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ABSTRACT

Phase images are derived from source images by applying
a modulus operation to each pixel value. Phase unwrap-
ping is the problem of inferring the original, unwrapped val-
ues from the wrapped values, using prior knowledge about
the smoothness of the image. One approach to solving this
problem is to infer the gradient vector field of the unwrapped
image and then integrate the gradient field. The gradient
in a particular direction at a pixel is equal to the observed
pixel difference plus an unknown integer number of shifts.
We introduce a technique for inferring these shifts using the
low-complexity probability propagation algorithm, applied
in a graphical model that prefers shifts that match the phase
image and that constrains the shifts to satisfy the properties
of a gradient field. We present results for a phase image
from the region of the Sandia National Laboratories.

1. INTRODUCTION

Submitted to ICASSP 2001.

It is a pleasure to discover a problem that is considered fun-
damental in a community, that has been shown in some form
to be NP-hard, that intuitively seems as though it should be
solvable, and that remains unsolved. To us, the problem
of inferring unwrapped images from phase-wrapped images
has this character. Phase unwrapping is a fundamental prob-
lem in magnetic resonance imaging [1] and interferomet-
ric synthetic aperture radar (SAR) [2]. Fig. 1 shows a 1-
dimensional phase signal and a 2-dimensional phase im-
age obtained from synthetic aperture radar (SAR) measure-
ments at Sandia National Laboratories, New Mexico.

Phase unwrapping is a well-formed problem only if as-
sumptions are made about what types of unwrapped sig-
nals are preferable. (Otherwise, the original, wrapped im-
age is itself a valid unwrapping that matches the observed
data perfectly.) These assumptions usually take the form of
an incarnation of “neighboring unwrapped values are more
likely to be close together than further apart”. For the 1-
dimensional signal shown above, it is apparent that we can
work our way from left to right, unwrapping measurements
as we go. Keeping track of some previous measurements
allows us to backtrack and make corrections in ambiguous
areas. In fact, if the prior assumption about the smoothness
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Fig. 1. A phase-wrapped 1-dimensional signal and a phase-
wrapped SAR elevation map from Sandia National Laborato-
ries, New Mexico. Pixel values close to 0 are painted white,
whereas pixel values close to 1 (the wavelength) are painted
black.

of the unwrapped signal bounds the sizes of jumps in the
signal, dynamic programming offers an efficient, exact so-
lution to the 1-dimensional phase unwrapping problem.

In contrast, “the final solution” to phase unwrapping in
2-dimensional topologies has not yet been found. Between
any two points in the image (see above), there is a large
number of paths and after the image is unwrapped, each
of these paths must satisfy the prior assumptions. In fact, if
phase unwrapping is cast as a “minimumL0 norm problem”
in integer programming, it turns out to be NP-hard [3].

Approaches to solving the phase unwrapping problem



φ1,1 φ1,1

0.6

0.4

0.8

0.2

φ2,1 φ2,2

φ1,2

(b)
φ2,1

φ1,2

φ2,2

2,1a

1,2b
0.8

0.2

φ2,1
(a) (c)

Fig. 2. Phase measurements in small image patches. From
(a) it appears that a shift occurred between points 1; 1 and
2; 1. From (b), it appears that a shift probably did not occur
between points 1; 1 and 2; 1. (c) The phase at 2,2 can be
predicted from the phases at 2,1 and 1,2, plus the shifts a 2;1

and b1;2.

include least squares estimates (these are not MMSE esti-
mates) [4, 2, 5, 1], integer programming methods [6, 3] and
branch cut techniques [7].

Our approach is motivated by our recent work on the
probability propagation (sum-product) algorithm for itera-
tively decoding error-correcting codes, such as “turbocodes”
[8]. Until recently, optimal decoding on Gaussian channels
was thought to be intractable. However, it turns out that
probability propagation in a graphical model describing the
code solves the problem for practical purposes. In this work,
we show how probability propagation in a graphical model
can be used to unwrap phase images.

2. FACTOR GRAPH MODEL

A sensible goal in solving the phase unwrapping problem
is to infer the gradient vector field of the unwrapped image,
using the wrapped image as input. Then, the gradient field
can be integrated to obtain the unwrapped image. The dif-
ference between two neighboring pixels in the unwrapped
image is equal to the difference between the two pixels in
the wrapped image, minus an unknown integer. So, we can
view phase unwrapping as the problem of finding these inte-
gers, which we will call shifts, subject to the constraint that
the sum of the shifts around every loop (taking into account
the direction of the shifts) must be zero. We refer to this
constraint as the zero curl constraint.

Let �i;j 2 [0; 1) be the phase value at i; j. (We assume
that measurements are taken modulus 1 – i.e., the wave-
length is 1.) Let ai;j 2 I be the unknown shift between
points i; j and i; j + 1. So, the difference in the unwrapped
values at pixels i; j+1 and i; j is �i;j+1 ��i;j � ai;j . Sim-
ilarly, let bi;j 2 I be the unknown shift between points at
i; j and i+ 1; j.

Consider the two patches of image shown in Fig. 2. From
Fig. 2a, the difference in the unwrapped values at 1; 1 and
2; 1 is 0:8 � 0:2 � a1;1. Assuming the values are more
likely to be closer together than further apart, we decide that
a1;1 = 1, so that 0:8�0:2�a1;1 is as close to 0 as possible.

We can make these local decisions for every neighbor-
ing pair of points in a large image, but the resulting set

of shifts will not satisfy the constraint of summing to zero
around every loop. If we make local decisions for the patch
in Fig. 2b, then we decide that a1;1 = 1, b1;2 = 0, a2;1 = 0
and b1;1 = 0. The sum of these shifts around a counter-
clockwise loop is a1;1+b1;2�a2;1�b1;1 = 1, giving a curl
violation. We can fix this curl violation by changing one or
more of the shifts, at the cost of not keeping the unwrapped
pixel differences as close to zero as possible.

To choose the form of the above cost, we develop a
probability model of the shifts and the observed phases. We
choose a probability model on the shifts that is uniform over
all configurations that satisfy the zero curl constraint:

p(a; b) /
Y
i;j

Æ(ai;j + bi;j+1 � ai;j+1 � bi;j); (1)

where Æ() evaluates to 1 if its integer argument is 0 and eval-
uates to 0 otherwise. In fact, p(a; b) should take into account
a preference for smooth surfaces, where the a’s and the b’s
tend to be small. To incorporate this knowledge and also to
avoid an algorithm that requires searching over all integers,
we restrict the values of the a’s and b’s to be in f�1; 0; 1g.

The density of the observed phase measurements can be
formulated recursively. As shown in Fig. 2c, the phase at
2,2 can be predicted from the phases at 2,1 and 1,2, plus the
shifts a2;1 and b1;2. The prediction from 2,1 is �2;1 + a2;1,
while the prediction from 1,2 is �1;2 + b1;2. The average
prediction is (�2;1 + a2;1 + �1;2 + b1;2)=2. Assuming a
Gaussian likelihood we obtain the general form

p(�ja; b) /
Y
i;j

�
exp[�(�i;j+1 � �i;j � ai;j)

2=2�2]

� exp[�(�i+1;j � �i;j � bi;j)
2=2�2]

�
(2)

The joint distribution p(a; b; �) = p(a; b)p(�ja; b) can
be represented using a factor graph [9], as shown in Fig. 3a.
Each white disc corresponds to an unobserved shift (a’s and
b’s) and is associated with a likelihood term from (2), while
each black disc corresponds to a zero curl constraint and is
associated with a term in the prior (1).

3. PROBABILITY PROPAGATION — THE
SUM-PRODUCT ALGORITHM

Using the above model, phase unwrapping consists of mak-
ing inferences about the a’s and b’s in the probability model.
For example, the marginal probability that a i;j has the value
k, given an observed image �, is

p(ai;j = kj�) /
X

a;b:ai;j=k

p(�ja; b)p(a; b): (3)

If there are N pixels, the above sum has roughly 3N terms
(recall that the a’s and b’s can be -1, 0 or 1) and so exact
inference is intractable.
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Fig. 3. (a) Factor graph, with white discs representing shifts
and black discs representing zero curl constraints. Probabil-
ity propagation (the sum-product algorithm) consists of com-
puting 3-vectors (�’s) that are passed between vertices. (b)
shows that constraint-to-shift messages are computed from
incoming shift-to-constraints messages. (c) and (d) show
that shift-to-constraint messages are computed from incom-
ing constraint-to-shift messages.

Recently, it has been shown that the probability propa-
gation message-passing algorithm (sum-product algorithm)
can produce excellent results for inference in graphical mod-
els like the one shown above [8]. It is well-known that prob-
ability propagation is exact in graphs that are trees [10], but
it has been discovered only recently that it can produce ex-
cellent results in graphs with many cycles.

Probability propagation (the sum-product algorithm) con-
sists of computing 3-vectors (�’s) that are passed between
vertices. The elements of the 3-vectors correspond to the
allowed values of the shift variables, -1, 0 and 1. Each of
these 3-vectors can be thought of as a probability distribu-
tion over the 3 possible values that the shift variable can take
on.

As shown in Fig. 3b, constraint-to-shift messages are
computed by combining incoming shift-to-constraints mes-
sages with the zero curl constraint. If �1l, �2k and �3n,
k; l; n 2 f�1; 0; 1g are the incoming messages, then the
outgoing message �4m, m 2 f�1; 0; 1g is computed from

�4m =
X
k

X
l

X
n

Æ(k + l�m� n)�2k�1l�3n: (4)

The 3-vector is usually normalized after this computation.
As shown in Fig. 3c and d, shift-to-constraint messages

are computed by combining incoming constraint-to-shift mes-
sages with the likelihood for the shift. For shifts in the hor-
izontal direction (Fig. 3c), if �1n, n 2 f�1; 0; 1g is the in-
coming message, the outgoing message �2k, k 2 f�1; 0; 1g
is computed from

�2k = �1k exp[�(�i;j+1 � �i;j � k)2=2�2]: (5)

Similarly, for shifts in the vertical direction (Fig. 3d), if �1n,

n 2 f�1; 0; 1g is the incoming message, the outgoing mes-
sage �2k, k 2 f�1; 0; 1g is computed from

�2k = �1k exp[�(�i+1;j � �i;j � k)2=2�2]: (6)

Again, these 3-vectors are usually normalized after they are
computed.

Given a phase image, probability vectors are passed across
the graph in an iterative fashion. Various message-passing
schedules are possible, but in our experiments, messages
were passed in parallel. That is, at each step, a new value
for every message is computed from the values of the neigh-
boring messages in the previous step.

This is an inefficient message-passing schedule, so we
are currently running experiments with a “forward-backward-
up-down”-type schedule, in which messages are passed across
the network to the right, then to the left, then up and then
down. This schedule appears to speed up convergence by
an order of magnitude.

4. EXPERIMENTAL RESULTS

To unwrap the phase image shown in Fig. 1, we first es-
timated the parameter �2 be averaging the squared differ-
ences between neighboring pixels in the wrapped image.
The value of �2 determined in this way is 0:0185.

If decisions for the a’s and b’s are made locally as de-
scribed in the introduction, 281 zero curl constraints are
violated. After 180 iterations of probability propagation,
this number is reduced to 28. These remaining violations
correspond to areas of significant shading/overlay or areas
with abrupt change in the terrain height. For the 512� 512
Sandia phase image, the time required for each iteration of
the probability propagation algorithm is on the order of 1
minute on a 600MHz Pentium machine.

We reconstructed the unwrapped image using a weighted
least-squares error approach [11]. Normally, this method
uses the values of the integers determined locally. Instead of
using the locally determined values, we thresholded the esti-
mates of the posterior marginals, p(ai;j j�) produced by the
probability propagation algorithm. We did not use any addi-
tional information about the interferogram – other methods
use extra information to apply a mask to cover the areas of
significant noise/overlay.

The final surface was reconstructed using 20 iterations
of the weighted least-squares algorithm. Fig. 4 shows the re-
constructed surface obtained from our method. Compared
to the standard least squares estimate (not shown), this re-
construction contains significantly more detail.

5. CONCLUSIONS

We introduced an algorithm that operates in a graphical model
that incorporates the zero curl constraints and data likeli-



Fig. 4. Reconstructed output of the probability propagation algorithm for the SAR phase image shown in Fig. 1 from Sandia
National Laboratories, New Mexico.

hood for phase unwrapping. We found that probability prop-
agation is an efficient algorithm for inferring the relative
shift between neighboring pixels at each point in the image.

The algorithm presented here limits the number of shifts
between neighboring pixels to -1, 0 or 1. We are currently
developing a graphical model that uses Geman and Geman
line processes in order to model 1-dimensional discontinu-
ities (e.g., cliffs) in the unwrapped image.
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