
the following minimization problem :

min
ah;av;f

gH2p (ah; av; f)�bg2p (ah; av ; f)

gH2p (ah; av ; f)g2p (ah; av; f)
(12)

This minimization requires a three dimensional search, a
computationally intensive procedure, which is difficult to
realize practically. Fortunately, the structure of the vector
g2p (ah; av; f) allows us to considerably simplify this min-
imization problem.

The vectorg2p (ah; av; f) can be rewritten as :

g2p =

�
ahdp (f)
avdp (f)

�
=

�
dp 0p
0p dp

��
ah
av

�
= Da

(13)

with D a matrix of dimension(2p; 2) containing frequency
information anda; a 2 dimensional vector, containing the
polarization information. Consequently, this factorization
of the vectorg2p allows us to separate the frequency contri-
bution and that of the polarization.

AsDHD =p

�
1 0

0 1

�
; the minimization(12) can be

reformulated as :

min
f;a

aHDH�bDa

aHDHDa
= min

f;a

aHDH�bDa

paHa
(14)

which can be done by first minimizing the cost function rel-
ative to the frequencyf; and then to the vectora:

min
a

�
min
f

aHDH�bDa

paHa

�
(15)

The minimum of(15) is given by the smallest eigen-
value of the matrixDH�bD; a Hermitian nonnegative def-
inite matrix. Its minimum is zero iff anda correspond to
the true parameters of a scattering center. So the frequencies
f can be estimated, in the ideal situation, by the frequencies
such that :

det
�
DH�bD

�
= 0 (16)

To simplify this formula, define

�b =

�
R11 R12

RH
12 R22

�
(17)

so that we have

DH�bD =

�
dHp R11dp dHp R12dp
dHp R

H
12dp dHp R22dp

�
(18)

and

det
�
DH�bD

�
=

�
dHp R11dp

� �
dHp R22dp

�
(19)

� �
dHp R

H
12dp

� �
dHp R12dp

�
Let’s define the complex variablez = exp(j2�f); so

that the vectordp (f) becomes :

dp (z) =
�
1 z � � � zp�1

�T
(20)

Now the determinant(19) is a function ofz and can be
expressed as :�

dTp
�
z�1

�
R11dp (z)

� �
dTp

�
z�1

�
R22dp (z)

�
(21)

� �
dTp

�
z�1

�
R12dp (z)

� �
dTp

�
z�1

�
R12dp (z)

�
The frequencies can then be estimated by the roots of

the polynomial (21).
Note thatdTp

�
z�1

�
Rmndp (z) (m;n = 1; 2) can be writ-

ten as :

dTp
�
z�1

�
Rmndp (z) = aT (z) cmn (22)

with

a (z) =
h
z�(p�1); z�p+2; : : : ; zp�1

iT
(23)

cmn =
�
��(p�1); ��p+2; : : : ; �p�1

�T
�l =

min(p;p�l)X
i=max(1;1�l)

Rmn(i; l+ i)

Now, the polynomial (21) becomes :

aT (z)
�
c11c

T
22 � c12c

T
21

�
a (z) = aT (z)Fa (z) (24)

so the final expression of the polynomial is given by :

P (z) = aT (z)Fa (z) = kTb (z) (25)

with b (z) andk of dimension4p� 3, defined by :

b (z) =
h
z�2(p�1); : : : ; z2(p�1)

iT
(26)

k = [�1; : : : ; �4p�3]
T

�l =

min(2p�1;l)X
i=max(1;l�2p+2)

F(i; l + 1� i)

Considering only the roots inside the unit circle, the
frequencies are estimated by the roots of the polynomial



kTb (z) nearest to the unit circle. Once the frequencies
have been estimated, the associated amplitudes can be es-
timated by the corresponding eigenvectors given by :�

ahi
avi

�
= �

"
1
e11�e22+

p
(e11�e22)

2+4je12j
2

e12

#
(27)

where

emn = aT (bzi) cmn et bzi = exp(j2� bfi) (28)

and the polarization parameters can be estimated with the
formulas(7) :

5. SIMULATION

The model proposed in [1] is adopted here for simulation.
The target is modeled by 4 scattering centers. The distances
of these scattering centers with respect to a reference point
are: 8 cm, 12 cm, 13,3 cm et 14 cm, and the corresponding

scattering matrices are :

�
1 0
0 1

�
; 10

�
cos2 10 sin 20

2
sin 20
2 sin2 10

�
;

2

�
cos2 10 sin 20

2
sin 20
2 sin2 10

�
; 3

�
sin2 10 � sin 20

2
� sin 20

2 cos2 10

�
:

The incident wave is left circularly polarized. The re-
ceived signal vector for each frequency between 2 and 18
GHz in 50MHz steps are generated. This corresponds to an
unambiguous range of 3m, and 320 samples. In order to
keep the unambiguous range near the target size, the scat-
tering data is decimated by a factor of 10 before processing.
So the new unambiguous range is 30cm, the sample number
is 32 and the four normalized frequencies are 0.2667, 0.4,
0.4433, 0.4667.
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Fig. 1. Roots of polynomialP (z) for 100 trials.

The proposed algorithm is processed for 100 indepen-
dent trials at a SNR of 5 dB. Fig. 1 shows the roots situ-

ated inside the unit circle of the polynomialP (z) (25) ob-
tained by the simulation. In Fig. 1, four roots appear clearly
near the unit circle corresponding to the 4 scattering centers.
The worst case is given by the scattering center with range
of 13.3 cm. For this scattering center, we give in Table 1
the root-mean-square error of both the distance range and
the polarization parameters estimates. The estimation of the
parameters of the others scattering centers will be better.

Table 1 : Simulation Results

d(cm) �(deg) �(deg)
Actual values 13.3 0 10
Mean values 13.30 -0.39 9.02
Standard deviation 0.09 3.98 3.36

6. CONCLUSION

In this paper, we have presented a new high resolution method
for the characterization of a radar target modeled by scatter-
ing centers, using a stepped-frequency radar system. The
proposed method allows to optimally use the information
contained in the polarization of the received wave while
keeping the calculation cost moderate. Moreover, it can
estimate the frequencies and the polarization parameters in
only one step, contrary to the method proposed in [1] where
these two parameters are estimated in two separate proce-
dures.
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