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ABSTRACT

This paperpresentanimprovementof the AlternatingProjection
(AP) algorithmfor detectinghe numberof coherensignalsbased
ontheMinimum DescriptionLength(MDL) principleusingauni-

form lineararrayof sensorsThecriterionof the AP algorithmfor

the detectionbecomesdndefinite, when estimatedbearingsmore
thanoneapproacho theidenticalvalue. Thispaperderivesanirre-

ducibleform of the AP criterionfor thedetectionwhich never get
indefinite. Theirreducibleform is representeésa rationalfunc-

tion andreal-\aluedversionof FFT canbe exploited efficiently.

The proposedalgorithmreduceghe orderof the amountof arith-

meticoperations Finally, simulationresultsareshavn to demon-
stratethevalidity of the proposedalgorithm.

1. INTRODUCTION

In mary scene®f passve sensomarrayprocessingthedetectiorof
thenumberof signalsmpingingonthearrayis oneof themostim-
portantproblemsespeciallyin thethe superresolutiontechniques
for bearingestimationsuchas,MUSIC [1] andML [2, 3, 4]

Wax andKailath [5] have proposecan approachto this prob-
lem, basedon the information theoreticcriteria suchasthe AIC
andthe MDL (Minimum DescriptionLength). This approachis
applicableto the caseof incoherensignals,but not to the caseof
the coherensignals. Wax andZiskind [6] have proposedanother
approachfor detectingthe numberof coherentsignalsbasedon
the MDL principle. The signalmodel of this approachincludes
bearingparametetto be determinedso thatthe MDL costfunc-
tion shouldbe minimized. This minimizing processtakes huge
computationatostbecausef multivariateoptimizationproblem
involved. Suzuki,etal. [7] have proposedan efficient algorithm
for theapproachin [6]. We shallcall it the AlternatingProjection
(AP) algorithmsinceit efficiently utilizesa projectionoperatioras
well asthe AP algorithmfor maximumbearingestimation2].

This paperpresentsan improvementof the AP algorithmfor
detectingthe numberof coherensignalsbasedon the MDL prin-
ciple usinga uniform linear arrayof sensors.The criterion of the
AP algorithmfor thedetectiorbecomesndefinite,whenestimated
bearingsmorethanoneapproacho theidenticalvalue. This paper
derivesanirreducibleform of the AP criterion,which nevergetin-
definite. Theirreducibleform is representedsa rationalfunction
andreal-waluedversionof FFT canbe exploited efficiently. The
proposedalgorithmreduceghe orderof the amountof arithmetic
operations.Finally, simulationresultsare shavn to demonstrate
thevalidity of the proposedmprovement.

2. FORMULATION

Consideranarraycomposeaf p sensorsith arbitraryknown lo-
cationsandarbitraryknown directionalcharacteristicandassume
that ¢ narrav-bandsignals,centeredarounda known frequeng,
wo, impingeonthearrayfrom locationsf, 62, ..., 04.

Thecomple-valuedp-dimensionalectoratthen-th snapshot
of the complex envelopesfor the obsenation from the array are
expresseds

q

T, = Za((}i)si,n + 1y,

i=1

n=12,...N (1)

wherea(0) is the “steeringvector” determinedy the arraycon-
figuration. s; , is a receved signal from the i-th sourceat the
referencepoint, i.e., the positionof thefirst sensorandn,, is the
comple-valuedp-dimensionalzectorconsistingof additive noises
atsensors.

The detectionproblemcanbe statedasthe problemto select
the numberq form the possiblevariation{ 0, 1, ...,p — 1 } when
giventhe N snapshot§x., }.

To solve the problem,we male the following assumptions.

Al) Any subsebf p steeringvectorsfrom the array manifold is
linearlyindependentThisrequiredio guarante¢heunique-
nessof the solutionof bearings.

A2) thenoisesn,, areindependerdndidenticallydistributedcom-
plex zero-meanGaussiatvectorswith variancematrix o?I,
whereo is unknowvn scalarandI is anidentity matrix,

The MDL of the modelwith the signalnumberq for the ob-
seneddataxz,,n =1, 2, ..., N, is givenas[6]

MDL(q) = N(p — @) mn LP?(O') + v(p, ¢, N)  (2)

where
1
v(p,a.N) = 54(2p —q+1)log N ®)
OW={066; --- 6, } 4)
6 — arg minL(Pv‘Z)(@(Q)) (5)
oa)
1 p—q
- Z by
P9 (@(q)) - P 1= (6)
p—q 1/(p—a)
k=1



e,k =1,2,---, p— g arenon-zerceigervaluesof the matrix

Pj(@(@)RPj(@(Q)) )
where
N
R = Z Ty (8)
A©Y) =[ a(61) a(62) --- a(by) | )
PA(@(q)) — A(@(q)){AH(6(‘1))A(6)(‘1))}*1AH(6(‘1))
(10)
P;(09) =I-P,4(07) (11)

wherethe superscriptd indicatesthe Herimitian transposeof a
matrix.

The numberof signalsis determinedasthe value of ¢ which
minimizesMDL (q) in (2).

3. ALGORITHMS

Thealternatingminimization(AM) algorithmis a simpleiterative
techniquefor multidimensionaminimization. At every iterationa
minimizationis carriedoutwith respecto asingleparametewhile
all the other parametersre held fixed. The bearingparameters
0@ minimizing L9 (©) maybe obtainedasfollows.

[Initialization Phase]

First assuminga single source,q = 1, find #; minimizing
LV (@MW), Next, assumingtwo sourcesg = 2, and fixing
0, atthevalueobtainedfor the singlesource find 62 minimizing
L®2(0®), Continuein this fashionuntil all the initial values
for 6x, k =1, 2, ...,q arecomputed.

[CorvemgencePhase]

Repeathefollowing updatingprocessuntil all parametergsre
cornverged. At eachupdatingprocessfind thevalueof oneparam-
etet say6y, which minimizesthe criterion L®% (©(9)) while all
otherparameterareheldfixed,andthenchangeheindex k of the
parameteto beupdatednto (¢ mod ¢) + 1.

From now on, we concentrateon the determinationof bear
ing parameter®(? which minimize L (©(?)) in (6) andthe
superscript$p, ¢) and(q) will beomitted.

3.1. Alternating Minimization (AM) Algorithm

Let V v (©) beap x (p—¢q) matrixof which (p—¢q) columnsmale
up an orthonormalsystemof the noise subspacehat is the or-
thogonalcomplemenbof thesignalsubspacspa{ A(©)} = spar{
a(01),a(b2),---,a(fy)}. Vn(O) canbeevaluatedby applying
Schmidts orthogonalizatiorto the columnsof P%(0).

L tr{Ry(0)}
HO = e ra@)) 79 42
Ry (©) = VI(O)RV y(0) (13)

At eachstepin eachiterationwith respecto a singleparam-
eter L(©) in (12) hasto be evaluated. It requiresO((p — ¢)p?)
multiplications.

3.2. Alternating Projection (AP) Algorithm

The Alternating Projection(AP) algorithm[7] for the problemof
minimizing L(©) in (12) is summarizedsfollows. Define

Or={0102 - Oy Op1-- 05} (14)
A =[a(01) ---a(Ok-1) a(Or+1) -~ a(fq) ] (15)
P, = A {Af A AT (16)
Pi =I—-Pa, (17)

Entriesin ©;, arefixedparameterandd,, is variable.Let V v, be

ap x (p — ¢+ 1) matrixof which (p — ¢ + 1) columnscompose
an orthonormalsystemof the orthogonalcomplemenbf the sub-

spacespa{ A, }. Vn, canbe evaluatedby applying Schmidts

orthogonalizatiorio the columnsof P 4, . Define

Ry, = VN, RV, (18)
Thenwe have

Di(61) = det{ Rn(©)}
aH(Hk)VNk R;,i V%ka(ek)

= det{ R, } a0V, VE a(br) (19)
Ti(6x) = tr{Rn ()}
_ aH(ek)VNkRNkV%ka(gk)
=tr{Rn,} — a (61)V i, VY a(0r) (20)
Ty (6r)
Lu(Bh) = P~ -

Di/(pf(J) (Qk)

Vn,, Ry, Ry, de{ Ry, } andtr{ Ry, } areevaluatecbe-
fore startingthe iterationwith respecto the single parameterdy,.
Thereforeat eachstepin eachiteration,only the Hermitianforms
in (19) and(20) areevaluated.lt requiresO((p — ¢ + 1)) multi-
plications.

3.3. Irreducible Form of AP Algorithm (API)

When 6, in (19) approacheso oneof the valuesof the fixed pa-
rameterd);, i # k, bothof the numeratoandthe denominatoiof
Dy, (0y) vanish,andthen Dy, (65) becomesndefinite. The same
thing occursfor 1% (6x). This kind of numericaldifficulties must
be avoid.

Thesteeringvectorof auniform lineararrayis representeds

a(f)=[1 e % 20 DT (22)

wherethe superscriptd” indicatesthe transposef a matrix. 6 is
thedifferencein phasebetweeradjacensensors.

DefinethepolynomialW (z) having zerosatz = €%, i = 1,
wk—1,k+1,..,q

q
Wk(z) = H(z — e]oi) =wo +wiz+ -+ wqflzq_l (23)
i=1
ik



andalsodefinethefollowing matrixusingthecoeficientsof W, (z)
as

p—q+1
. BN
wo 0 0
w1 wWo 0
Wi= | (24)
Wqg—1 Wq—2 . wWo > D
0 Wq—1 w1
L 0 0 Wq—1 1)
Thenwe have
a (O)Wr = [Wi(2) 2Wi(2) -+ 2P IWi(2)]|,__jo
= Wi(2)¢pq(2)],_so (25)
Crg(x)=[12z v 277 (26)
and
a"(0)W =0 fori=1,2,---  k—1k+1,---,q (27)

Eqn (27) indicatesthatall columnvectorsof W, areorthogonal
toa(h;)fori =1,2,--- ,k—1,k+1,---,q. Thereforetheor-
thonormalsystemof the orthogonalcomplemenbf the subspace
spad Ay} canbe obtainedby applying Schmidts orthogonaliza-
tion to columnvectorsof W,.

Wi =VnN, By (28)

where By, is a lower or uppertriangularmatrix. The inversion
kal can be computedefficiently by the forward substitutionor
the backward substitution.

Vi, = WiB;," (29)

Substituting (29) into (19) and (20), a common factor
Wi (2)W;i(1/z"), appearsn the numeratorsand the denomina-
tors, wherez* is the complex-conjugateof z. By cancelingthe
commonfactor irreducibleforms of Dy (6x) and Ty (0y) arede-
rivedas

¢ INTDE, (2)

Dy, (0) = def{ Rn, } Cpgs(2)DiC,_ o (2) ‘zeje >
_ Cp—q* (Z)Nl(c”)cp—q(z)
Tw(0) = tr{RnN,} — Cp g (2)DiC, 4 (2) —eib (31)
where
N (det) B RNkB 1,H { (det f’;ZO (32)

N =B 'Ry, B " = {v{7)09, (33)

Dy= B.'B;""= {5:;}7% (34)

andefq* (Z) = C}I)—Ifq(l/z*)

Eqgns.(30)and(31) canbewrittenin thefollowing forms.

R{n"" (2)}
Dr(6) = det{ R —_— = 35
1k (0) { R, } R{dr(2)} e (35)
Rin" ()}
Tx(0) = tr{RN, } — ——F—— 36
k( ) { Nk} R{dk(z)} e ( )
wheren %" (z), n{'") () anddy (=) arepolynomialsgivenas
n,(edet) () = n(()det) + ngdet)z 4t nz(,df;) 2P (37)

() =g+ T (38)

di(2) =do 4+ diz + -+ dp_g2” 1 (39)

n(()det Z V(det det) =9 Z v rjetzn (40)
tr) Z V(tr

= Z 8z
=0

i) =2 Z v (4D

dm =2 i i i-m 42)

form=1,2,---,p—q

andR{-} indicatesthereal partof acomple« number

Sincetheirreducibleform of the AP criterion representeds
(21) using (35) and (36) doesnot have ary indefinite point, the
computationof the criterion usingthe irreducibleform is always
numericallystable.

Beforestartingthe one-dimensionadearchwith respecto the
singleparameterdy,, thepolynomialsy{**” (2), n{™ (z) anddi (2),
areobtained.Its computationatostis not reduced:ompareleth
AP algorithmin 3.2. However, mostof the computationalcost
in a whole algorithm is consumedfor the iteration in the one-
dimensionalsearch.Using the irreducibleform, eachstepin the
one-dimensionakearchrequiresonly the evaluation of the real
partsof threepolynomialsandjust few arithmeticoperation.The
amountof the arithmeticoperationsrequiredis O(p — ¢). The
orderof the computatiorcostis reduced.

Furthermorejn orderto evaluatethe real partsof the polyno-
mials, thereal-valuedversionof FFT canbeapplied.Let {z, } be

asequencef comple numbers
Zn =Tn+ jTn, n=0,1, .., M. (43)

andlet { Z,, } bethe Fourier coeficientsobtainedby applyingthe
N-point FFT of {z,} filled with zeroforn = M + 1,...,N — 1,

Zn = Rn + j X0, N —1. (44)

whereN = 2" and N > 2M. Definea real-valuedsequence
{z{) as

n=0,1, ..,

Zgr) —ro, (45)
) :%{TH Yz}, n=1,2 ., M (46)
A0 :%{TH —za}, n=12 ..M (47)

20 =0, n=M+1, M+2, ..., N—M—1. (48)
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Fig. 1. Comparisorof AM, AP andAPI algorithms.

Applying the real-valuedversionof FFT (RFFT) to {zy(l”}, we
have the Fourier coeficients

zZ0 =RY +ix, n=0,1, .., NJ2. (49)

Thentherealpart{ R, } canbeobtainedas

R,=R7 -x, n=o01, .. N/2, (50)
Ry =R+ X, n=1,.., N2-1. (51

To obtain{R.}, n = 0,1, .., N — 1 from {z,}, n = 0, 1,
..., M, useof the N-point RFFT is more efficient than the or-
dinary complex-valuedFFT. Furthermorethe N-point RFFT re-
quiresN (log, N — 3) +4+2M realmultiplications while thedi-
rectevaluationof therealpartof thepolynomialof order M for the
sameN pointsrequire2 N M realmultiplications. Theamountof
multiplicationsin both of RFFT and the polynomial evaluation,
the preparatiorof ¢72**/M ¢ = 0, 1, ..., M — 1 is excepted.The
useof the RFFT hasthe adwantageover the direct evaluation of
polynomialswhen, i.e., (p — q), is relatively large.

4. SSIMULATIONS

Simulationresultsareshavn in Fig. 1. Thearrayis uniform and
linear consistingof 4 sensorsp = 4, spacedhalf a wavelength
apart.Thek-th signal,k = 1, 2, 3,impingesfrom 8(k—1)° onthe
sensorarray All signalsarecoherent.Simulationsareperformed
whenthesignalnumberg is 0, 1, 2 and3. Wheng is not0, thefirst
signalto g-th signalimpingeon the sensoiarray

200 snapshotsre usedfor the detectionof the signal num-
ber. In one-dimensionaearchatfirst 512 pointsaresearchedor
roughdetectiorandthenFibonaccimethodis useduntil the preci-
sionachievesle-5 in phase.The correctrateof signaldetection
in (a) andtheaverageof theamountof all arithmeticoperationse-
quiredfor the detectionin (b) arebasedn 200independentrials.
TheArabic numeraldn Fig. 1 shov the numberof signals.

It is found From Fig. 1 (a) thatAM, AP andAPI algorithm
detectthe numberof coherentignalswith the samecorrectrate.
Fig. 1 (b) indicatesthatthe proposedAPI algorithmrequiresless
amountof arithmeticoperationscomparedvith AM andAP algo-
rithms. It is lessthanabout1/20 of AM algorithmand1/3 of AP
algorithm.

5. CONCLUSIONS

This paperhaspresentegnimprovementof the AP algorithmfor

detectingthe numberof coherentsignalsbasedon the Minimum

DescriptionLength(MDL) principle usinga uniform lineararray
of sensorsThecriterionof the AP algorithmfor the detectionbe-

comesndefinite,whenestimatedearingsnorethanoneapproach
to theidenticalvalue. This paperhasderived anirreducibleform

of the AP criterionto achieve numericalstability andto reducethe

computationatost.Finally, simulationresultshave beenshovn to

demonstratéhevalidity of the proposedmprovement.
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