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ABSTRACT 2. DATA MODEL

Assuming that the radar target is modeledbindependent
scattering centers, let be the transmitted polarizatiop,

he received polarization andthe incident wave frequency.

he received signal of the radar target can be expressed as :

In this paper, we propose a new high resolution method with
polarization diversity for the characterization of the scat-
tering centers of a radar target, using a stepped-frequenc
radar system. The proposed method is based on the polyno-
mial rooting technique. It allows to optimally use the infor-
mation contained in the polarization of the received wave Spq(V) = Z bpqiej%”Rw (1)
while keeping the calculation cost moderate. Moreover, it ;

can estimate the range and the polarization parameters of

each scattering center in only one step. Simulation resultswhereb,,; is the complex amplitude?; the range of thé'"

are presented to show the performance of the algorithm.  scattering center.

A stepped-frequency radar system is considered in this
paper. The radar emits a series of bursts of narrow band
pulses, where each burst consists/ofpulses stepped in
frequency from pulse to pulse by a fixed frequency step size
dv. So for thent” pulse, the emitted frequency is, =
In this paper, the radar target is modeled by an array of dis-vg +ndv, withn =0,1,--- , N —1, and the received signal
crete scattering centers. Each scattering center is characters given by :
ized by its range and its complex amplitude. It is known that
the characterization of the scattering centers is equivalent to B U i R U jom
the spectral analysis problem. In section 2, we briefly revise Spa\") = Z bpgie’ Z Opqi€
this theory.

The amplitude, the phase and the polarization are needed2) can be rewritten in the following more convenient nor-
for a complete characterization of a radar target. The clas-malized manner :

sical radar system works with a single polarization, but it
is shown that the use of polarization diversity can consider- 2
ably improve the system performance. Moreover, the wave Spa(n Z Apqi®
polarization provides additional information about the radar

target. The polarization characterization of a radar target is
presented in section 3. whereR, = 55 is the well known unambiguous range.
This received signal model aIIows us to introduce the
In section 4, we present a new high resolution method normalized frequency concepf; = (Z =1,2,---,m).
with polarlzatlon diversity. This method is based on the Normalizing the sampling frequency to _’ipq( ) Can be
polynomial rooting technique. We show that this method considered as the sample at instanif a signal composed
allows a full characterization of the target by estlmatlng the of the sum ofm Comp|ex sinusoids with frequency equa|s
amplitude, the phase, the range and the polarization of they £, =
scattering centers of the radar target, and it provides also a  of coﬁrse the received signal is corrupted by a noise, so
better performance in terms of resolution power. the characterization of the scattering centers is equivalent to
Finally, some simulation results and conclusions are pre-the estimation of the parameters of a signal composed of the
sented. sum of sinusoids embedded in noise.

1. INTRODUCTION
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3. POLARIZATION CHARACTERIZATION the case of scalar signal waves where the polarization prop-
erties of received waves are ignored, very little application

The polarization properties are completely described by thecan be found in the presence of polarization diversity [1],
scattering matrix which gives the relationship between the [2]. The wave polarization diversity is however an addi-
polarization of the scattered wave and that of the incidenttional information, which can be used to improve the per-
wave. This matrix can be obtained by estimating the polar- formance of classical methods. We can note that the polar-
ization of the scattered waves for two incident waves with jzation properties have been used with success for estimat-
orthogonal polarizations. The most important point then, ing the directions of arrival of multiple plane waves with an
is the estimation of the polarization of the received wave, array of antennas [3], [4], [5]. In the following, we present
whatever the polarization of the incident wave. For estimat- a new high resolution method with polarization diversity.
ing the received wave’s polarization, it is necessary to have  Assuming that we hav& samples of the received signal

polarization diversity at the receiver allowing the reception vector(6), let's consider the two following matrices utiliz-
simultaneously of the horizontally and vertically polarized ing all the available data :

waves. Let's denote the polarization vector of the incident

wave by the following Jones vector : [ 5k, (0) spe(1) -+ spr(N —p) ]
Shr(l) Shr (2) :
Sy = 8
a=| " @ 5= | ®
. . . | sur(p—1) shr(N —1) |
In frequency domain, the received wave for an incident wave
of polarizationq can be written as : ~ _
Svr(o) Svr(]-) ot Svr(N - p)
shr(n) | _ | sna(n)  sho(n) qn :
{ 5ur(n) ] - { snm) s | ] & s, =]t @ ©)
Using(3), and(5) itis straightforward that the received sig- :gw(p -1) . Sur(N — 1)
nal vector can be expressed as : ) h
In order to exploit the information contained in the two
Shr (1) n an; | jonfin matricesS;, etS,, we propose to use the matri con-
Sur(n) ] - Z o, }e (6) structed in the following manner :
i=1 ’
wherea;,, anda,, contain the polarization information of S = [ Sh } (10)

theit" scattering center.

The wave polarization is usually represented by the po-  Accordingto the structure of the matricgés andS,, and
larization ellipse, characterized by the ellipticity angle  that of the received signd6), the matrixS can be written
(|:] < w/4) and by the tilt angle); (0 < ¢; < 7). These  as:
two parameters can be calculated from anda,, by the

. . r 'Zﬂfi(Nf ) 7
following equations [1] : Chi €’ ?
v; = arctan Havi } @) S _zm: ahiejZﬂ'fi(pfl) ahiejznfi((Nq))
a‘hi - 4 Ay, av'ejZﬂ'fi N—p
0; = arg(ay,)— arg(ap;) =t )
1 ) ) .
o= g arcsin [sin (2+;) sin (6;)] | ay, el i1 @2 (IN=1) ]
1 ; . .
¢; = < arctan[tan (2v;) cos (d;)] which can be factorized as :
Gi+5 siovi> g S_m Nal (f 11
o = {GTE o nzE =Yy (man, A () (1)
‘ pi+m si v <%,0;<0 =

with g2, (an, ay, f), dn, (f) two vectors of dimensiop

4. HIGH RESOLUTION METHOD andn, = N — p + 1 respectively :

Recently, many high resolution methods have been proposed
in order to overcome the limitations of the classical FFT .
method. While they have found successful application in g, (an, ay, f) = [ and] (f) a,dl (f) ]

d,, (f) = [1 ei2nf ... ei2n(ma—1)f ]T



It can be shown that ib > m andn; > m, the ma- so that we have
trix S is rank deficient. Moreover if; # f;,Vi # j, for
i,j = 1,2,---m, the rank of the data matri is equal to DHI,D =
the number of scattering centers Consequently, the high
resolution method principle can be applied to the mefirix
Let U; be the matrix of dimensio(2p, m) formed by
the m left singular vectors associated with the largest det [DHH,,D] - (dendp) (demdP) (19)
singular values ; an', the matrix of dimensiofi2p, 2p — HoH I
m) formed by the remainin{2p — m) left singular vectors — (4 Ri2dy) (d; Rizdy)
of the matrixS. Also letIl, = U,U¥ . The frequency Let's define the complex variable = exp(j27f), s
(range) and the polarization parameters can be estimated that the vectotl, (f) becomes :
the following minimization problem :

d’R,;d, dRi.d,

18
d"RILd, d7Ryd, (18)

and

_ T
win g5 (an, av, f) 8sp (an, av, f) (12) dp(2)=[1 z - 271 ] (20)
H
ansanf oy (an, av, f) G2p (@n, Go, f) Now the determinant19) is a function ofz and can be
This minimization requires a three dimensional search, aexpressed as :
computationally intensive procedure, which is difficult to S T
realize practically. Fortunately, the structure of the vector (d, (=") Rud, (2)) (dy (271) Razd, (2)) (21)
g2, (an, a,, f) allows us to considerably simplify this min- —(d) (z7") Riady (2)) (d) (27") Riad, (2))
imization problem.
The vectorgy, (an, a,, f) can be rewritten as : The frequencies can then be estimated by the roots of
the polynomial (21).
)y = { and, (f) ] _ { d, 0, ] { an } — Da Note thad? (') Rund, (2) (m,n = 1,2) can be writ-
aydy, (f) 0, dp || a ten as:
(13)
d? (27') Rynd, T 22
with D a matrix of dimensiori2p, 2) containing frequency p () Ronndy (2) =2t () cun (22)
information anda, a 2 dimensional vector, containing the ith
polarization information. Consequently, this factorization .
of the vectorg,, allows us to separate the frequency contri- a(z) = [z—(p—l) A ,Zp—l] (23)
bution and that of the polarization. .
AsD D =p (1) (1) ] , the minimization(12) can be Cmn = [0 (po1), Qpi2,. .-, Qp_i]
min(p,p—1)
reformulated as : a = Z Ry (i, + 1)
min afDHI,Da . afDHT,Da (14) i=max(1,1—1I)
a afDHDa  fa H ,
fa @ a ¢ paza Now, the polynomial (21) becomes :
which can be done by first minimizing the cost function rel-
ative to the frequency, and then to the vecter: a’ (z) (c11c3, —ciocs) a(z) =a’ (z)Fa(z) (24)
min | aHDH}?bDa (15) SO the final expression of the polynomial is given by :
a pa'ta
. o ) P(z) =al (z)Fa(z) =kTb (2) (25)
The minimum of(15) is given by the smallest eigen-
value of the matriXD“II, D, a Hermitian nonnegative def-  with b (z) andk of dimensiondp — 3, defined by :
inite matrix. Its minimum is zero iff anda correspond to
the true parameters of a scattering center. So the frequencies b(z) = [zfz(pq) L2(p—1) T (26)
f can be estimated, in the ideal situation, by the frequencies Y
such that : k = [, 04y 3]
det [DFI,D] =0 (16) min(2p -1,1)
[ ] o = > F(i,l +1—1)
To simplify this formula, define i=max(1,l—2p+2)
I, = g;} gw ] (17) Consi_dering only the roots inside the unit circle, th(_a
12 22 frequencies are estimated by the roots of the polynomial




kb (z) nearest to the unit circle. Once the frequencies ated inside the unit circle of the polynomi&l ) (25) ob-
have been estimated, the associated amplitudes can be etined by the simulation. In Fig. 1, four roots appear clearly

timated by the corresponding eigenvectors given by : near the unit circle corresponding to the 4 scattering centers.
The worst case is given by the scattering center with range
hi | _ 1 27 of 13.3 cm. For this scattering center, we give in Table 1
Gui | e11—eaz+y/(e11 —e22) +4[e1n|? (27) the root-mean-square error of both the distance range and
o the polarization parameters estimates. The estimation of the
where parameters of the others scattering centers will be better.
emn = a% (3) Cmn €t 5= exp(j27rﬁ) (28) Table 1 : Simulation Results
o . . d(cm) | 7(deg) | ¢(deg)
and the polarization parameters can be estimated with the Actual values 133 10 10
formulas(7) . Mean values 13.30 | 039 | 9.02
Standard deviation 0.09 | 3.98 3.36

5. SIMULATION

The model proposed in [1] is adopted here for simulation.
The target is modeled by 4 scattering centers. The distances
of these scattering centers with respect to a reference poin}
are: 8cm, 12 cm, 13,3 cm et 14 cm, and the correspondin

2 sin 20
scattering matrices are[' L0 } ,10{ ii?iow 2 ] )
2

6. CONCLUSION

n this paper, we have presented a new high resolution method
gfor the characterization of a radar target modeled by scatter-
ing centers, using a stepped-frequency radar system. The
proposed method allows to optimally use the information
contained in the polarization of the received wave while
keeping the calculation cost moderate. Moreover, it can

ceived sianal vector for each freauency between 2 and 18estimate the frequencies and the polarization parameters in
g q y only one step, contrary to the method proposed in [1] where

GHz |n_50MHz steps are generated. This corresponds to AMhese two parameters are estimated in two separate proce-
unambiguous range of 3m, and 320 samples. In order todures

keep the unambiguous range near the target size, the scat-
tering data is decimated by a factor of 10 before processing.
So the new unambiguous range is 30cm, the sample number

is 32 and the four normalized frequencies are 0.2667, 0.4, . .
0.4433. 0.4667 g [1] W.M. Steedly and R.L. Moses : "High Resolution Ex-
' T ' ponential Modeling of Fully Polarized Radar Returns”,

IEEE Trans. on AES, Vol.27, No.3, pp.459-468, May
1991.

01 sin” 10
C082 10 si11220 3 sin2 10 — sin220
si11220 sin2 10 :| ) _sin220 COS2 10 :| '
The incident wave is left circularly polarized. The re-
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