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ABSTRACT

We compare single user digital Multi-Carrier Spread Spec-
trum modulation with Direct Sequence Spread Spectrum in the
presence of frequency-selective multipath fading. We derive
closed-form expressions for the bit error probability and show
that MC-SS is more robust to multipath fading than is DS-SS.

1. INTRODUCTION

The increasing interest in and applications of direct sequence
spread spectrum (DS-SS) technology stem from its robustness
to fading, its anti-interference capability, and the potential for
(even uncoordinated) multiple access. With a wide bandwidth
and thus a short chip period, multiple paths can be resolved
with DS-SS transmissions and a RAKE receiver can be used
to mitigate fading and improve system performance [6].

An alternative approach to combat frequency-selective
multipath is multicarrier modulation. Multi-Carrier Spread-
Spectrum (MC-SS) [7] and the corresponding multiple access
scheme: Multicarrier (MC) CDMA [10] has gained increasing
popularity in recent years. By exploiting multiple carriers and
a narrow band DS waveform on each subcarrier, it has been
shown that multicarrier DS CDMA outperforms single carrier
CDMA for wideband transmissions in the presence of narrow
band interference [4].

Although most existing MC approaches rely on analog car-
rier modulations, digital implementations through FFTs are
also available [1]. Thanks to the rapid development of digi-
tal devices and digital signal processing (DSP) technologies,
the Digital to Analog (D/A) and Analog to Digital (A/D) con-
verters are being pushed closer to the transceiver’s end. Start-
ing from a discrete-time equivalent model, we investigate the
performance of digital MC-SS and compare it with DS-SS.
The main contributions of this paper are the novel results on
performance analysis of digital MC-SS in the presence of mul-
tipath. Further results on the performance analysis of digital
MC-SS in the presence of narrow band interference (NBI) and
the presence of both NBI and multipath may be found in [11].

2. UNIFYING TRANSCEIVER MODELS

The diagram in the upper part of Fig. 1 describes the discrete-
time baseband equivalent model of an MC-SS system. The
length-N symbol periodic digital spreading codecmc :=
[cmc(0); : : : ; cmc(N � 1)]T spreads theith information sym-
bol s(i). The resulting sequencecmcs(i) is then IFFT pro-
cessed to obtain theN � 1 vectorFHNcmcs(i), whereFN is
theN �N FFT matrix with(m;n) entry(1=

p
N)e�j2�mn=N

andH denotes Hermitian transpose.
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Fig. 1. Equivalent model: MC-SS (upper) and DS-SS (lower)

To avoid channel-induced inter symbol/block interference
(ISI/IBI), we replicate the lastP � N entries (Cyclic Prefix
(CP)) of the vectorFHNcmcs(i) at the front to form theP �
1 transmitted blocku(i), as in conventional OFDM systems,
e.g., [1]. The received signal, after conversion to baseband and
receive filtering, is sampled at the chip rate, to yield

x(n) =
LX
l=0

h(l)u(n� l) + �(n); (1)

whereh(`) is the overall channel (transmit and receive filters,
and propagation channel),�(n) is the filtered additive Gaus-
sian noise (AGN), andL is the maximum order of the FIR
channel. To avoid ISI, the CP length should be larger than the
channel order:P �N � L. To avoid bandwidth overexpan-
sion, we choose the smallest block lengthP = N + L here.

To convert (1) from a serial to a convenient matrix-vector
form, we define theP � 1 vector: x(i) := [x(iP ); x(iP +
1); : : : ; x(iP + P � 1)]T (likewise for�(i)), and theP � P
Toeplitz channel matricesH0;H1 with (k; l)th entriesh(k�l)
andh(k � l + P ), respectively. Sinceh(l) = 0;8l 62 [0; L],
andP = N + L, we can write (1) as:

x(i) =H0u(i) +H1u(i� 1) + �(i); (2)

where the second term represents IBI.
At the receiver, the CP is removed by dropping the first

P � N elements ofx(i), thus eliminating IBI. After the CP
removal and FFT processing, we have

ymc(i) = FN ~HFHNcmcs(i) +FN �w(i); (3)

where~H is the resulting channel matrix and�w(i) is theN �1
truncated noise vector:�w(i) := Rcp�(i), whereRcp :=
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[0N�(P�N); IN ] is the CP-removing matrix. Matrix~H is an
N � N circulant matrix with(k; l)th entry given byh((k �
l)modN). Because (I)FFTs diagonalize circulant matrices, the
circulant matrix~H can be decomposed as~H = FHND(~h)FN ,
where~h := [H(exp(0)); H(exp(j2�=N)); : : : ; H(exp(j2�(N�
1)=N))]T whose entries are the channel frequency response
H(z) :=

PL
l=0 h(l)z

�l evaluated at the subcarrierszk =

exp(j2�k=N), andD(~h) := diag(~h) denotes a diagonal ma-
trix with the (i; i)th entry being theith element of the vector
~h; see [9] for more details. Therefore, we can rewrite (3) as:

ymc(i) = D(~h)cmcs(i) +FN �w(i) : (4)

With D(cmc) := diag(cmc), we verify thatD(~h)cmc =

D(cmc)~h. Defineh := [h(0); � � � ; h(L)]T andV as the
N � (L + 1) Vandermonde matrix formed by the firstL + 1

columns of
p
NFN ; thus,~h = Vh represents a scaled FFT

operation in matrix form. We then can rewrite (4) as:

ymc(i) = D(cmc)Vhs(i) +FN �w(i): (5)

Since the spreading sequence is binary, i.e.,cmc has entries
�1, it holds thatDH(cmc)D(cmc) = IN , and after multiply-
ing (5) withDH(cmc) we arrive at

DH(cmc)ymc(i) = Vhs(i) +DH(cmc)FN �w(i): (6)

Our primary goal is to compare the ability of MC-SS and DS-
SS to combat multipath fading; therefore, we now describe the
discrete time baseband model of DS-SS that is depicted in the
lower part of Fig. 1.

Without FFT and CP insertion at the transmitter, the trans-
mitted block in DS-SS isuds(i) = cdss(i), wherecds :=
[cds(0); cds(1); : : : ; cds(P � 1)]T is a P � 1 vector having
the same block length as the MC-SS system (the upper part of
Fig. 1). Replacingu(i) in (2) byuds(i), and withRcp elimi-
nating IBI as in (3), we arrive at:

yds(i) = RcpH0cdss(i) + �w(i): (7)

BecauseH0cds represents in matrix-vector form the linear
convolution betweenh and cds, we can commuteh and
cds to obtainH0cds = Cdsh, with Cds denoting aP �
(L + 1) Toeplitz matrix with first columncds and first row
[cds(0); 0; : : : ; 0]. Let us now define the truncatedN �1 code
vector for DS-SS as�cds := Rcpcds. Multiplying Rcp with
Cds yields a truncatedN � (L+1) Toeplitz matrix�Cds with
first column�cds and first row[cds(L); : : : ; cds(0)]. Therefore,
we can rewrite (7) as:

yds(i) = �Cdshs(i) + �w(i): (8)

Comparing (6) with (8), weunify MC-SS and DS-SS in the
following equivalent model:

y(i) = Chs(i) +w(i) = cs(i) +w(i); (9)

wherec := Ch denotes the equivalent signature code vector
after channel convolution and receiver processing. For con-
venience, we list the corresponding vectors for MC-SS and
DS-SS unified by (9):

c=Vh; w(i) = DH(cmc)FN �w(i); for MC-SS; (10)

c= �Cdsh; w(i) = �w(i) ; for DS-SS: (11)

We assume the additive noise is white, i.e.,R �w �w :=
E
�
w(i)wH(i)

	
= �2wIN . Starting with the unifying model

(9), the Maximum Ratio Combiner (MRC) output becomes:
ŝ(i) = cHy(i). With �2s := E

�
s(i)sH(i)

	
, the output SNR

becomes:SNR = cHc�2s=�
2
w, wherec is defined in (10) for

MC-SS and in (11) for DS-SS.
We next analyze the system bit error rate (BER) for ran-

dom multipath channels.

3. RANDOM MULTIPATH FADING CHANNELS

Recall thatc = Vh for MC-SS andc = �Cdsh for DS-SS.
The corresponding SNRs for a given channelh are:

SNR(mc) = hHVHVh�2s=�
2
w = NhHh�2s=�

2
w; (12)

SNR(ds) = hH �CHds
�Cdsh�

2
s=�

2
w: (13)

Eqs. (12) and (13) clearly show that the SNR, and thus
the BER, in MC-SSdo not depend on the code choices,
whereas they do so in DS-SS. In [4] it is assumed that the
self-interference due to multipath isnegligible, i.e., the shifts
of the spreading code are nearly orthogonal to itself so that
�CHds

�Cds = NIL+1. Under this assumption, we have that
SNR(mc) = SNR(ds), which indicates that MC-SS and
DS-SS exhibit the same ability in resisting multipath ef-
fects, which agrees with the results in [4]. In general, the
Toeplitz matrix �Cds does not have orthogonal columns. The
columns of�Cds can be approximately orthogonal (so that self-
interference is negligible) only when the code lengthP is suf-
ficiently large relative to the channel orderL, and the code
is well constructed. Unlike [4], where focus is placed on
multiuser interference and narrow band interference but the
multipath-induced self-interference is ignored, here, we ex-
plicitly consider this self-interference effect and compare the
multipath resistance of DS-SS with that of MC-SS. Thanks
to the FFT processing and the CP insertion at the transmitter,
the FIR multipath is converted to parallel frequency-flat sub-
channels in MC-SS, so that the self-interference on each sub-
carrier is accounted for and absorbed in the fading coefficient
for that subchannel. As confirmed by (12), the performance
of MC-SS is independent of code choices. We next show the
advantages of MC-SS over DS-SS in the randomly faded mul-
tipath channel scenario.

For random channelsh with covariance matrixRhh :=
E
�
hhH

	
, the BER for BPSK can be expressed in terms of

the output SNR as:Pb = Eh
n
Q
�p

SNR
�o

:This expres-

sion is difficult to evaluate by averaging over the statistics of
the fading amplitude random variables directly [8], sinceQ(x)
is a nonlinear function ofx. However, by using an alternative
representation ofQ(�), a closed-form BER expression for in-
dependent faded channels has been obtained in [8]. Following
the steps of [8], and assuming that the channel estimates at
the receiver are error-free, we will first derive a general BER
expression for MC-SS and DS-SS, and then compare their ca-
pabilities in resisting multipath.

We first diagonalizeRhh via its spectral decomposition:

Rhh = UhDhU
H

h ; Dh = diag(�11; : : : ; �LL); (14)

whereUh is unitary and�ii � 0 denotes theith eigenvalue of
Rhh. Similarly, we decompose the signature code covariance

2



matrixRcc := E
�
ccH

	
as:

Rcc = EfChhHCHg = CRhhC
H = UcDcU

H

c ; (15)

whereUc is aP � (L+ 1) matrix with orthonormal columns
andDc is a diagonal matrix with entries��ii; i 2 [1; L + 1].
WhenRhh is diagonal andC has orthonormal columns, we
have��ii = �ii;8i 2 [1; L+ 1].

Pre-multiplyingy(i) in (9) withUH
c yields:

y0(i) := UH

c y(i) = UH

c Chs(i) +U
H

c w(i)

:= h0s(i) +w0(i);
(16)

whereh0 := UH
c Ch andw0(i) := UH

c w(i) denote equivalent
channel and noise vectors. BecauseRh0h0 = UH

c RccUc =
Dc, the entries ofh0 are uncorrelated, whilew0(i) is still
white sinceRw0w0 = �2wIL+1. The MRC symbol estimate
ŝ(i) = (h0)

H
y0(i) equals the MMSE/MF receiver output op-

erating ony(i): ŝ(i) = cHy(i). As a result, a closed form
Symbol Error Rate (SER) expression for MPSK (M constella-
tion points) signals can then be obtained by direct substitution
from [8, eq. (44)]:

Ps(E)=
1

�

Z (M�1)�=M

0

LY
i=1

Ii(��ii�
2
s=�

2
v ; 
PSK ; �)d�; (17)

where
PSK := sin2(�=M), andIi(x; 
PSK ; �) is the mo-
ment of the probability density function ofh0i evaluated at
�
PSK= sin2(�) (see [8, eq. (24)]). For example, ifh0i is
Rayleigh distributed, we have

Ii(x; 
PSK ; �) = [1 + 
PSKx�
2
s=(�

2
v sin

2(�))]�1: (18)

The momentIi(x; 
PSK ; �) for other distributions such as
Nakagami, and the resulting SER for different constellations
(e.g., QAM) can be found in [8].

To establish the optimality of MC-SS over DS-SS, let us
consider the generic model of [3]:

~y(i) = ~Chs(i) + ~w(i); (19)

where~w(i) is white and~C is an arbitraryN � (L+1) matrix

obeying the power constraint: tr
n
~CH ~C

o
= P0, prescribed

by the transmit-power budget.
Starting with the generic model (19), it is possible to

choose the precoder~C according to the optimality criterion
specified in the following theorem:
Theorem 1 [3]: If h and ~w(i) in (19) are uncorrelated and
~w(i) is white, the optimum precoding matrix~C is given by:
~Copt = �DfU

H

h , whereUh is defined in(14); diagonal ma-
trix Df is the optimal power loading matrix selected as in [3,
eq. (17) and (18)], and� an arbitraryN � (L + 1) matrix
with orthonormal columns. Optimality of~Copt pertains to ei-
ther minimizing the error in estimating the random channel,

E
n
kh� ĥk2

o
, or, maximizing the conditional mutual infor-

mationI(�x;hjs) if h is complex Gaussian distributed.
If the entries ofh are independent and identically dis-

tributed (i.i.d.), i.e.,Rhh = �2hI with Uh = IL+1, then the

optimal power loading matrixDf = �IL+1, where�2 =

P0=(L+1) [3]. In this case, the optimal precoder~Copt = ��
should have orthogonal columns. Because the Vandermonde
matrixV has orthogonal columns while the Toeplitz matrix
�Cds does not, MC-SS is optimal in this setting and it thus out-
performs DS-SS considerably.

The optimality in Theorem 1 amounts to minimizing the
mean-square channel estimation error, which implies that
channel estimation accuracy dictates the overall BER perfor-
mance. However, for special cases, it is possible to have the
power loading of Theorem 1 optimize the overall BER directly
(see, e.g., [2] for differential QPSK constellations which lead
to a simple closed-form BER expression).

However, when the entries ofh are i.i.d. with Gaussian dis-
tribution and covariance matrixRhh = �2hI, we can directly
establish the optimality based on the SER expression in (17).
BecauseRhh = �2hIL+1, we haveDc in (15) for MC-SS as:

D
(mc)
c = N�2hIL+1. Therefore,D(mc)

c for MC-SS has equal
diagonal entries, which is not the case for DS-SS because�Cds

for DS-SS in (15) does not have orthogonal columns in gen-
eral. However, the total transmitted power is the same because

tr
n
D(ds)
c

o
= �2htr

�
�CHds

�Cds

	
= N(L+1)�2h = tr

n
D(mc)
c

o
:

Let us denote theith diagonal element ofD(ds)
c by ��

(ds)
ii and of

D
(mc)
c by ��

(mc)
ii . We then have��(mc)

ii = (
PL+1

i=1
��
(ds)
ii )=(L+

1). Applying the inequality: (x1 + x2 + : : : + xN ) �
N(x1x2 � � �xN )1=N ; xi > 0, we obtain(x1x2 � � �xN )�1 �
[(x1 + x2 + : : : + xN )=N ]�N � 0, and after taking into ac-
count (18), we arrive at the following inequality:

L+1Y
i=1

Ii(��
(ds)
ii �2s=�

2
v ; 
PSK ; �) (20)

=

L+1Y
i=1

"
1+


PSK��
(ds)
ii �2s

�2v sin
2(�)

#�1
�
�
Ii(��

(mc)
ii

�2s
�2v

; 
PSK ; �)

�L+1

Substituting (20) back into (17), we thus obtain:

P (ds)
s (E) � P (mc)

s (E); (21)

where equality is achieved when the Toeplitz matrix�Cds for
DS-SS has orthogonal columns, i.e., when self-interference is
zero. Inequality (20) implies that equal power loading opti-
mizes BER for i.i.d. Gaussian channels. By distributing its
power evenly across all subbands, MC-SS provides maximum
protection against random frequency-selective multipath fad-
ing in this case.

If h is not i.i.d., equipower loadingDf = �IL+1 turns out
to be near optimal at high SNR [3]. The selected precoder ma-
trix ~C = ��Uh has orthogonal columns, which corroborates
the near-optimality of MC-SS at high SNR.

To shed further light on the performance of digital MC-SS
relative to DS-SS and to study the code dependence of DS-SS,
we consider the following scenarios.

We construct three channel models, assuming that the
channelh is Gaussian distributed of orderL = 2, Channel
1 is i.i.d. withRhh = diag(1; 1; 1)=3; channel 2 hasRhh =
diag(1; 0:5; 0:1)=1:6, i.e., the first path shows a3dB gain over

3
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Fig. 2. MC-SS versus DS-SS withP = 8

the second and10dB gain over the third path; and channel 3
is adopted from [2] withRhh = diag(1; 0:05; 0:01)=1:06, i.e.,
the first path has a13dB gain over the second and20dB gain
over the third path.

To avoid the code dependence for DS-SS, we adopt the
code-hopping scheme of [5] and average the BER over all pos-
sible code choices. It is known that W-H codes have poor
autocorrelation properties. Therefore, we also employ Gold
codes, which have better autocorrelation properties [6]. In
Figs. 2 and 3 we compare the BER of MC-SS with the average
BER of DS-SS with W-H codes of lengthP = 8; 16 and with
Gold codesP = 7; 15, respectively. First, we see that MC-
SS outperforms DS-SS with W-H codes considerably because
the multipath induced self-interference of W-H codes is large.
When Gold sequences are employed, we observe that the BER
of DS-SS approaches that of MC-SS when the code length in-
creases, as the self-interference becomes relatively smaller and
smaller. In Fig. 2, note that MC-SS offers a 4 to 5 dB advan-
tage over DS-SS at BER of10�6.

With colored channels, we observe similar results as those
in Figs. 2 and 3 for i.i.d channels. We compare in Fig. 4 MC-
SS against DS-SS with code length16 for both channels 2 and
3. Although MC-SS is not optimum (near optimum at high
SNR) in these two channel settings, we clearly see that MC-SS
outperforms DS-SS alternatives considerably, especially when
the spreading codes for DS-SS are not well constructed. In a
nutshell, the superiority of MC-SS over DS-SS in the presence
of multipath justifies its increasing popularity.

4. CONCLUSIONS

We used results from [3] for the optimal coding matrix, and
showed that in the case of uncorrelated and equal power
paths, the optimal code leads to multi-carrier spread-spectrum
(MC-SS) which may significantly outperform direct-sequence
spread spectrum (DS-SS). We developed closed-form expres-
sions for the BER performance of digital MC-SS and DS-
SS schemes in the presence of frequency-selective multipaths
(which destroy code orthogonality). The performance of MC-
SS does not depend upon the spreading code; in contrast, the
performance of DS-SS does depend upon the spreading code.
In general, MC-SS outperforms DS-SS; the performance of
DS-SS approaches that of MC-SS if the spreading gain is large
and the codes are well chosen. In the case of colored channels
(correlated paths and/or paths with unequal powers), MC-SS
outperforms DS-SS, especially for short spreading lengths.
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Fig. 3. MC-SS versus DS-SS withP = 16

0 5 10 15 20 25
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Channel 3

Channel 2

Channel1, i.i.d

E
b
/N

0
 (dB)

B
E

R

MC−SS
DS−SS, W−H codes
DS−SS, gold codes

Fig. 4. MC-SS vs DS-SS, different channels

5. REFERENCES

[1] J. A. C. Bingham, “Multicarrier modulation for data transmis-
sion: An idea whose time has come,”IEEE Communications
Magazine, pp. 5–14, May 1990.

[2] J. K. Cavers, “Optimized use of diversity modes in transmitter
diversity systems,” inProc. VTC, 1999, pp. 1768–1773.

[3] G. B. Giannakis and S. Zhou, “Optimal Transmit-Diversity
Precoders for Random Fading Channels,” inProc. Globecom
Conf., Nov. 27 - Dec. 1, 2000.

[4] S. Kondo and L. B. Milstein, “Performance of multicarrier DS
CDMA systems,”IEEE Trans. Comm., pp. 238–46, Feb. 1996.

[5] S. Parkvall, “Variability of user performance in cellular DS-
CDMA—long versus short spreading sequences,”IEEE Trans.
Comm., pp. 1178–1187, July 2000.

[6] J. Proakis,Digital Communications, 3rd edition, 1995.
[7] G. J. Saulnier, Z. Ye, and M. J. Medley, “Performance of a

spread spectrum OFDM system in a dispersive fading channel
with interference,”MILCOM Conf., 1998, pp. 679–683.

[8] M. K. Simon and M.-S. Alouini, “A unified approach to the
performance analysis of digital communication over general-
ized fading channels,”Proc. of the IEEE, pp. 1860–1877, 1998.

[9] Z. Wang and G. B. Giannakis, “Wireless multicarrier commu-
nications: Where Fourier meets Shannon,”IEEE SP Magazine,
pp. 29–48, May 2000.

[10] N. Yee, J-P. Linnartz, and G. Fettweis, “Multicarrier CDMA in
indoor wireless radio networks,” inProc. IEEE PIMRC, Sept.
1993, pp. 109–113.

[11] S. Zhou, G. B. Giannakis and A. Swami, “Digital Multi-
Carrier versus Direct-Sequence Spread Spectrum for Resistance
to Jamming and Multipath,”IEEE Trans. Comm., Oct. 2000
(submitted).

4


