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UNWRAPPING PHASE IMAGES BY PROPAGATING PROBABILITIES ACROSS GRAPHS
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ABSTRACT

Phase images are derived from source images by applying
a modulus operation to each pixel value. Phase unwrap-
ping isthe problem of inferring the original, unwrapped val-
ues from the wrapped values, using prior knowledge about
the smoothness of the image. One approach to solving this
problemistoinfer thegradient vector field of the unwrapped
image and then integrate the gradient field. The gradient
in a particular direction at a pixel is equal to the observed
pixel difference plus an unknown integer number of shifts.
We introduce a technique for inferring these shifts using the
low-complexity probability propagation algorithm, applied
in agraphical model that prefers shifts that match the phase
image and that constrains the shifts to satisfy the properties
of a gradient field. We present results for a phase image
from the region of the Sandia National Laboratories.

1. INTRODUCTION

It isapleasureto discover a problem that is considered fun-
damental in acommunity, that has been shown in someform
to be NP-hard, that intuitively seems as though it should be
solvable, and that remains unsolved. To us, the problem
of inferring unwrapped images from phase-wrapped images
hasthis character. Phase unwrapping is afundamental prob-
lem in magnetic resonance imaging [1] and interferomet-
ric synthetic aperture radar (SAR) [2]. Fig. 1 shows a 1-
dimensional phase signal and a 2-dimensional phase im-
age obtained from synthetic aperture radar (SAR) measure-
ments at Sandia National Laboratories, New Mexico.

Phase unwrapping is a well-formed problem only if as-
sumptions are made about what types of unwrapped sig-
nals are preferable. (Otherwise, the original, wrapped im-
age is itself a valid unwrapping that matches the observed
data perfectly.) These assumptions usually take the form of
an incarnation of “neighboring unwrapped val ues are more
likely to be close together than further apart”. For the 1-
dimensiona signal shown above, it is apparent that we can
work our way from left to right, unwrapping measurements
as we go. Keeping track of some previous measurements
alows us to backtrack and make corrections in ambiguous
areas. Infact, if the prior assumption about the smoothness
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Fig. 1. A phase-wrapped 1-dimensional signal and a phase-
wrapped SAR elevation map from Sandia National Laborato-
ries, New Mexico. Pixel values close to 0 are painted white,
whereas pixel values close to 1 (the wavelength) are painted
black.

of the unwrapped signal bounds the sizes of jumps in the
signal, dynamic programming offers an efficient, exact so-
Iution to the 1-dimensional phase unwrapping problem.

In contrast, “the final solution” to phase unwrapping in
2-dimensional topologies has not yet been found. Between
any two points in the image (see above), there is a large
number of paths and after the image is unwrapped, each
of these paths must satisfy the prior assumptions. In fact, if
phase unwrappingis cast asa“minimum L° norm problem”
in integer programming, it turns out to be NP-hard [3].

Approaches to solving the phase unwrapping problem
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Fig. 2. Phase measurements in small image patches. From
(a) it appears that a shift occurred between points 1,1 and
2,1. From (b), it appears that a shift probably did not occur
between points 1,1 and 2,1. (c) The phase at 2,2 can be
predicted from the phases at 2,1 and 1,2, plus the shifts a 2,1
and bl,z.

include least squares estimates (these are not MM SE esti-
mates) [4, 2, 5, 1], integer programming methods [6, 3] and
branch cut techniques[7].

Our approach is motivated by our recent work on the
probability propagation (sum-product) algorithm for itera-
tively decoding error-correcting codes, such as*turbocodes’
[8]. Until recently, optimal decoding on Gaussian channels
was thought to be intractable. However, it turns out that
probability propagation in a graphical model describing the
code solvesthe problem for practical purposes. Inthiswork,
we show how probability propagation in a graphical model
can be used to unwrap phase images.

2. FACTOR GRAPH MODEL

A sensible goa in solving the phase unwrapping problem
isto infer the gradient vector field of the unwrapped image,
using the wrapped image as input. Then, the gradient field
can be integrated to obtain the unwrapped image. The dif-
ference between two neighboring pixels in the unwrapped
image is equal to the difference between the two pixelsin
the wrapped image, minus an unknown integer. So, we can
view phase unwrapping as the problem of finding theseinte-
gers, which we will call shifts, subject to the constraint that
the sum of the shifts around every loop (taking into account
the direction of the shifts) must be zero. We refer to this
constraint as the zero curl constraint.

Let ¢;,; € [0,1) bethe phasevalueat i, j. (We assume
that measurements are taken modulus 1 — i.e., the wave-
lengthis 1.) Let a;; € Z be the unknown shift between
pointsi, j and i, j + 1. So, the difference in the unwrapped
valuesat pixelsi,j+ 1andi, j iS(f)i7j+1 - gﬁi,j — @, j- Sim-
ilarly, let b; ; € 7 be the unknown shift between points at
i,jandi+1,j.

Consider thetwo patchesof imageshowninFig. 2. From
Fig. 2a, the difference in the unwrapped values at 1,1 and
2,1is0.8 — 0.2 — a;,;. Assuming the values are more
likely to be closer together than further apart, we decide that
a1 =1,50that 0.8 —0.2—a, ; isascloseto 0 as possible.

We can make these local decisions for every neighbor-
ing pair of points in a large image, but the resulting set

of shifts will not satisfy the constraint of summing to zero
around every loop. If we make local decisions for the patch
in Flg 2b, then we decide that a1 = 1, b172 =0, az;1 = 0
and b;1 = 0. The sum of these shifts around a counter-
clockwiseloopisai,1 +bi2 —as 1 —b11 = 1, givingacurl
violation. We can fix this curl violation by changing one or
more of the shifts, at the cost of not keeping the unwrapped
pixel differences as close to zero as possible.

To choose the form of the above cost, we develop a
probability model of the shifts and the observed phases. We
choose aprobability model on the shiftsthat isuniform over
al configurationsthat satisfy the zero curl constraint:

pla,b) o [[6(as; +bijir —aijer —bij), (1)
]
where () evaluatesto 1if itsinteger argumentis 0 and eval-
uatesto O otherwise. Infact, p(a, b) should takeinto account
a preference for smooth surfaces, where the a’s and the b's
tend to be small. To incorporate this knowledge and also to
avoid an algorithm that requires searching over all integers,
we restrict the values of thea’sand b’stobein {—1,0,1}.
The density of the observed phase measurements can be
formulated recursively. As shown in Fig. 2c, the phase at
2,2 can be predicted from the phases at 2,1 and 1,2, plusthe
shifts a1 and by ». The prediction from2,1is ¢21 + as,1,
while the prediction from 1,2 is ¢4 » + b1 2. The average
prediction is (¢2,1 + as;1 + ¢1,2 + b12)/2. Assuming a
Gaussian likelihood we obtain the general form

p(¢la,b) H(exp[_(¢i7j+1 — ij —aij)’ /207

i,j
exp[=(bi15 — b1 —bi)?/20%)

The joint distribution p(a, b, ¢) = p(a, b)p(¢|a,b) can
be represented using afactor graph [9], as shownin Fig. 3a
Each white disc correspondsto an unobserved shift (a’s and
b’s) and is associated with alikelihood term from (2), while
each black disc corresponds to a zero curl constraint and is
associated with aterm in the prior (1).

3. PROBABILITY PROPAGATION — THE
SUM-PRODUCT ALGORITHM

Using the above model, phase unwrapping consists of mak-
ing inferencesabout the a’sand b’sin the probability model.
For example, the marginal probability that a ; ; hasthe value
k, given an observed image ¢, is

plai; =kl¢) o< > p(dla,b)pla,b). (3
a,b:a; j=k

If there are N pixels, the above sum has roughly 3% terms
(recall that the a’s and b’s can be -1, 0 or 1) and so exact
inferenceisintractable.



Fig. 3. (a) Factor graph, with white discs representing shifts
and black discs representing zero curl constraints. Probabil-
ity propagation (the sum-product algorithm) consists of com-
puting 3-vectors (u's) that are passed between vertices. (b)
shows that constraint-to-shift messages are computed from
incoming shift-to-constraints messages. (c) and (d) show
that shift-to-constraint messages are computed from incom-
ing constraint-to-shift messages.

Recently, it has been shown that the probability propa-
gation message-passing algorithm (sum-product algorithm)
can produceexcellent resultsfor inferencein graphical mod-
elslikethe one shown above[8]. It iswell-known that prob-
ability propagationis exact in graphsthat are trees [10], but
it has been discovered only recently that it can produce ex-
cellent results in graphs with many cycles.

Probability propagation (the sum-product algorithm) con-
sists of computing 3-vectors (1's) that are passed between
vertices. The elements of the 3-vectors correspond to the
allowed values of the shift variables, -1, 0 and 1. Each of
these 3-vectors can be thought of as a probability distribu-
tion over the 3 possible valuesthat the shift variable can take
on.

As shown in Fig. 3b, constraint-to-shift messages are
computed by combining incoming shift-to-constraints mes-
sages with the zero curl constraint. If w1, por and usy,
k,l,n € {-1,0,1} are the incoming messages, then the
outgoing message ftam, m € {—1,0,1} iscomputed from

pam =D > S(k+1—m —n)puskpuipzn.  (4)
k I n

The 3-vector is usually normalized after this computation.

As shown in Fig. 3c and d, shift-to-constraint messages
are computed by combiningincoming constrai nt-to-shift mes-
sages with the likelihood for the shift. For shiftsin the hor-
izontal direction (Fig. 3c), if p1,, n € {—1,0,1} isthein-
coming message, the outgoing message :2, k € {—1,0,1}
is computed from

por = pag expl—(¢ij+1 — ¢ij — k)?/20%].  (5)

Similarly, for shiftsin thevertical direction (Fig. 3d), if 1,

n € {—1,0, 1} istheincoming message, the outgoing mes-
sage paok, k € {—1,0,1} iscomputed from

pzk = pg exp[—(bit1,; — ¢, — k)?/20%]. (6)

Again, these 3-vectorsare usually normalized after they are
computed.

Given aphaseimage, probability vectorsare passed across
the graph in an iterative fashion. Various message-passing
schedules are possible, but in our experiments, messages
were passed in paralel. That is, at each step, a new value
for every message is computed from the val ues of the neigh-
boring messages in the previous step.

This is an inefficient message-passing schedule, so we
are currently running experimentswith a“ forward-backward-
up-down” -type schedul e, in which messages are passed across
the network to the right, then to the left, then up and then
down. This schedule appears to speed up convergence by
an order of magnitude.

4. EXPERIMENTAL RESULTS

To unwrap the phase image shown in Fig. 1, we first es-
timated the parameter 02 be averaging the squared differ-
ences between neighboring pixels in the wrapped image.
The value of o2 determined in thisway is0.0185.

If decisions for the a’s and b’s are made locally as de-
scribed in the introduction, 281 zero curl constraints are
violated. After 180 iterations of probability propagation,
this number is reduced to 28. These remaining violations
correspond to areas of significant shading/overlay or areas
with abrupt change in the terrain height. For the 512 x 512
Sandia phase image, the time required for each iteration of
the probability propagation algorithm is on the order of 1
minute on a 600MHz Pentium machine.

We reconstructed the unwrapped image using awei ghted
least-squares error approach [11]. Normaly, this method
uses the values of theintegers determined locally. Instead of
using thelocally determined values, we threshol ded the esti-
mates of the posterior marginals, p(a; ;|¢) produced by the
probability propagation algorithm. We did not use any addi-
tional information about the interferogram — other methods
use extra information to apply a mask to cover the areas of
significant noise/overlay.

The final surface was reconstructed using 20 iterations
of thewelghted least-squares algorithm. Fig. 4 showsthere-
constructed surface obtained from our method. Compared
to the standard least squares estimate (not shown), this re-
construction contains significantly more detail.

5. CONCLUSIONS

We introduced an algorithm that operatesin agraphical model
that incorporates the zero curl constraints and data likeli-



Fig. 4. Reconstructed output of the probability propagation algorithm for the SAR phase image shown in Fig. 1 from Sandia
National Laboratories, New Mexico.

hood for phase unwrapping. Wefound that probability prop-
agation is an efficient algorithm for inferring the relative
shift between neighboring pixelsat each point in the image.

The algorithm presented here limits the number of shifts

between neighboring pixelsto -1, 0 or 1. We are currently
developing a graphical model that uses Geman and Geman
line processes in order to model 1-dimensional discontinu-
ities (e.g., cliffs) in the unwrapped image.
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