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ABSTRACT

Two-dimensional (2-D) and more generally multi-dimensional har-
monic retrieval is of interest in a variety of applications. The as-
sociated identifiability problem is key in understanding the funda-
mental limitationsof parametric high-resolution methods. Inthe 2-
D case, existing identifiability resultsindicate that, assuming sam-
pling at Nyquist or above, the number of resolvable exponentialsis
proportional to I + .J, where I isthe number of (equispaced) sam-
ples along one dimension, and .J likewise for the other dimension.
We prove in this paper that the number of resolvable exponentials
isroughly I.7/4, almost surely. Thisis not far from the equations-
versus-unknowns bound of I.J/3. We then generalize the result to
the N-D case for any N > 2, showing that, under quite genera
conditions, the number of resolvable exponentials is proportional
to total sample size, hence grows exponentialy with the number
of dimensions.

1. INTRODUCTION

The problem of harmonic retrieval is commonly encountered un-
der different disguises in diverse applications in the sciences and
engineering. Although one-dimensional harmonic retrieval ismost
common, many applications of multi-dimensional harmonic re-
trieval can be found in radar (e.g., [3, 6] and references therein),
and wireless channel sounding (e.g., [2]), wherein one is inter-
ested injointly estimating several multipath signal parameterslike
azimuth, elevation, delay, and Doppler, al of which can often be
viewed as or transformed into frequency parameters.

A plethora of one-dimensional as well as multi-dimensional
harmonic retrieval techniques have been developed, ranging from
non-parametric Fourier-based methods, to modern parametric meth-
odswhich are not bound by the Fourier resolution limit. Inthehigh
singal-to-noiseratio (SNR) regime, parametric methodswork well
with only alimited number of samples.

One important issue with parametric methods is to determine
the maximum number of harmonics that can be resolved for a
given total sample size; another is to determine the sample size
needed to meet performance specifications.

Identifiability-imposed bounds on sample size are often not
the issue in time series analysis, because samples are collected
along the temporal dimension (hence “inexpensive’), and perfor-
mance considerations dictate many more samples than what is
needed for identifiability. The maximum number of resolvable
harmonics comes back into play in situations where data samples
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aong the harmonic mode come at a premium, e.g., in spatial sam-
pling for direction-of-arrival estimation using a uniform linear ar-
ray (ULA), inwhich case one can collect temporal samplesto meet
performance requirements.

Determining the maximum number of resolvable harmonics
is a parameter identifiability problem, whose solution for the case
of one-dimensional harmonics goes back to Carathéodory [1]; see
aso [8]. In two or higher dimensions, the identifiability prob-
lem is considerably harder, but also more interesting. The reason
is that, in many applications of higher-dimensional harmonic re-
trieval, one is constrained in the number of samples that can be
taken along certain dimensions, usualy due to hardware and/or
cost limitations. The question that arises is whether the number of
samples taken along any particular dimension bounds the overall
number of resolvable harmonics or not.

Essentially al of the work to date on identifiability of multi-
dimensional harmonic retrieval deals with the 2-D case (e.g., [4,
6]), and provides sufficient identifiability conditions that are con-
strained by min(Z, J), where I denotes the number of samples
taken along one dimension, and J likewise for the other dimen-
sion. To the best of our knowledge, the most relaxed condition
to date has been derived in [7], which shows that identifiability is
determined by the sum I + J. The result of [7] is deterministic,
in the sense that no statistical assumptions are needed aside from
the requirement that the frequenciesalong each dimension are dis-
tinct. However, the sufficient condition in [7] improves with the
sum of I, J, whereas total sample size grows with the product of
I, J. Thisindicatesthat significantly stronger results are possible.

The focus of this paper is the derivation of stochastic identifi-
ability resultsfor 2-D harmonic retrieval, that fulfill this potential.
Our tools allow us to treat the general case of multi-dimensional
complex exponentials that incorporate real exponential compo-
nents (e.g., decay rates). We thus make no distinction between the
terms harmonic and exponential. We show that if the number of
2-D harmonicsisless than or equal to roughly 1.J/4, then, assum-
ing sampling at the Nyquist rate or above, the parameterization
(including the pairing of parameters) is P, (C*F")-almost surely
unique, where F' is the number of harmonics and P, (C*") isthe
distribution used to draw the 2 F complex decay/frequency param-
eters, assumed continuous with respect to the Lebesgue measure
in C**'. We then generalize thisresult to the N-D case.

Therest of paper is organized asfollows. Section 2 establishes
notation and preliminaries. Section 3 summarizes an earlier deter-
ministic identifiability result, while section 4 devel ops some tools
needed to prove our main stochastic identifiability result in sec-
tion 5. Thisresult is subsequently generalized to the N-D casein
section 6. Conclusions are drawn in section 7.



2. NOTATION AND SOME PRELIMINARIES

C denotes the complex numbers. Matrices (vectors) are denoted
by boldface capital (lowercase) letters. We do not follow the usual
convention of using i or j to denote v/—1; instead we explicitly
write 1/—1 when needed, and use i (j) as row (respectively, col-
umn) index, I (J) as row (respectively, column) size, in accor-
dance with common practice in matrix algebra.

F denotes the number of harmonics, and f € {1,--- ,F}is
used as an index (notethat f isnot frequency in Hz). A sum of F
2-D exponentials can be written as

F
T = Z Cfa}_lbic_l,
F=1

wherecy,af, by € C.

The rank of a matrix (2-way array) A is the smallest num-
ber of rank-one matrices needed to decompose A into a sum of
rank-one factors. Each rank-one factor is the outer product of
two vectors. Matrix rank can be equivalently defined as the max-
imum number of linearly independent columns (or rows) that can
be drawn from A. Wewill usera to denote therank of A.

The Kruskal-rank or k-rank of a matrix A (denoted by ka)
isr if every r columns of A are linearly independent, and either
A hasr columnsor A containsaset of r + 1 linearly dependent
columns. The k-rank of A is therefore the maximum number of
linearly independent columns that can be drawn from A inan ar-
bitrary fashion. Note that k-rank is generically asymmetric: the
k-rank of amatrix need not be equal to the k-rank of its transpose.
k-rank is always less than or equal to rank.

Anmx p Vandermonde matrix with generatorsa1, a2, - - - , ap
€ Cisgivenby
1 1 1
a1 a2 Qp
v | o a3 a?
ay -1 (o' -1 a, -1
Let
A = [ ai --- a; a, ] ,
B=[by - b; b, ],

be two matrices with common number of columns (r). The Khatri-
Rao (column-wise Kronecker) matrix product of A and B is de-
fined as

AOB:=[ai®b; a; ®b; a,®b, |,

wherea; ® b; denotes the Kronecker product of a; and b;.

3. DETERMINISTICIDENTIFIABILITY

We will make use of the following result.

Theorem 1 (Deterministic identifiability of N-dimensional har-
monicretrieval [ 7]) Given asumof F' exponentialsin N-dimensions

F N
. R in—1
Tiy, iy = cf Afn >
f=1 =1

forip,=1,---, I, >2,n=1,---  N,withcy € Canday,, €
Csuchthatay, » # afyn, Vfi # fo andall n, if

N
> L >2F+(N-1),

n=1

then thereexist unique (af,n, n=1,--- ,N; ¢f), f=1,--- ,F
that give rise to z;, ... s, . If an additional M non-exponential
dimensions are available,

F N M
o in=1 TT br . -
Ly, iNLd1s M = cf asn frmsjm s
f=1 =1 m=1

for jm = 1,-+-,Jm > 2, m = 1,--- M, with by m1 =
1, Vf, m by convention, then uniqueness (including the associ-
ated component vectors along non-exponential dimensions) holds
provided that

N M
> L+ Y kgem >2F+(N+M—1),

n=1 m=1

where B(™) denotes the J,,, x F matrix with (j,., f) element
bfm,jm -

4. ON RANK AND K-RANK OF THE KHATRI-RAO
PRODUCT

In order to improve Theorem 1, we need to find a sufficient con-
dition under which the Khatri-Rao product of two Vandermonde
matricesisfull k-rank. We can show that, given any Vandermonde
matrix A, we can alwaysfind another Vandermonde matrix B such
that the Khatri-Rao product A © B is rank-deficient. Therefore,
we cannot expect to find separable deterministic conditions on the
generators of A, B to guarantee that A © B hasfull rank. Other
researchers have noted that the Khatri-Rao product appears to ex-
hibit full rank in essentially all cases of practical interest [9], but
no rigorous argument has been given to justify this observation to
date. The following two results settle this issue.

Theorem 2 For a pair of Vandermonde matrices A € C'*¥ and
B e C/*F

race = kaos = min(IJ,F), P:(C**)—as., (1)

where P (C*") is the distribution used to draw the 2F complex
generators for A and B, assumed continuous with respect to the
Lebesgue measure in C*7.

Proof: The general case can be reduced to the IJ = F case. If
IJ < F, it suffices to prove that the result holds for an arbitrary
selection of I.J columns; if IJ > F, then it suffices to prove
that the result holds for any row-reduced square sub-matrix. When
IJ = F, full rank and full k-rank can be established by showing
that the determinant of A ® B isnonzero. Define

H(ala"' a/BF) :det(A(ala"' aaF)QB(/Bla"' 3ﬂF))



H is apolynomia in 2F variables, hence analytic. In order to
establish the desired result, it suffices to show that H is non-
trivial. This requires a “generic’ example, that works for any
1, J, F. This can be constructed as follows. For any given I, J, F
with2 < 7T < Fand2 < J < F,IJ = F, define the
generators oy = eV F /U and gy = eV F U for
f=1,---, F. It can be verified that, with this choice of genera-
torsfor A and B, A ® B isitself a Vandermonde matrix with gen-
erators (1, eV~ F ,--- eV~ F F=1) and therefore full rank.
Thisshowsthat H(a1,- -+ ,ar, b1, -+, Br) isanon-trivial poly-
nomial in C*”, hence a non-trivial analytic functionin C**'. By
the fact that the zero set of a non-trivial analytic function has
zero Lebesgue measure (e.g., [8](p.268), and aso [5] for asim-
ple proof), H(a1, - ,ar,B1, -+ ,Br) iS NON-zero amost ev-
erywhere, except for a measure zero subset of C*¥. O
Asan almost direct by-product, we obtain:

Corollary 1 For apair of matrices A € C"** and B € C’*¥,

PL((C(H'J)F) —a.s., (2

raeB = kaos = min(IJ, F),

where P (CY+F) isthe distribution used to draw the (I + J) F
complex elements of A and B, assumed continuous with respect to

the Lebesgue measure in C+F

The proof of Corollary 1 can be found in [5]. Equipped with these
results, we proceed to address the main problem of interest herein.

5. ALMOST SURE IDENTIFIABILITY OF 2-D
HARMONIC RETRIEVAL

Proposition 1 ! Given a sumof F' 2-D exponentials

i = Zcfal v, &)

for: = 1,.. I>4and]_1 ,J > 4, the parameter
triples(af,bf,cf) f=1,--- F are PL(CZ’F) -as. uniqué?,
where P, (C*") isthe disIributlon used to draw the 2F complex
exponential parameters (as,bs), f =1 , F', assumed contin-
uous with respect to the Lebesgue measure in C*', provided that
there exist four integers, I1, I, Ji, J2 such that

I—I1—I2+min(I1J1,F)+min(IgJ2,F)ZZF, (4)

subject to

I +1, < I, Ji+J=J+ 1, min(Il,Ig,Jl,J2) > 2.

©)
Proof: We first define a5-way array with typical element

Tiy,iz,i3,j1,d2 *= Lig+ig+izg—2,j1+j2—1
F
_ i1t+ig+izg—1—1-17j1+j2—1-1
= E cray by
f 1

= Zc,wa

1The result holdstrue if we switch I and J.

2We assume throughout that sampling is at the Nyquist rate or higher, to
avoid spectral folding. This allows us to restrict attention to discrete-time
frequenciesin (—r, 7).

-1 12 1 13 leI lb]2 1

whereio = 1,--- I > 2,andjg = 1,--- ,Jg > 2,fora =
1,2,3, 8 = 1,2. Sincemin(I, J) > 4 has been assumed in the
statement of the proposition, such extension to 5 ways is always
feasible. Define matrices
ia— IoXF ip—1 Jgx F

Ao =(ap™!) €Cl*F, By = (b ) e C7*F.
The next step isto nest the 5-way array 7 into athree-way array
by collapsing two pairs of dimensions as follows

Big kel 1= Tp [ L Tig k(T 111l ([ 1-1)72
rd1-1 rh1-1
=D eragt e e x
f=1
BT ET-D -1 1= AT 101
A xby by
o1 2511 k(11011
:Zcha}3 1afJ1 by N T x
f=1
[451-1 1=([F1-1)J2—1
Xag by

F
=Y craf i seuy,
f=1

fork=1,--- , I 1,l=1,--- ,Isz,Withdk,f and el s given
by

f T1-1 k= (r& T1-1J1-1 TE1-1 1—([ - 5 1~ 1)J2—1
di,f = by el f 1= af"2 by

Define matrices
= (dis) € CVPF B = (e15) € C272%F
D and E are nothing but
D=A,0B;, E=A;0B;

Since As is Vandermonde, Theorem 1 can be invoked to claim
uniqueness, provided

Is+kp +kg >2F+3—1. (6)

Notethat for any particular ¢s, k and , the product Cfa?’ldk,fel,f
isequal to Cfa;_lbfc_l with the following choice of 7 and j:

. k l
1213+[J—1]+[J—21—2

= k= (1= Dh+1- (1= DR -1

Asis, k andl span their range, the corresponding ¢ and j span their
respective range. It follows that uniqueness of the F' rank-one 3-
D factors cfaj?*ldk rel,¢ is equivalent to uniqueness of the F
rank-one 2- Dfactors(:faf ' f =1,---, F. Therefore, the

rank-one factors cfaj, 1yt and hence the triples (af,bs,cy),
f =1,---,F, are unique provided that (6) holds true. Invok-
ing Theorem 2, almost sure uniqueness holds provided there exist
integers, I, I», Is, J1, J» > 2 such that

Is + min(I1J1, F) + min(l2J2, F) > 2F + 2,



subject to®

Li+L+Izi=1+4+2 Ji+Jo=J+1,
min(Il,I2,I3,J1,J2) Z 2.

Setting Is = I + 2 — I; — I, weobtain
I—-1 — I + min(I1 J1, F) + min(IzJ2, F) > 2F,
subject to
L+ L<I, Ji+Jo=J+1 min(l, I, Ji,J2) > 2,

and the proof is complete. O

5.1. Main 2-D result

Theorem 3 “ Given a sumof F 2-D exponentials
F . .
Ti; = Zc]caq‘f_lbifl, @)
f=1

fori =1,...,I >4,andj = 1,...,J > 4, the parame-
ter triples (af, bs,cf), f = 1,--- , F are P.(C*")-as. unique,
where P (C*F) is the distribution used to draw the 2F complex
exponential parameters (a¢,by), f = 1,--- , F, assumed contin-
uous with respect to the Lebesgue measure in C**', provided that

F<13I05] ©

Proof: If I iseven, pick Iy = I, = L, otherwise, pick I; = 5%
and I, = % (thereby satisfying condition (5)). If J iseven, pick
Ji = %2 and J, = Z£2, otherwise, let Jy = J» = ZFL (hence
satisfying condition (5)).

Once we pick four integers following the above rules, condition
(8) assures that inequality (4) holds for those particular integers.

Invoking Proposition 1 completes the proof. O

Remark 1 Itisinteresting to notethat equations-versus-unknowns
considerations indicate a bound of 1.7/3, without taking the pair-

ing issue into consideration. To see this, note that each of the '

2-D exponential components is parameterized by 3 complex pa-

rameters, and a total of I.J complex data points are given. If

the equations-versus-unknowns bound isviolated, then theimplicit

function theorem indicates that infinitely many ambiguous solu-

tions exist in the neighborhood of the true solution.

6. ALMOST SURE IDENTIFIABILITY OF N-D
HARMONIC RETRIEVAL

We now state our result for the N-D case. The proof is omitted
due to space limitations, but is included in the associated journal
paper [3].

Theorem 4 5 Given a sumof F N-D exponentials

F

N
Tiy e iy = Zc,: H a%:l, 9

f=1 n=1

3Thefirst two conditions assure that we do not index beyond the avail-
able data sample.

4The Theorem holdstrueif I and J are switched.

5The Theorem holds true for any permutation of {I, }2_,

fori, = 1,---,I, > 4,n = 1,--- | N, the parameter (N +
1)-tupleﬁ (af‘l,-- . ,af‘N,cf), f = 1,- B ,F, are PL((CNF)-
a.s. unique, where P (CVF) is the distribution used to draw the
NF complex exponential parameters (a1, - ,afn), for f =
1,--- , F, assumed continuous with respect to Lebesgue measure
inCN*", provided that

EIESRIEY (1)

7. CONCLUSIONS

We have derived stochastic identifiability resultsfor 2-D and N-D
harmonic retrieval. The associated identifiability conditions are
the most relaxed to date. The sufficient condition for the 2-D
case is not far from equations-versus-unknowns considerations -
hence additional improvements, if any, will be marginal. In the
N-D case, the bound is still proportional to total sample size -
hence grows exponentially in the number of dimensions - but de-
viates from the equations-versus-unknowns bound. This indicates
that the sufficient condition provided herein could be improved in
higher dimensions.
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