

COMPARISON OF DIGITAL MULTI-CARRIER WITH DIRECT SEQUENCE SPREAD SPECTRUM IN THE PRESENCE OF MULTIPATH

Shengli Zhou and Georgios B. Giannakis

Dept. of ECE, Univ. of Minnesota
200 Union Str. SE, MLPS, MN 55455

ABSTRACT

We compare single user digital Multi-Carrier Spread Spectrum modulation with Direct Sequence Spread Spectrum in the presence of frequency-selective multipath fading. We derive closed-form expressions for the bit error probability and show that MC-SS is more robust to multipath fading than is DS-SS.

1. INTRODUCTION

The increasing interest in and applications of direct sequence spread spectrum (DS-SS) technology stem from its robustness to fading, its anti-interference capability, and the potential for (even uncoordinated) multiple access. With a wide bandwidth and thus a short chip period, multiple paths can be resolved with DS-SS transmissions and a RAKE receiver can be used to mitigate fading and improve system performance [6].

An alternative approach to combat frequency-selective multipath is multicarrier modulation. Multi-Carrier Spread-Spectrum (MC-SS) [7] and the corresponding multiple access scheme: Multicarrier (MC) CDMA [10] has gained increasing popularity in recent years. By exploiting multiple carriers and a narrow band DS waveform on each subcarrier, it has been shown that multicarrier DS CDMA outperforms single carrier CDMA for wideband transmissions in the presence of narrow band interference [4].

Although most existing MC approaches rely on analog carrier modulations, digital implementations through FFTs are also available [1]. Thanks to the rapid development of digital devices and digital signal processing (DSP) technologies, the Digital to Analog (D/A) and Analog to Digital (A/D) converters are being pushed closer to the transceiver's end. Starting from a discrete-time equivalent model, we investigate the performance of digital MC-SS and compare it with DS-SS. The main contributions of this paper are the novel results on performance analysis of digital MC-SS in the presence of multipath. Further results on the performance analysis of digital MC-SS in the presence of narrow band interference (NBI) and the presence of both NBI and multipath may be found in [11].

2. UNIFYING TRANSCEIVER MODELS

The diagram in the upper part of Fig. 1 describes the discrete-time baseband equivalent model of an MC-SS system. The length- N symbol periodic digital spreading code $\mathbf{c}_{mc} := [c_{mc}(0), \dots, c_{mc}(N-1)]^T$ spreads the i th information symbol $s(i)$. The resulting sequence $\mathbf{c}_{mc}s(i)$ is then IFFT processed to obtain the $N \times 1$ vector $\mathbf{F}_N^H \mathbf{c}_{mc}s(i)$, where \mathbf{F}_N is the $N \times N$ FFT matrix with (m, n) entry $(1/\sqrt{N})e^{-j2\pi mn/N}$ and \mathcal{H} denotes Hermitian transpose.

This work was supported by ARL grant no. DAAL01-98-Q-0648 and NSF Wireless Initiative grant no. 99-79443.

Ananthram Swami

Army Research Lab, AMSRL-CI-CN,
2800 Powder Mill Rd, Adelphi, MD 20783

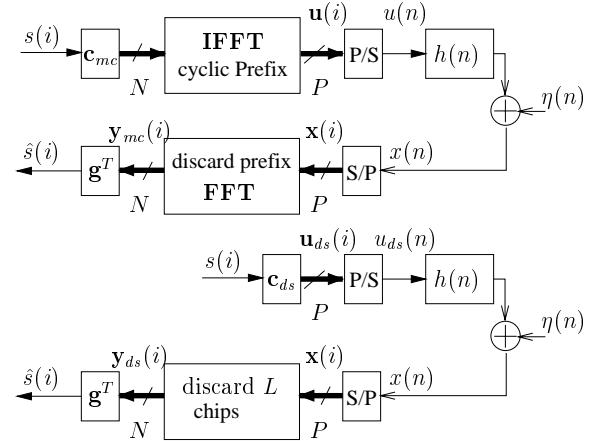


Fig. 1. Equivalent model: MC-SS (upper) and DS-SS (lower)

To avoid channel-induced inter symbol/block interference (ISI/IBI), we replicate the last $P - N$ entries (Cyclic Prefix (CP)) of the vector $\mathbf{F}_N^H \mathbf{c}_{mc}s(i)$ at the front to form the $P \times 1$ transmitted block $\mathbf{u}(i)$, as in conventional OFDM systems, e.g., [1]. The received signal, after conversion to baseband and receive filtering, is sampled at the chip rate, to yield

$$x(n) = \sum_{l=0}^L h(l)u(n-l) + \eta(n), \quad (1)$$

where $h(\ell)$ is the overall channel (transmit and receive filters, and propagation channel), $\eta(n)$ is the filtered additive Gaussian noise (AGN), and L is the maximum order of the FIR channel. To avoid ISI, the CP length should be larger than the channel order: $P - N \geq L$. To avoid bandwidth overexpansion, we choose the smallest block length $P = N + L$ here.

To convert (1) from a serial to a convenient matrix-vector form, we define the $P \times 1$ vector: $\mathbf{x}(i) := [x(iP), x(iP + 1), \dots, x(iP + P - 1)]^T$ (likewise for $\eta(i)$), and the $P \times P$ Toeplitz channel matrices $\mathbf{H}_0, \mathbf{H}_1$ with (k, l) th entries $h(k-l)$ and $h(k-l+P)$, respectively. Since $h(l) = 0, \forall l \notin [0, L]$, and $P = N + L$, we can write (1) as:

$$\mathbf{x}(i) = \mathbf{H}_0 \mathbf{u}(i) + \mathbf{H}_1 \mathbf{u}(i-1) + \eta(i), \quad (2)$$

where the second term represents IBI.

At the receiver, the CP is removed by dropping the first $P - N$ elements of $\mathbf{x}(i)$, thus eliminating IBI. After the CP removal and FFT processing, we have

$$\mathbf{y}_{mc}(i) = \mathbf{F}_N \tilde{\mathbf{H}} \mathbf{F}_N^H \mathbf{c}_{mc}s(i) + \mathbf{F}_N \bar{\mathbf{w}}(i), \quad (3)$$

where $\tilde{\mathbf{H}}$ is the resulting channel matrix and $\bar{\mathbf{w}}(i)$ is the $N \times 1$ truncated noise vector: $\bar{\mathbf{w}}(i) := \mathbf{R}_{cp} \eta(i)$, where $\mathbf{R}_{cp} :=$

$[\mathbf{0}_{N \times (P-N)}, \mathbf{I}_N]$ is the CP-removing matrix. Matrix $\tilde{\mathbf{H}}$ is an $N \times N$ circulant matrix with (k, l) th entry given by $h((k-l)\bmod N)$. Because (I)FFTs diagonalize circulant matrices, the circulant matrix $\tilde{\mathbf{H}}$ can be decomposed as $\tilde{\mathbf{H}} = \mathbf{F}_N^H \mathbf{D}(\tilde{\mathbf{h}}) \mathbf{F}_N$, where $\tilde{\mathbf{h}} := [H(\exp(0)), H(\exp(j2\pi/N)), \dots, H(\exp(j2\pi(N-1)/N))]^T$ whose entries are the channel frequency response $H(z) := \sum_{l=0}^L h(l)z^{-l}$ evaluated at the subcarriers $z_k = \exp(j2\pi k/N)$, and $\mathbf{D}(\tilde{\mathbf{h}}) := \text{diag}(\tilde{\mathbf{h}})$ denotes a diagonal matrix with the (i, i) th entry being the i th element of the vector $\tilde{\mathbf{h}}$; see [9] for more details. Therefore, we can rewrite (3) as:

$$\mathbf{y}_{mc}(i) = \mathbf{D}(\tilde{\mathbf{h}}) \mathbf{c}_{mc} s(i) + \mathbf{F}_N \bar{\mathbf{w}}(i). \quad (4)$$

With $\mathbf{D}(\mathbf{c}_{mc}) := \text{diag}(\mathbf{c}_{mc})$, we verify that $\mathbf{D}(\tilde{\mathbf{h}}) \mathbf{c}_{mc} = \mathbf{D}(\mathbf{c}_{mc}) \tilde{\mathbf{h}}$. Define $\mathbf{h} := [h(0), \dots, h(L)]^T$ and \mathbf{V} as the $N \times (L+1)$ Vandermonde matrix formed by the first $L+1$ columns of $\sqrt{N} \mathbf{F}_N$; thus, $\tilde{\mathbf{h}} = \mathbf{V} \mathbf{h}$ represents a scaled FFT operation in matrix form. We then can rewrite (4) as:

$$\mathbf{y}_{mc}(i) = \mathbf{D}(\mathbf{c}_{mc}) \mathbf{V} \mathbf{h} s(i) + \mathbf{F}_N \bar{\mathbf{w}}(i). \quad (5)$$

Since the spreading sequence is binary, i.e., \mathbf{c}_{mc} has entries ± 1 , it holds that $\mathbf{D}^H(\mathbf{c}_{mc}) \mathbf{D}(\mathbf{c}_{mc}) = \mathbf{I}_N$, and after multiplying (5) with $\mathbf{D}^H(\mathbf{c}_{mc})$ we arrive at

$$\mathbf{D}^H(\mathbf{c}_{mc}) \mathbf{y}_{mc}(i) = \mathbf{V} \mathbf{h} s(i) + \mathbf{D}^H(\mathbf{c}_{mc}) \mathbf{F}_N \bar{\mathbf{w}}(i). \quad (6)$$

Our primary goal is to compare the ability of MC-SS and DS-SS to combat multipath fading; therefore, we now describe the discrete time baseband model of DS-SS that is depicted in the lower part of Fig. 1.

Without FFT and CP insertion at the transmitter, the transmitted block in DS-SS is $\mathbf{u}_{ds}(i) = \mathbf{c}_{ds} s(i)$, where $\mathbf{c}_{ds} := [c_{ds}(0), c_{ds}(1), \dots, c_{ds}(P-1)]^T$ is a $P \times 1$ vector having the same block length as the MC-SS system (the upper part of Fig. 1). Replacing $\mathbf{u}(i)$ in (2) by $\mathbf{u}_{ds}(i)$, and with \mathbf{R}_{cp} eliminating IBI as in (3), we arrive at:

$$\mathbf{y}_{ds}(i) = \mathbf{R}_{cp} \mathbf{H}_0 \mathbf{c}_{ds} s(i) + \bar{\mathbf{w}}(i). \quad (7)$$

Because $\mathbf{H}_0 \mathbf{c}_{ds}$ represents in matrix-vector form the linear convolution between \mathbf{h} and \mathbf{c}_{ds} , we can commute \mathbf{h} and \mathbf{c}_{ds} to obtain $\mathbf{H}_0 \mathbf{c}_{ds} = \mathbf{C}_{ds} \mathbf{h}$, with \mathbf{C}_{ds} denoting a $P \times (L+1)$ Toeplitz matrix with first column \mathbf{c}_{ds} and first row $[c_{ds}(0), 0, \dots, 0]$. Let us now define the truncated $N \times 1$ code vector for DS-SS as $\bar{\mathbf{c}}_{ds} := \mathbf{R}_{cp} \mathbf{c}_{ds}$. Multiplying \mathbf{R}_{cp} with \mathbf{C}_{ds} yields a truncated $N \times (L+1)$ Toeplitz matrix $\bar{\mathbf{C}}_{ds}$ with first column $\bar{\mathbf{c}}_{ds}$ and first row $[c_{ds}(L), \dots, c_{ds}(0)]$. Therefore, we can rewrite (7) as:

$$\mathbf{y}_{ds}(i) = \bar{\mathbf{C}}_{ds} \mathbf{h} s(i) + \bar{\mathbf{w}}(i). \quad (8)$$

Comparing (6) with (8), we unify MC-SS and DS-SS in the following equivalent model:

$$\mathbf{y}(i) = \mathbf{C} \mathbf{h} s(i) + \mathbf{w}(i) = \mathbf{c} s(i) + \mathbf{w}(i), \quad (9)$$

where $\mathbf{c} := \mathbf{C} \mathbf{h}$ denotes the equivalent signature code vector after channel convolution and receiver processing. For convenience, we list the corresponding vectors for MC-SS and DS-SS unified by (9):

$$\mathbf{c} = \mathbf{V} \mathbf{h}, \quad \mathbf{w}(i) = \mathbf{D}^H(\mathbf{c}_{mc}) \mathbf{F}_N \bar{\mathbf{w}}(i), \quad \text{for MC-SS}, \quad (10)$$

$$\mathbf{c} = \bar{\mathbf{C}}_{ds} \mathbf{h}, \quad \mathbf{w}(i) = \bar{\mathbf{w}}(i), \quad \text{for DS-SS}. \quad (11)$$

We assume the additive noise is white, i.e., $\mathbf{R}_{\bar{w}\bar{w}} := \mathbf{E}\{\mathbf{w}(i)\mathbf{w}^H(i)\} = \sigma_w^2 \mathbf{I}_N$. Starting with the unifying model (9), the Maximum Ratio Combiner (MRC) output becomes: $\hat{s}(i) = \mathbf{c}^H \mathbf{y}(i)$. With $\sigma_s^2 := \mathbf{E}\{s(i)s^H(i)\}$, the output SNR becomes: $SNR = \mathbf{c}^H \mathbf{c} \sigma_s^2 / \sigma_w^2$, where \mathbf{c} is defined in (10) for MC-SS and in (11) for DS-SS.

We next analyze the system bit error rate (BER) for random multipath channels.

3. RANDOM MULTIPATH FADING CHANNELS

Recall that $\mathbf{c} = \mathbf{V} \mathbf{h}$ for MC-SS and $\mathbf{c} = \bar{\mathbf{C}}_{ds} \mathbf{h}$ for DS-SS. The corresponding SNRs for a given channel \mathbf{h} are:

$$SNR^{(mc)} = \mathbf{h}^H \mathbf{V}^H \mathbf{V} \mathbf{h} \sigma_s^2 / \sigma_w^2 = N \mathbf{h}^H \mathbf{h} \sigma_s^2 / \sigma_w^2, \quad (12)$$

$$SNR^{(ds)} = \mathbf{h}^H \bar{\mathbf{C}}_{ds}^H \bar{\mathbf{C}}_{ds} \mathbf{h} \sigma_s^2 / \sigma_w^2. \quad (13)$$

Eqs. (12) and (13) clearly show that the SNR, and thus the BER, in MC-SS *do not* depend on the code choices, whereas they do so in DS-SS. In [4] it is assumed that the self-interference due to multipath is *negligible*, i.e., the shifts of the spreading code are nearly orthogonal to itself so that $\bar{\mathbf{C}}_{ds}^H \bar{\mathbf{C}}_{ds} = N \mathbf{I}_{L+1}$. Under this assumption, we have that $SNR^{(mc)} = SNR^{(ds)}$, which indicates that MC-SS and DS-SS exhibit the same ability in resisting multipath effects, which agrees with the results in [4]. In general, the Toeplitz matrix $\bar{\mathbf{C}}_{ds}$ does not have orthogonal columns. The columns of $\bar{\mathbf{C}}_{ds}$ can be approximately orthogonal (so that self-interference is negligible) only when the code length P is sufficiently large relative to the channel order L , and the code is well constructed. Unlike [4], where focus is placed on multiuser interference and narrow band interference but the multipath-induced self-interference is ignored, here, we explicitly consider this self-interference effect and compare the multipath resistance of DS-SS with that of MC-SS. Thanks to the FFT processing and the CP insertion at the transmitter, the FIR multipath is converted to parallel frequency-flat subchannels in MC-SS, so that the self-interference on each subcarrier is accounted for and absorbed in the fading coefficient for that subchannel. As confirmed by (12), the performance of MC-SS is independent of code choices. We next show the advantages of MC-SS over DS-SS in the randomly faded multipath channel scenario.

For random channels \mathbf{h} with covariance matrix $\mathbf{R}_{hh} := \mathbf{E}\{\mathbf{h}\mathbf{h}^H\}$, the BER for BPSK can be expressed in terms of the output SNR as: $P_b = \mathbf{E}_{\mathbf{h}} \left\{ \mathcal{Q} \left(\sqrt{SNR} \right) \right\}$. This expression is difficult to evaluate by averaging over the statistics of the fading amplitude random variables directly [8], since $\mathcal{Q}(x)$ is a nonlinear function of x . However, by using an alternative representation of $\mathcal{Q}(\cdot)$, a closed-form BER expression for independent faded channels has been obtained in [8]. Following the steps of [8], and assuming that the channel estimates at the receiver are error-free, we will first derive a general BER expression for MC-SS and DS-SS, and then compare their capabilities in resisting multipath.

We first diagonalize \mathbf{R}_{hh} via its spectral decomposition:

$$\mathbf{R}_{hh} = \mathbf{U}_h \mathbf{D}_h \mathbf{U}_h^H, \quad \mathbf{D}_h = \text{diag}(\lambda_{11}, \dots, \lambda_{LL}), \quad (14)$$

where \mathbf{U}_h is unitary and $\lambda_{ii} \geq 0$ denotes the i th eigenvalue of \mathbf{R}_{hh} . Similarly, we decompose the signature code covariance

matrix $\mathbf{R}_{cc} := \mathbf{E}\{\mathbf{c}\mathbf{c}^H\}$ as:

$$\mathbf{R}_{cc} = \mathbf{E}\{\mathbf{Chh}^H\mathbf{C}^H\} = \mathbf{C}\mathbf{R}_{hh}\mathbf{C}^H = \mathbf{U}_c\mathbf{D}_c\mathbf{U}_c^H, \quad (15)$$

where \mathbf{U}_c is a $P \times (L+1)$ matrix with orthonormal columns and \mathbf{D}_c is a diagonal matrix with entries $\bar{\lambda}_{ii}, i \in [1, L+1]$. When \mathbf{R}_{hh} is diagonal and \mathbf{C} has orthonormal columns, we have $\bar{\lambda}_{ii} = \lambda_{ii}, \forall i \in [1, L+1]$.

Pre-multiplying $\mathbf{y}(i)$ in (9) with \mathbf{U}_c^H yields:

$$\begin{aligned} \mathbf{y}'(i) &:= \mathbf{U}_c^H\mathbf{y}(i) = \mathbf{U}_c^H\mathbf{Chs}(i) + \mathbf{U}_c^H\mathbf{w}(i) \\ &:= \mathbf{h}'s(i) + \mathbf{w}'(i), \end{aligned} \quad (16)$$

where $\mathbf{h}' := \mathbf{U}_c^H\mathbf{C}\mathbf{h}$ and $\mathbf{w}'(i) := \mathbf{U}_c^H\mathbf{w}(i)$ denote equivalent channel and noise vectors. Because $\mathbf{R}_{h'h'} = \mathbf{U}_c^H\mathbf{R}_{cc}\mathbf{U}_c = \mathbf{D}_c$, the entries of \mathbf{h}' are uncorrelated, while $\mathbf{w}'(i)$ is still white since $\mathbf{R}_{w'w'} = \sigma_w^2\mathbf{I}_{L+1}$. The MRC symbol estimate $\hat{s}(i) = (\mathbf{h}')^H\mathbf{y}'(i)$ equals the MMSE/MF receiver output operating on $\mathbf{y}(i)$: $\hat{s}(i) = \mathbf{c}^H\mathbf{y}(i)$. As a result, a closed form Symbol Error Rate (SER) expression for MPSK (M constellation points) signals can then be obtained by direct substitution from [8, eq.(44)]:

$$P_s(E) = \frac{1}{\pi} \int_0^{(M-1)\pi/M} \prod_{i=1}^L I_i(\bar{\lambda}_{ii}\sigma_s^2/\sigma_v^2, \gamma_{PSK}, \theta) d\theta, \quad (17)$$

where $\gamma_{PSK} := \sin^2(\pi/M)$, and $I_i(x, \gamma_{PSK}, \theta)$ is the moment of the probability density function of h'_i evaluated at $-\gamma_{PSK}/\sin^2(\theta)$ (see [8, eq. (24)]). For example, if h'_i is Rayleigh distributed, we have

$$I_i(x, \gamma_{PSK}, \theta) = [1 + \gamma_{PSK}x\sigma_s^2/(\sigma_v^2 \sin^2(\theta))]^{-1}. \quad (18)$$

The moment $I_i(x, \gamma_{PSK}, \theta)$ for other distributions such as Nakagami, and the resulting SER for different constellations (e.g., QAM) can be found in [8].

To establish the optimality of MC-SS over DS-SS, let us consider the generic model of [3]:

$$\tilde{\mathbf{y}}(i) = \tilde{\mathbf{C}}\mathbf{h}s(i) + \tilde{\mathbf{w}}(i), \quad (19)$$

where $\tilde{\mathbf{w}}(i)$ is white and $\tilde{\mathbf{C}}$ is an arbitrary $N \times (L+1)$ matrix obeying the power constraint: $\text{tr}\{\tilde{\mathbf{C}}^H\tilde{\mathbf{C}}\} = \mathcal{P}_0$, prescribed by the transmit-power budget.

Starting with the generic model (19), it is possible to choose the precoder $\tilde{\mathbf{C}}$ according to the optimality criterion specified in the following theorem:

Theorem 1 [3]: *If \mathbf{h} and $\tilde{\mathbf{w}}(i)$ in (19) are uncorrelated and $\tilde{\mathbf{w}}(i)$ is white, the optimum precoding matrix $\tilde{\mathbf{C}}$ is given by: $\tilde{\mathbf{C}}_{opt} = \Phi\mathbf{D}_f\mathbf{U}_h^H$, where \mathbf{U}_h is defined in (14); diagonal matrix \mathbf{D}_f is the optimal power loading matrix selected as in [3, eq. (17) and (18)], and Φ an arbitrary $N \times (L+1)$ matrix with orthonormal columns. Optimality of $\tilde{\mathbf{C}}_{opt}$ pertains to either minimizing the error in estimating the random channel, $E\{\|\mathbf{h} - \hat{\mathbf{h}}\|^2\}$, or, maximizing the conditional mutual information $I(\bar{\mathbf{x}}, \mathbf{h}|s)$ if \mathbf{h} is complex Gaussian distributed.*

If the entries of \mathbf{h} are independent and identically distributed (i.i.d.), i.e., $\mathbf{R}_{hh} = \sigma_h^2\mathbf{I}$ with $\mathbf{U}_h = \mathbf{I}_{L+1}$, then the

optimal power loading matrix $\mathbf{D}_f = \alpha\mathbf{I}_{L+1}$, where $\alpha^2 = \mathcal{P}_0/(L+1)$ [3]. In this case, the optimal precoder $\tilde{\mathbf{C}}_{opt} = \alpha\Phi$ should have orthogonal columns. Because the Vandermonde matrix \mathbf{V} has orthogonal columns while the Toeplitz matrix $\tilde{\mathbf{C}}_{ds}$ does not, MC-SS is optimal in this setting and it thus outperforms DS-SS considerably.

The optimality in Theorem 1 amounts to minimizing the mean-square channel estimation error, which implies that channel estimation accuracy dictates the overall BER performance. However, for special cases, it is possible to have the power loading of Theorem 1 optimize the overall BER directly (see, e.g., [2] for differential QPSK constellations which lead to a simple closed-form BER expression).

However, when the entries of \mathbf{h} are i.i.d. with Gaussian distribution and covariance matrix $\mathbf{R}_{hh} = \sigma_h^2\mathbf{I}$, we can directly establish the optimality based on the SER expression in (17). Because $\mathbf{R}_{hh} = \sigma_h^2\mathbf{I}_{L+1}$, we have \mathbf{D}_c in (15) for MC-SS as: $\mathbf{D}_c^{(mc)} = N\sigma_h^2\mathbf{I}_{L+1}$. Therefore, $\mathbf{D}_c^{(mc)}$ for MC-SS has equal diagonal entries, which is not the case for DS-SS because $\tilde{\mathbf{C}}_{ds}$ for DS-SS in (15) does not have orthogonal columns in general. However, the total transmitted power is the same because

$$\text{tr}\{\mathbf{D}_c^{(ds)}\} = \sigma_h^2 \text{tr}\{\tilde{\mathbf{C}}_{ds}^H\tilde{\mathbf{C}}_{ds}\} = N(L+1)\sigma_h^2 = \text{tr}\{D_c^{(mc)}\}.$$

Let us denote the i th diagonal element of $\mathbf{D}_c^{(ds)}$ by $\bar{\lambda}_{ii}^{(ds)}$ and of $\mathbf{D}_c^{(mc)}$ by $\bar{\lambda}_{ii}^{(mc)}$. We then have $\bar{\lambda}_{ii}^{(mc)} = (\sum_{i=1}^{L+1} \bar{\lambda}_{ii}^{(ds)})/(L+1)$. Applying the inequality: $(x_1 + x_2 + \dots + x_N) \geq N(x_1x_2 \dots x_N)^{1/N}$, $x_i > 0$, we obtain $(x_1x_2 \dots x_N)^{-1} \geq [(x_1 + x_2 + \dots + x_N)/N]^{-N} \geq 0$, and after taking into account (18), we arrive at the following inequality:

$$\begin{aligned} &\prod_{i=1}^{L+1} I_i(\bar{\lambda}_{ii}^{(ds)}\sigma_s^2/\sigma_v^2, \gamma_{PSK}, \theta) \\ &= \prod_{i=1}^{L+1} \left[1 + \frac{\gamma_{PSK}\bar{\lambda}_{ii}^{(ds)}\sigma_s^2}{\sigma_v^2 \sin^2(\theta)} \right]^{-1} \geq \left[I_i(\bar{\lambda}_{ii}^{(mc)}\frac{\sigma_s^2}{\sigma_v^2}, \gamma_{PSK}, \theta) \right]^{L+1} \end{aligned} \quad (20)$$

Substituting (20) back into (17), we thus obtain:

$$P_s^{(ds)}(E) \geq P_s^{(mc)}(E), \quad (21)$$

where equality is achieved when the Toeplitz matrix $\tilde{\mathbf{C}}_{ds}$ for DS-SS has orthogonal columns, i.e., when self-interference is zero. Inequality (20) implies that equal power loading optimizes BER for i.i.d. Gaussian channels. By distributing its power evenly across all subbands, MC-SS provides maximum protection against random frequency-selective multipath fading in this case.

If \mathbf{h} is not i.i.d., equipower loading $\mathbf{D}_f = \alpha\mathbf{I}_{L+1}$ turns out to be near optimal at high SNR [3]. The selected precoder matrix $\tilde{\mathbf{C}} = \alpha\Phi\mathbf{U}_h$ has orthogonal columns, which corroborates the near-optimality of MC-SS at high SNR.

To shed further light on the performance of digital MC-SS relative to DS-SS and to study the code dependence of DS-SS, we consider the following scenarios.

We construct three channel models, assuming that the channel \mathbf{h} is Gaussian distributed of order $L = 2$, Channel 1 is i.i.d. with $\mathbf{R}_{hh} = \text{diag}(1, 1, 1)/3$; channel 2 has $\mathbf{R}_{hh} = \text{diag}(1, 0.5, 0.1)/1.6$, i.e., the first path shows a 3dB gain over

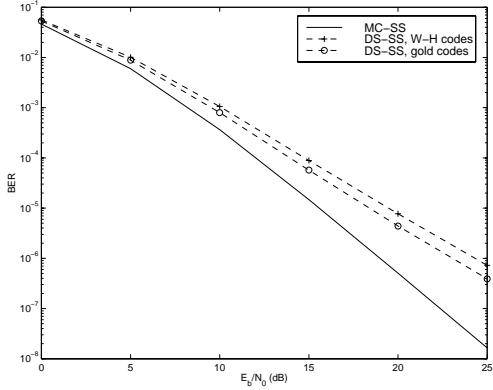


Fig. 2. MC-SS versus DS-SS with $P = 8$

the second and 10dB gain over the third path; and channel 3 is adopted from [2] with $\mathbf{R}_{hh} = \text{diag}(1, 0.05, 0.01)/1.06$, i.e., the first path has a 13dB gain over the second and 20dB gain over the third path.

To avoid the code dependence for DS-SS, we adopt the code-hopping scheme of [5] and average the BER over all possible code choices. It is known that W-H codes have poor autocorrelation properties. Therefore, we also employ Gold codes, which have better autocorrelation properties [6]. In Figs. 2 and 3 we compare the BER of MC-SS with the average BER of DS-SS with W-H codes of length $P = 8, 16$ and with Gold codes $P = 7, 15$, respectively. First, we see that MC-SS outperforms DS-SS with W-H codes considerably because the multipath induced self-interference of W-H codes is large. When Gold sequences are employed, we observe that the BER of DS-SS approaches that of MC-SS when the code length increases, as the self-interference becomes relatively smaller and smaller. In Fig. 2, note that MC-SS offers a 4 to 5 dB advantage over DS-SS at BER of 10^{-6} .

With colored channels, we observe similar results as those in Figs. 2 and 3 for i.i.d channels. We compare in Fig. 4 MC-SS against DS-SS with code length 16 for both channels 2 and 3. Although MC-SS is not optimum (near optimum at high SNR) in these two channel settings, we clearly see that MC-SS outperforms DS-SS alternatives considerably, especially when the spreading codes for DS-SS are not well constructed. In a nutshell, the superiority of MC-SS over DS-SS in the presence of multipath justifies its increasing popularity.

4. CONCLUSIONS

We used results from [3] for the optimal coding matrix, and showed that in the case of uncorrelated and equal power paths, the optimal code leads to multi-carrier spread-spectrum (MC-SS) which may significantly outperform direct-sequence spread spectrum (DS-SS). We developed closed-form expressions for the BER performance of digital MC-SS and DS-SS schemes in the presence of frequency-selective multipaths (which destroy code orthogonality). The performance of MC-SS does not depend upon the spreading code; in contrast, the performance of DS-SS does depend upon the spreading code. In general, MC-SS outperforms DS-SS; the performance of DS-SS approaches that of MC-SS if the spreading gain is large and the codes are well chosen. In the case of colored channels (correlated paths and/or paths with unequal powers), MC-SS outperforms DS-SS, especially for short spreading lengths.

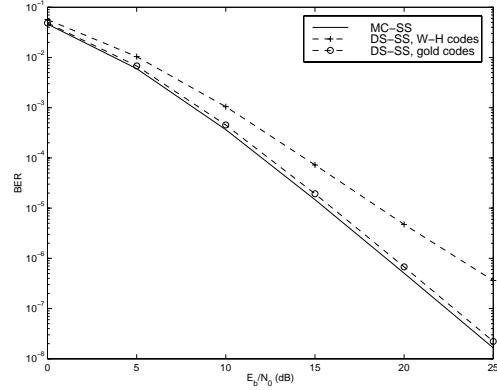


Fig. 3. MC-SS versus DS-SS with $P = 16$

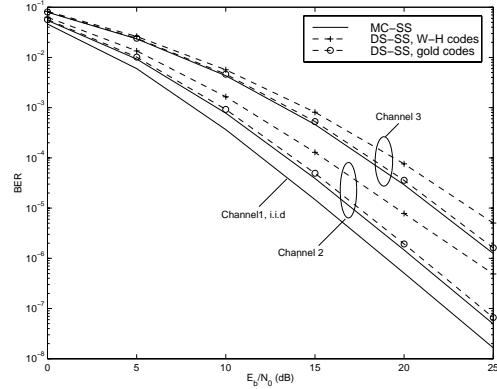


Fig. 4. MC-SS vs DS-SS, different channels

5. REFERENCES

- [1] J. A. C. Bingham, "Multicarrier modulation for data transmission: An idea whose time has come," *IEEE Communications Magazine*, pp. 5–14, May 1990.
- [2] J. K. Cavers, "Optimized use of diversity modes in transmitter diversity systems," in *Proc. VTC*, 1999, pp. 1768–1773.
- [3] G. B. Giannakis and S. Zhou, "Optimal Transmit-Diversity Precoders for Random Fading Channels," in *Proc. Globecom Conf.*, Nov. 27 - Dec. 1, 2000.
- [4] S. Kondo and L. B. Milstein, "Performance of multicarrier DS CDMA systems," *IEEE Trans. Comm.*, pp. 238–46, Feb. 1996.
- [5] S. Parkvall, "Variability of user performance in cellular DS-CDMA—long versus short spreading sequences," *IEEE Trans. Comm.*, pp. 1178–1187, July 2000.
- [6] J. Proakis, *Digital Communications*, 3rd edition, 1995.
- [7] G. J. Saulnier, Z. Ye, and M. J. Medley, "Performance of a spread spectrum OFDM system in a dispersive fading channel with interference," *MILCOM Conf.*, 1998, pp. 679–683.
- [8] M. K. Simon and M.-S. Alouini, "A unified approach to the performance analysis of digital communication over generalized fading channels," *Proc. of the IEEE*, pp. 1860–1877, 1998.
- [9] Z. Wang and G. B. Giannakis, "Wireless multicarrier communications: Where Fourier meets Shannon," *IEEE SP Magazine*, pp. 29–48, May 2000.
- [10] N. Yee, J.-P. Linnartz, and G. Fettweis, "Multicarrier CDMA in indoor wireless radio networks," in *Proc. IEEE PIMRC*, Sept. 1993, pp. 109–113.
- [11] S. Zhou, G. B. Giannakis and A. Swami, "Digital Multi-Carrier versus Direct-Sequence Spread Spectrum for Resistance to Jamming and Multipath," *IEEE Trans. Comm.*, Oct. 2000 (submitted).