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ABSTRACT

We present in this paper a new direction finding algorithm
for non circular sources that is based on polynomial root-
ing. Due to the non circularity characteristics of the imping-
ing sources, the proposed method is able to handle more
sources than sensors. By using a polynomial rooting in-
stead of a searching technique the method is limited to lin-
ear uniformly spaced arrays. However, polynomial rooting
reduces significantly computation cost and enhances reso-
lution power. Computer simulations are used to show the
performance of the algorithm.

1. INTRODUCTION

The problem of estimating the direction-of-arrival (DOA)
of narrowband sources from sensor array data has received
considerable attention. This estimation can be obtained
from an array of antennas mounted on vehicles, ships, air-
crafts, satellites, and base stations. The satellite commu-
nications systems of the future generation also require the
knowledge of DOA to supply different functions, such as
sorting and routing of communications towards remote mo-
biles, handover management, or geographic localization of
terminals. In [1], beamforming and DOA estimation meth-
ods have been suggested for mobile communications sys-
tems. Due to the today’s rapidly growing wireless mobile
communications market, the mobile network operators have
to increase the capacity of their network. Nowadays, we
need systems capable of receiving and separating more and
more impinging signals.

Moreover, many studies about complex random vari-
ables and signals have been led, in which a great inter-
est for the non circular signals has been shown as in [2]
and [3]. Actually many systems now deal with non circu-
lar incoming signals, as in telecommunication or satellite
systems where amplitude modulated (AM) or binary phase-
shift keying (BPSK) modulated signals are often used.
Galy proposed in [4] a MUSIC-like algorithm (called NC-
MUSIC) dealing with such modulated signals. We present
in this paper a Root-MUSIC-like (Root-MUSIC [5]) direc-
tion finding algorithm designed for non circular signals. The
proposed algorithm is restricted to linear uniformly spaced

arrays, but has the distinct advantage over the multiple sig-
nal classification (MUSIC) algorithms [6] and [4] that it
does not require a search over parameter space. Instead, our
algorithm requires finding the roots of a polynomial, which
is very simple and has a low computation cost.

In Section 2, the problem is formulated. By giving the
model of signals and a description of the general charac-
teristics of a non circular random variable, the array data
model extended to the case of non circular emitting sources
is then provided. In Section 3, the proposed direction find-
ing procedure is presented. Section 4 includes simulation
results that show the performance of the proposed method.
Finally, Section 5 contains our conclusions.

2. PROBLEM FORMULATION

In this paper we consider a uniform linear array ofm sen-
sors. The distance between two adjacent antennas is noted
Æ. Supposed electromagnetic waves impinging on the ar-
ray from angular directions�k, k = 1; : : : ; d . The incident
waves are assumed to be plane waves, as generated from far-
field point sources. Furthermore, the signals are assumed to
be narrowband.

2.1. Array data model

The global signal received by the array from the emit-
ting narrowband sources is assumed to obey the following
model:

z(t) = As(t) + n(t) (1)

where the vectors(t) = [s1(t); : : : ; sd(t)]
T contains tem-

poral signals transmitted by thed sources, the vectorn(t)
represents spatially white noise.(:)T denotes the transpose
operator. The matrixA = [a(�1); : : : ; a(�d)] contains the
steering vectors of the impinging sources. The steering vec-
tor of thekth source is then:

a(�k) = [1; e
j 2�Æ
�

sin(�k); : : : ; e
j 2�Æ
�

(m�1) sin(�k)]
T (2)

where� is the wavelength of the impinging signal. Assum-
ing that noise and signals are uncorrelated and that noise is



spatially white, data model (1) allows us to write the covari-
ance matrix of the array measurements as:

R = E[z(t)z
H
(t)] = RS + �

2
I (3)

with

RS = A�SA
H (4)

where

�S = E[s(t)s
H
(t)] (5)

is the emitted signal covariance matrix and�2
I is the noise

covariance matrix.E[:] denotes expectation and(:)H de-
notes the complex conjugate transpose operator.

2.2. Non circular signals

Circularity is an important property of random variables
which is depicted in [2] and [3]. The concept of circularity
directly comes from the geometrical interpretation of com-
plex random variables.

Here we use only the first and the second orders statisti-
cal properties of the signals. The definition of circularity for
order 2 is very simple. For a complex random variable,x,
the only moments to be considered are the meanE[x], the
covarianceE[xx

�

], and the elliptic covarianceE[xx]. A
complex random variable is said to be circular at the order
2, if both the mean and the elliptic covariance equal zero.
The second order statistical characteristics ofx are so con-
tained in its covarianceE[xx

�

]. Circularity is a common
hypothesis for narrowband signals analysis, but we can eas-
ily find numerous non circular signals, like AM or BPSK
modulated signals.

In our study, we assume that sources emit non circular
signals. Using this assumption, we can give as in [4] an ex-
tension of the classical model (1). By concatenating the ar-
ray measurements and their conjugate components, the fol-
lowing observation vector can be written:

znc(t)=

�
z(t)

z
�

(t)

�
=

�
A 0

0 A
�

��
s(t)

s
�

(t)

�
+

�
n(t)

n
�

(t)

�
(6)

where(:)� denotes the complex conjugate operator. Then,
when sources emit AM or BPSK modulated signals, we can
form the extended covariance matrix of the observations as:

Rnc = E[znc(t)z
H
nc(t)]

=

�
A

A
�

	
�

�
�S

�
A

A
�

	
�

�H
+ �

2
I (7)

where	 is a diagonal matrix, and each diagonal element
is a natural phaseej k relative to an impinging source. By
eigendecomposition, ad-dimensional signal subspace and

an orthogonal (2m � d)-dimensional subspace can be de-
termined. This extended model allows to increase the ob-
servation space while keeping the dimension of the signal
subspace unchanged. The extended steering vector is then:

b(�;  ) =

�
a(�)

a
�

(�)e
�j 

�
(8)

3. DOA ESTIMATION

The extended covariance matrix (7) takes the following
form Rnc = U�U

H by eigendecomposition. Assuming
that the2m diagonal elements of� have been arranged in
decreasing order, the well-ordered eigenvalues are used to
determined, the number of sources. Onced is known, un-
der the assumption that the sources are non circular, we then
estimate the DOA.

According to the orthogonality between eigenvectors as-
sociated with the2m � d smallest eigenvalues ofRnc and
the theoretical steering vectors, DOA estimates are obtained
by minimizing the following cost function:

J(�;  ) = b
H
(�;  )UnU

H
n b(�;  ) (9)

where the2m� d eigenvectors ofRnc spanning the signal
nullspace form the matrixUn. The cost function can be
written as:

J(�;  ) = q
H
Mq (10)

where

q =

�
1

e
�j 

�
(11)

andM is a (2� 2) matrix

M =

�
a
H
(�)Un1U

H
n1a(�) a

H
(�)Un1U

H
n2a

�

(�)

a
T
(�)Un2U

H
n1a(�) a

T
(�)Un2U

H
n2a

�

(�)

�
(12)

whereUn1 andUn2 are two submatrices of the same di-
mension and:

Un =

�
Un1

Un2

�
(13)

It can be shown [4] thatU�

n2U
T
n2 = Un1U

H
n1. Thus, the

two diagonal elements of the matrixM are equal. Note also
that the two non diagonal elements ofM form a reciprocal
conjugate pair.

The minimum of the quadratic form in (10) over� and
 is given by the smallest eigenvalue of the matrixM. This
eigenvalue is always nonnegative since the quadratic form is
nonnegative. When� is a true DOA, the smallest eigenvalue
ofM is equal to zero, and then the determinant of the matrix
M equals zero too.



Let’s now define the complex variablez,

z = e
j 2�Æ
�

sin(�) (14)

so thata(�) can be written as

a(z) =
�
1; z; z

2
; : : : ; z

m�1
�T

(15)

Then the matrixM is a function ofz. We estimate the
DOAs by finding the values ofz such that

detfMg = 0 (16)

The left side of (16) is a polynomial ofz. The DOA esti-
mation problem is then transformed into a polynomial root-
finding problem that can be solved using computationally
efficient root-solving algorithms.

The polynomial ofz can take the following form:

detfMg = m
2
1 �m2 m3 (17)

where8<
:

m1 = a
T
(1=z)Un1U

H
n1a(z)

m2 = a
T
(1=z)

�
Un2U

H
n1

�H
a(1=z)

m3 = a
T
(z)Un2U

H
n1a(z)

(18)

Thereforem1 is a polynomial inz whoselth coefficient
is given by the sum of the elements of thel th diagonal of
Un1U

H
n1, wherel = �m + 1 indicates the lowest diag-

onal andl = m � 1 indicates the highest diagonal. Let
c = [c1; : : : ; c2m�1]

T be the column vector of the coeffi-
cients of the polynomialm1. Hence

m1 =

2m�1X
i=1

ciz
i�m (19)

The coefficients of the polynomialm2
1 equal the sums of

the antidiagonal elements of the matrixccT . Let s =

[s1; : : : ; s4m�3]
T be the vector containing these4m � 3

coefficients. We obtain

m
2
1 =

4m�3X
i=1

siz
i�(2m�1) (20)

The matrixUn1U
H
n1 being an hermitian matrix, the ele-

ments of the vectorc have the symmetry propertyc i =

c
�

2m�i. SinceccT is a symmetrical matrix, the coefficients
of the polynomialm2

1 keep the same property of symmetry
si = s

�

4m�2�i.
In the same way,u is a column vector containing the sum
of the2m�1 antidiagonal elements of the matrixUn2U

H
n1.

Then

m2 =

2m�1X
i=1

u
�

i z
�(i�1) (21)

m3 =

2m�1X
i=1

uiz
i�1 (22)

andp is the column vector whose elements are the sum of
the diagonal elements of the matrixu�uT . Hence

m2 m3 =

4m�3X
i=1

piz
i�(2m�1) (23)

The matrixu�uT being an hermitian matrix, the coefficients
of the polynomialm2 m3 also have the property of symme-
try pi = p

�

4m�2�i.
Equation (16) can now be written:

detfMg =

4m�3X
i=1

�
si � pi

�
z
i�(2m�1)

= 0 (24)

The roots of the polynomialdetfMg can be computed us-
ing any polynomial root-finding algorithm. The DOA esti-
mates are obtained using (14):

�k = arcsin

�
�

2�Æ
arg(zn)

�
(25)

wherezn represents one of thed roots selected for DOA
estimation. Due to the symmetry property of the polyno-
mial coefficients, roots appear in reciprocal conjugate pairs
zi and1=z�i . In each pair one root is inside the unit circle
while the other is outside the unit circle (the two roots coin-
cide if they are on the unit circle). Either one of the two can
be used for DOA estimation, since they have the same angle
in the complex plane. We can decide to use the roots inside
the unit circle. We then select thed roots that are nearest to
the unit circle as being the roots corresponding to the DOA
estimates.

Note that the degree of the polynomialdetfMg is
4m� 4 (4m� 3 coefficients). Hence the number of roots is
4m� 4, and since roots appear in reciprocal pairs, the pro-
posed procedure allows to determine until2(m�1) possible
DOA. This has to be emphasized since the number of DOA
estimates can be larger than the number of sensors. This
characteristic is due to the extended data model provided by
the non circularity property of the sources.

It is also of interest to estimate the natural phase k of
an impinging signal, as well as the DOA. Recalling that the
minimum of the quadratic form in (10) is obtained when
this form is equal to the smallest eigenvalue ofM, then k
is given by the eigenvectorq associated to this eigenvalue.
The smallest eigenvalue being equal to zero, and the corre-
sponding DOA�k being known, we then obtain easily the
expression of the associated eigenvectorq:

q =

"
1

�
a
T (�k)Un2U

H

n1
a(�k)

aH(�k)Un1U
H

n1
a(�k)

#
(26)

Comparing equations (11) and (26), we determine the natu-
ral phase corresponding to the DOA�k as:

 k = � � arg

�
a
T
(�k)Un2U

H
n1a(�k)

�
(27)



4. SIMULATION RESULTS

In this section we present some simulation results that il-
lustrate the performance of the proposed algorithm. We
also compare simulation results of the proposed procedure
with those of the NC-MUSIC method [4] and the classical
MUSIC algorithm [6]. Consider a uniform linear array of
6 sensors separated by a half wavelength of the incoming
narrowband signals. The performance of the estimators in
each of the simulations below is obtained from 100 Monte-
Carlo simulations, by calculating the root-mean-square er-
ror (RMS Error) of DOA estimates. Sources in presence
emit BPSK modulated signals with rectangular pulse shape.
The number of data samples taken at each sensor output is
200.

Figure1(a) shows how the DOA separation affects the
performance of the estimators. Two uncorrelated BPSK
signals are generated with signal-to-noise ratio (SNR) of
10 dB. The angular separation between the sources is varied
from 1

Æ to 10
Æ. As expected the DOA estimation accuracy

improves with increasing angular separation. When sources
become close, the classical MUSIC fails in separating the
two incoming signals, and the proposed algorithm performs
better than the two others. For well separated sources, there
is no difference between the performance of our polynomial
root-finding technique and NC-MUSIC.

Figure1(b) shows behaviours of the estimators when
SNR is varied from 0 dB to 30 dB. Two equal power un-
correlated BPSK signals3Æ apart impinge on the linear uni-
formly spaced array of 6 sensors. Performances obtained
with procedures taking non circularity of the sources into
account are always better. Since the NC-MUSIC algorithm
and the proposed polynomial root-finding algorithm use the
same extended data model, they perform identically in easy
case (high SNR). However for low SNR the proposed pro-
cedure provides more accurate DOA estimates.

Finally, when the classical MUSIC or the NC-MUSIC
algorithm is used to estimate DOA, one must search over the
set of all possible arrival angles to obtain the estimates. The
proposed procedure avoids the problem of search entirely,
and the computation cost is then much lower.

5. CONCLUSION

In this paper we have described a computationally efficient
procedure for DOA estimation. By assuming that incoming
signals are AM or BPSK modulated signals, the algorithm
uses the non circularity property of the signals to improve
the estimations performance. Moreover by using a polyno-
mial root-finding, the proposed algorithm does not require
an explicit search procedure, and hence reduces consider-
ably the computational requirements.

The performance of the proposed algorithm was evalu-
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Fig. 1. (a) RMS Error versus DOA Separation and (b) RMS Error
versus SNR for : (solid line) proposed procedure, (dashed line)
NC-MUSIC and (dotted line) Classical MUSIC.

ated by computer simulations, and was compared with that
obtained by two other techniques. In these numerical com-
parisons, it can be seen that the proposed method exhibits
better estimation performance. We have then verified the
expected benefits due to the non circularity property.

The current approach may also be extended to deal with
other kinds of signals. A study is in progress in order to
exploit this issue.
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