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ABSTRACT

This paperpresentsanimprovementof theAlternatingProjection
(AP) algorithmfor detectingthenumberof coherentsignalsbased
ontheMinimum DescriptionLength(MDL) principleusingauni-
form lineararrayof sensors.Thecriterionof theAP algorithmfor
the detectionbecomesindefinite,whenestimatedbearingsmore
thanoneapproachto theidenticalvalue.Thispaperderivesanirre-
ducibleform of theAP criterionfor thedetection,whichneverget
indefinite. The irreducibleform is representedasa rationalfunc-
tion andreal-valuedversionof FFT canbe exploited efficiently.
Theproposedalgorithmreducestheorderof theamountof arith-
meticoperations.Finally, simulationresultsareshown to demon-
stratethevalidity of theproposedalgorithm.

1. INTRODUCTION

In many scenesof passivesensorarrayprocessing,thedetectionof
thenumberof signalsimpingingonthearrayis oneof themostim-
portantproblems,especiallyin thethesuperresolutiontechniques
for bearingestimationsuchas,MUSIC [1] andML [2, 3, 4]

Wax andKailath [5] have proposedanapproachto this prob-
lem, basedon the information theoreticcriteria suchas the AIC
andthe MDL (Minimum DescriptionLength). This approachis
applicableto thecaseof incoherentsignals,but not to thecaseof
thecoherentsignals.Wax andZiskind [6] have proposedanother
approachfor detectingthe numberof coherentsignalsbasedon
the MDL principle. The signalmodel of this approachincludes
bearingparameterto be determinedso that the MDL cost func-
tion shouldbe minimized. This minimizing processtakes huge
computationalcostbecauseof multivariateoptimizationproblem
involved. Suzuki,et al. [7] have proposedan efficient algorithm
for theapproachin [6]. We shallcall it theAlternatingProjection
(AP) algorithmsinceit efficiently utilizesaprojectionoperationas
well astheAP algorithmfor maximumbearingestimation[2].

This paperpresentsan improvementof theAP algorithmfor
detectingthenumberof coherentsignalsbasedon theMDL prin-
ciple usinga uniform lineararrayof sensors.Thecriterionof the
AP algorithmfor thedetectionbecomesindefinite,whenestimated
bearingsmorethanoneapproachto theidenticalvalue.Thispaper
derivesanirreducibleform of theAP criterion,whichnevergetin-
definite.Theirreducibleform is representedasa rationalfunction
andreal-valuedversionof FFT canbe exploited efficiently. The
proposedalgorithmreducestheorderof theamountof arithmetic
operations.Finally, simulationresultsareshown to demonstrate
thevalidity of theproposedimprovement.

2. FORMULATION

Consideranarraycomposedof � sensorswith arbitraryknown lo-
cationsandarbitraryknown directionalcharacteristics,andassume
that � narrow-bandsignals,centeredarounda known frequency,��� , impingeon thearrayfrom locations��� , �	� , ..., ��
 .

Thecomplex-valued� -dimensionalvectoratthe� -th snapshot
of the complex envelopesfor the observation from the arrayare
expressedas
���� 
� � � ��� � �

������� � ��� �!�#" � �%$&"�'&")(*(+(*"�, (1)

where � � �
�

is the “steeringvector” determinedby thearraycon-
figuration.

��� � � is a received signal from the - -th sourceat the
referencepoint, i.e., thepositionof thefirst sensor, and �!� is the
complex-valued� -dimensionalvectorconsistingof additivenoises
at sensors.

Thedetectionproblemcanbestatedasthe problemto select
thenumber� form thepossiblevariation .0/ , $ , ..., �21 $�3 when
giventhe , snapshots. 
��#3 .

To solve theproblem,we make thefollowing assumptions.

A1) Any subsetof � steeringvectorsfrom the arraymanifold is
linearlyindependent.Thisrequiredto guaranteetheunique-
nessof thesolutionof bearings.

A2) thenoises�!� areindependentandidenticallydistributedcom-
plex zero-mean,Gaussianvectorswith variancematrix 4 �65 ,
where4 is unknown scalarand 5 is anidentitymatrix,

TheMDL of the modelwith the signalnumber� for theob-
serveddata
 � , � �%$ , 2, ..., , , is givenas[6]

MDL
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�A �CBD > 
�A � �FE � � " � "G, � (2)

where E � � " � "G, � � $' � � ' �81 � �F$ �H9*IKJ , (3)D > 
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^ ]
, d �%$ , 2, N�NeN , �81 � arenon-zeroeigenvaluesof thematrixf�g h � D > 
�A �ji f2g h � D > 
�A �
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where i �lk�� � � 
���
0m� (8)
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wherethe superscriptr indicatesthe Herimitian transposeof a
matrix.

Thenumberof signalsis determinedasthevalueof � which
minimizesMDL

� � � in (2).

3. ALGORITHMS

Thealternatingminimization(AM) algorithmis a simpleiterative
techniquefor multidimensionalminimization.At every iterationa
minimizationiscarriedoutwith respecttoasingleparameterwhile
all the other parametersareheld fixed. The bearingparametersD > 
�A minimizing

< > @ � 
�A � D � maybeobtainedasfollows.

[Initialization Phase]
First assuminga single source,� �s$ , find ��� minimizing

< > @ � �jA � D > �tA � . Next, assumingtwo sources,� �u' , and fixing�M� at thevalueobtainedfor thesinglesource,find �	� minimizing
< > @ � ��A � D > �cA � . Continuein this fashionuntil all the initial values
for � ] , d �%$ , ' , ..., � arecomputed.

[ConvergencePhase]
Repeatthefollowing updatingprocessuntil all parametersare

converged.At eachupdatingprocess,find thevalueof oneparam-
eter, say � ] , which minimizesthecriterion

< > @ � 
�A � D > 
�A � while all
otherparametersareheldfixed,andthenchangetheindex d of the
parameterto beupdatedinto

� d SvIxw � � � $ .
From now on, we concentrateon the determinationof bear-

ing parameters
D > 
�A which minimize

< > @ � 
RA � D > 
�A � in (6) andthe
superscripts

� � " � � and
� � � will beomitted.

3.1. Alternating Minimization (AM) Algorithm

Let y k � D
�

bea �=z � �{1 � � matrixof which
� �|1 � � columnsmake

up an orthonormalsystemof the noisesubspacethat is the or-
thogonalcomplementof thesignalsubspacespan. n � D � 3 = span.� � � �

�
, � � � �

�
, N)N�N , � � � 


� 3 . y k � D
�

canbeevaluatedby applying
Schmidt’s orthogonalizationto thecolumnsof

f g h � D �
.< � D � � $�81 � tr . i k � D
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det. i k � D
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�
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At eachstepin eachiterationwith respectto a singleparam-
eter

< � D �
in (12) hasto be evaluated. It requires} �c� �~1 � � � � �

multiplications.

3.2. Alternating Projection (AP) Algorithm

TheAlternatingProjection(AP) algorithm[7] for theproblemof
minimizing

< � D �
in (12) is summarizedasfollows. DefineD ] � .�� � � � N�N�N�� ] [ � � ])� � N�N)N�� 
 3 (14)n ] �%o � � �M�
� N�NeN � � �

] [ � � � � �
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��q
(15)f hW� � n ] . n m] n ] 3 [ � n m] (16)fvg hW� � 5 1 f hW� (17)

Entriesin
D ]

arefixedparametersand� ] is variable.Let y k � be
a ��z � �Z1 � � $ � matrixof which

� �Z1 � �F$ � columnscompose
anorthonormalsystemof theorthogonalcomplementof thesub-
spacespan. n ] 3 . y k � canbe evaluatedby applyingSchmidt’s
orthogonalizationto thecolumnsof

f h �
. Definei

k � � y mk �
i y k � (18)

Thenwehave� ] � � ] � � det. i k � D
� 3� det. i k � 3 � m � �
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]\�
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(20)<�] � � ]\� � $�81 � � ] � � ]\�� �jb > @\[ 
�A] � � ]:� (21)

y k � ,
i
k � ,
i [ �k � , det. i k � 3 andtr . i k � 3 areevaluatedbe-

fore startingtheiterationwith respectto thesingleparameter, � ] .
Thereforeat eachstepin eachiteration,only theHermitianforms
in (19)and(20) areevaluated.It requires} �j� �21 � �F$ � � � multi-
plications.

3.3. Irreducible Form of AP Algorithm (API)

When � ] in (19) approachesto oneof thevaluesof thefixedpa-
rameters� � , -v�� d , bothof thenumeratorandthedenominatorof� ] � � ]:� vanish,andthen

� ] � � ]:� becomesindefinite. The same
thing occursfor

� ] � � ] � . This kind of numericaldifficultiesmust
beavoid.

Thesteeringvectorof a uniform lineararrayis representedas

� � �
� �%o+$L� [#��� � [ � �R� (*(+(�� [	��> @:[ �tA � qG� (22)

wherethesuperscripts
�

indicatesthe transposeof a matrix. � is
thedifferencein phasebetweenadjacentsensors.

Definethepolynomial � ] ��� � having zerosat
� � � ���t� , - �%$ ,

..., d 1 $ , d ��$ , ..., �
� ] ��� � � 
`� � ����� ] ��� 1 �

���j� � �7���0��� � � � N)N�N ��� 
 [ � � 
 [ � (23)



andalsodefinethefollowingmatrixusingthecoefficientsof � ] ��� �
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Thenwe have

� m � �
� � ] �¦o � ] ��� � � � ] ��� � N�N�N¨§ @:[ 
 � ] ��� �CqH©© ª �¬«G­j®� � ] ��� �c¯ @:[ 
 ��� �\©© ª �¬«G­j® (25)¯ @\[ 
 ��� � �%o�$ � N�N�N � @:[ 
 q (26)

and

� m � �
��� � ] �±° for - �%$&")'&" N�N)N " d 1 $&" d �F$&" N�N�N " � (27)

Eqn (27) indicatesthatall columnvectorsof
� ]

areorthogonal
to � � �

� �
for - �²$&"�'&" NeN�N " d 1 $&" d �³$&" N�N�N " � . Thereforetheor-

thonormalsystemof the orthogonalcomplementof the subspace
span. n ] 3 canbeobtainedby applyingSchmidt’s orthogonaliza-
tion to columnvectorsof

� ]
.� ] � y k �K´

]
(28)

where
´ ]

is a lower or uppertriangularmatrix. The inversion´ [ �] canbe computedefficiently by the forward substitutionor
thebackwardsubstitution.y k � � �

] ´ [ �]
(29)

Substituting (29) into (19) and (20), a common factor,� ] ��� � �±µ] � $&¶ � µ � , appearsin the numeratorsand the denomina-
tors, where

� µ is the complex-conjugateof
�
. By cancelingthe

commonfactor, irreducibleforms of
� ] � � ]\� and

� ] � � ]H� arede-
rivedas� ] � � � � det. i k � 3

¯ @:[ 
 µ ��� �j·
>*¸ «t¹ A] ¯ @\[ 
 ��� �¯ @:[ 
 µ ��� �tº ]\¯ @:[ 
 ��� �
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� ] � � � � tr . i k � 3 1
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 µ ��� �t·

> ¹�» A] ¯ @:[ 
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 µ ���
�jº ]\¯ @\[ 
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where · >*¸ «t¹ A] � ´ [ �] i [ �k � ´
[ � � m] � . E >*¸ «�¹ A� � � 3 @:[ 
� � � � � (32)· > ¹�» A] � ´ [ �] i k �\´
[ � � m] � . E > ¹�» A� � � 3 @:[ 
� � � � � (33)º ] � ´ [ �] ´ [ � � m] � .R¼ � � � 3 @:[ 
� � � � � (34)

and

¯ @:[ 
 µ ��� � � ¯ m@:[ 
 � $&¶ � µ � .

Eqns.(30)and(31)canbewritten in thefollowing forms.� ] � � � � det. i k � 3�½ .R�
>+¸ «�¹ A] ��� � 3½ .R¾ ] ��� � 3

©©©©© ª �¬«G­j® (35)

� ] � � � � tr . i k � 3 1 ½ .R�
> ¹�» A] ��� � 3½ .R¾ ] ��� � 3

©©©©© ª �¬«G­j® (36)

where� >+¸ «�¹ A] ��� �
, � > ¹�» A] ��� � and ¾ ] ��� � arepolynomialsgivenas� >*¸ «t¹ A] ��� � � � >*¸ «t¹ A� � � >+¸ «�¹ A� � � NeN)N � � >+¸ «�¹ A@:[ 
 � @:[ 
 (37)� > ¹�» A] ��� � � � > ¹�» A� � � > ¹�» A� � � N�N�N � � > ¹�» A@\[ 
 � @:[ 
 (38)¾ ] ��� � � ¾ ��� ¾ � � � N�N�N � ¾ @:[ 
 � @\[ 
 (39)

� >*¸ «�¹ A� � @:[ 
� � � � E
>*¸ «�¹ A� � � � >*¸ «t¹ A¿ �p' @:[ 
�� � ¿ E

>*¸ «t¹ A� � � [ ¿ (40)

� > ¹�» A� � @:[ 
� � � � E
> ¹�» A� � � � > ¹�» A¿ �p' @:[ 
�� � ¿ E

> ¹�» A� � � [ ¿ (41)

¾ � �
@:[ 
� � � � ¼

� � � ¾ ¿ �%'
@\[ 
�� � ¿ ¼

� � � [ ¿ (42)

for À �%$&")'&" N�N�N " �81 �
and½ .KN 3 indicatestherealpartof a complex number.

Sincethe irreducibleform of the AP criterion representedas
(21) using (35) and (36) doesnot have any indefinitepoint, the
computationof the criterion usingthe irreducibleform is always
numericallystable.

Beforestartingtheone-dimensionalsearchwith respectto the
singleparameter, � ] , thepolynomials,� >*¸ «�¹ A] ��� �

, � > ¹�» A] ��� � and¾ ] ��� � ,
areobtained.Its computationalcostis not reducedcomparedwith
AP algorithm in 3.2. However, most of the computationalcost
in a whole algorithm is consumedfor the iteration in the one-
dimensionalsearch.Using the irreducibleform, eachstepin the
one-dimensionalsearchrequiresonly the evaluationof the real
partsof threepolynomialsandjust few arithmeticoperation.The
amountof the arithmeticoperationsrequiredis } � ��1 � � . The
orderof thecomputationcostis reduced.

Furthermore,in orderto evaluatetherealpartsof thepolyno-
mials,thereal-valuedversionof FFT canbeapplied.Let . � ��3 be
a sequenceof complex numbers� ���7Áx���ÃÂ § ��" � � / "0$&"0(*(+(*"¬Ä²( (43)

andlet .KÅ ��3 betheFouriercoefficientsobtainedby applyingthe, -point FFTof . � �M3 filled with zerofor � �7ÄÆ��$ , ..., , 1 $ ,Å �Ç�7È2����ÂHÉÊ�¨" � � / "0$&"0(+(*(*"¨, 1 $&( (44)

where ,Ë�Ì' » and ,ËÍÎ'6Ä . Define a real-valuedsequence. � > » A�Ï3 as� > » A� �ÐÁx�H" (45)� > » A� � $ ' . Á&�?� § �M3K" � �%$&"�'&"0(*(*(+"¬Ä (46)� > » Ak [ � � $ ' . Á&� 1 § �M3K" � �%$&"�'&"0(*(*(+"¬Ä (47)� > » A� � / " � �7ÄÆ��$&"¨ÄÆ��'&"�(+(*(+"¬, 1 Ä 1 $&( (48)
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(a)Correctrate. (b) Amountof arithmeticoperations.

Fig. 1. Comparisonof AM, AP andAPI algorithms.

Applying the real-valuedversionof FFT (RFFT) to . � > » A�Ï3 , we
have theFouriercoefficientsÅ > » A� � È > » A� ��ÂHÉ > » A� " � � / "0$&"�(*(+(*"�,L¶\'&( (49)

Thentherealpart . È2�M3 canbeobtainedasÈ � �7È > » A� 1 É > » A� " � � / "0$&"�(+(*(+"¬,L¶\'&" (50)È k [ ���7È
> » A� ��É > » A� " � �Ó$&"0(*(+(*"¨,L¶K' 1 $&( (51)

To obtain . È � 3 , � � / , 1, ..., , 1 $ from .R§ � 3 , � � / , 1,
..., Ä , useof the , -point RFFT is more efficient than the or-
dinary complex-valuedFFT. Furthermore,the , -point RFFT re-
quires, � 9*IKJ � , 1ÊÔ � �ZÕ0��'6Ä realmultiplications,while thedi-
rectevaluationof therealpartof thepolynomialof orderÄ for the
same, pointsrequires'6,�Ä realmultiplications.Theamountof
multiplicationsin both of RFFT and the polynomial evaluation,
thepreparationof � � �tÖ ¹ b�× , Ø � / , 1, ..., Ä 1 $ is excepted.The
useof the RFFT hasthe advantageover the direct evaluationof
polynomials,whenÄ , i.e.,

� �Z1 � � , is relatively large.

4. SIMULATIONS

Simulationresultsareshown in Fig. 1. Thearrayis uniform and
linear consistingof 4 sensors,� �ÙÕ , spacedhalf a wavelength
apart.The d -th signal, d �%$ , 2, 3, impingesfrom Ú � d 1 $ ��Û onthe
sensorarray. All signalsarecoherent.Simulationsareperformed
whenthesignalnumber� is 0, 1, 2 and3. When� is not0, thefirst
signalto � -th signalimpingeon thesensorarray.

200 snapshotsare usedfor the detectionof the signal num-
ber. In one-dimensionalsearch,atfirst 512pointsaresearchedfor
roughdetectionandthenFibonaccimethodis useduntil thepreci-
sionachieves1e-5

Û
in phase.Thecorrectrateof signaldetection

in (a)andtheaverageof theamountof all arithmeticoperationsre-
quiredfor thedetectionin (b) arebasedon200independenttrials.
TheArabicnumeralsin Fig. 1 show thenumberof signals.

It is found From Fig. 1 (a) that AM, AP andAPI algorithm
detectthenumberof coherentsignalswith thesamecorrectrate.
Fig. 1 (b) indicatesthat theproposedAPI algorithmrequiresless
amountof arithmeticoperationscomparedwith AM andAP algo-
rithms. It is lessthanabout1/20of AM algorithmand1/3 of AP
algorithm.

5. CONCLUSIONS

This paperhaspresentedanimprovementof theAP algorithmfor
detectingthe numberof coherentsignalsbasedon the Minimum
DescriptionLength(MDL) principleusinga uniform lineararray
of sensors.Thecriterionof theAP algorithmfor thedetectionbe-
comesindefinite,whenestimatedbearingsmorethanoneapproach
to the identicalvalue. This paperhasderivedan irreducibleform
of theAP criterionto achievenumericalstabilityandto reducethe
computationalcost.Finally, simulationresultshavebeenshown to
demonstratethevalidity of theproposedimprovement.
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