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Abstract

In this paper, we present a quantitative signal-
to-noise ratio (SNR) analysis of linear chirps in
the continuous-time short-time Fourier transform
(STFT) domain using Gaussian windows, the
3dB SNR definition is used. It is compared with
the SNRs in the time and the Fourier transform
domains. Some numerical examples are shown to
illustrate the theory.

1 Introduction

It is known that a joint time-frequency analy-
sis (JTFA) concentrates a chirp type signal while
spreading noise. In other words, a JTFA may in-
crease the SNR for a chirp type signal. There
have been some studies on this subject, for ex-
ample, [6,7]. Most previous studies on the SNR
are based on the maximal peaks or the line in-
tegrations in the JTFA domain as signals, which
may not optimally reflect the signals in the JTFA
domain. In a JTFA domain, some areas rather
than only points may be signals. Based on this
observation, a 3dB SNR definition was recently
used in [4,5] and a quantitative SNR analysis for
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the discrete-time STFT and pseudo Wigner-Ville
distribution were obtained. In both cases, rectan-
gular window functions were applied. The SNR
obtained in [4,5] is proportional to the sampling
rate for multi-component signals.

In this paper, we present a quantitative SNR
analysis of linear chirp signals of finite duration in
the continuous-time STFT domain with Gaussian
window functions. We determine a relationship
between the SNRs in the STFT, frequency, and
time domains in terms of the chirp rates. The
3dB SNR proposed in [4,5] is used in this paper.

The reason for only considering linear chirps
in this paper is because linear chirps often occur
in ISAR and SAR applications, see for example
[11,12]. In these applications, (i) the transmitted
signals may be linear chirps, and (ii) even after
the range compression, the radar return signals
may still be linear chirps when targets moves with
constant accelerations. Because of this, JTFA has
been used in ISAR for improving the image reso-
lution of maneuvering targets [1-3].

2 SNR Analysis

We first give the 3dB SNR definition used in
[4,5] and then analyze the SNR in the STFT and
frequency domains for linear chirp signals.

Consider a signal s(€2) corrupted by an additive
noise:

y() = s(Q) + n(Q), (2.1)

where €2 is a variable, such as time ¢, or frequency
f, or joint time-frequency (t, f), and n(Q2) is an
additive noise with 0 mean and variance 2. The
3dB SNR is defined as follows.



Definition 1 For a signal s(2), let
B2{Q: [s(Q) > 0.5max s}, (2:2)

Then, the 3dB SNR is defined as

|5(Q)[2d02

A
SNR = B Blo? (2.3)

where |B| denotes the measure of the set B.

We first consider a single linear chirp signal
model:

y(t) = s(t)+n(t) = Aexp(—j (wot+5#)) +n(t),

(2.4)
where % <t<L %, A is the signal amplitude, and
n(t) is the additive white noise with the following
correlation function

R,(t,7) = E(n(t)n*(1)) = 0?0(t — 1), (2.5)

where —% <t 7T< % Consider the STFT with
the Gaussian window function

ga(t) = ) exp(=51), a>0,  (26)

where « is a parameter. Notice that the above
Gaussian window function is optimal in terms of
the TF localization from the uncertainty principle
[9,10]. The STFT of a signal z(¢) is
o

z(7)ga (T — t) exp(—jTw)dr,

(2.7)

where x(t) can be either s(t) or n(t) in this con-
text. Thus, see for example [9,10],

STFT,(t,w) = /

—0oQ

|STFTy(t,w)|?

= //WVDw(u, v) - WV Dy, (t —u,w — v)dudv,

(2.8)
where WV D stands for the Wigner-Ville distribu-
tion. Since the STFT is a linear transformation,
we consider the STFT for the signal s(t) and the
noise n(t) separately.

It is not hard to see that the WV D of the above
s(t) is

w—wit —wo

WV Ds(t,w) = A? sinc| T ]-

(2.9)

Since the radar pulse repetition frequency is high
enough such that we have high enough sampling
rate in the time interval [-7/2,7/2], (2.9) can be
approximated as

WVDy(t,w) = A%6(w — wit — wp). (2.10)

The WVD of the window function is, see for
example [11-12],

WV D, (t,w) = 2exp(— (ot + éwQ)). (2.11)

Thus, the STFT of the signal is

|STFTy(t,w)|* =

2A2//5(v—w1u—w0)

1

-exp(—(a(t —u)? + = (w — v)?))dudv

24221 ( (w—twy — w0)2>
= eXp — .

2(a+ éw%) ?

Ll

o+ éwl
(2.12)

In this case, the maximum of |STFTs(t,w)|? is
reached when w = tw; + wp and the maximum is

2A2\ /7
=

(2.13)
a+ éwl

max |STFT,(t,w)|* =

Therefore, the 3dB mean of |STFT;(t,w)|? in the
SNR definition (2.2)-(2.3) is

mean; e s|STFT(t, w)|%, (2.14)

where

242
S={(t,w): |STFT(tw)? > 0.5—2AYT
a+ iu?

(2.15)
By some detailed computation and using (2.12)

1
S = {Jw — twi — wp|? < (@ + —w?)in2}.
o
Thus, the 3dB mean signal power is

mean; ,)es|STFTs(t,w) |2



2A2%\/m

AT L ey
= exp(—u”)du.

After the 3dB mean signal power is calculated,
let us calculate the mean noise power. Since the
noise n(t) is stationary, its mean power can be
calculated in the sample space as follows. Using
(2.5) we have

(2.16)

E|STFT,(t,w)|* =

E ‘/OO n(s)ga(s —t) exp(—jsw)ds :

— o0

= 02/|ga(s)|2ds = o2

Therefore, by (2.16)-(2.17) the SNR in the STFT
domain is

(2.17)

2a+/m A2 2af
\/a+éw%a ,/a+ wl
(2.18)

where SNR;, = A?/0? is the SNR in the time
domain, and

SNRtf =

_SNR,,

exp(—u?)du ~ 0.8.  (2.19)

-vh

The maximum of the SNR;; in terms of the

parameter « in the STFT window function g, (t)
n (2.6) is reached when

a = |wi, (2.20)
and the maximum is
V2T
SNRF™ = I’IlaXSNRtf =0.8—— o -SNR;.
w1
(2.21)

For multiple linear chirp signal model with K
components:

K

3(r) = Zsi(T) + n(7),

1=1

due to the STFT linearity, it is not hard to see
that the maximum of the SNR;; in terms of « is
bounded such that

V2
0.8 L ____.SNR, < SNRj™

A / maxlSiSK \w,\

(2.22)

= max SN Ry
o

V2
<08 il .SNR;,

- A /minlSiSK |w2|

i.e., bounded between the maximum and the min-
imum of the components in (2.21). Clearly, when

(2.23)

max |w;| < 1.28m,
1<i<K

we have

SNRJ™ > SNRy, (2.24)

i.e., the SNR in the STFT domain is greater than
the SNR in the time domain. The SNR formu-
las in (2.24) also imply that, when the absolute
values of the coefficients w; in s;(t), i.e., the accel-
erations of the scatterers, are not too large, the
SNR in the STFT domain is greater than the one
in the time domain.

It is known that, when the coefficients w; in
s;(t) are small, the bandwidth of s(¢) may not be
large. In other words, the 3dB SNR, SNR;, in
the Fourier transform domain may be also greater
than the one in the time domain. This raises the
question: which is better between SNR;; and
SNR;? We next want to compare these two
SNRs in the STFT domain and in the Fourier
transform domain. The 3dB mean power of the
Fourier transform S;(f) of s;(¢) is

Energy of S;
2B; ’

where B; is the bandwidth of the truncated signal
Si, i.e., B; = |w;|T, [11]. Since the Fourier trans-
form preserves the signal energy, the 3dB SNR in
the Fourier transform of s;(t) is

T A2

where A? is the power of s; . This provides the
SNR in the frequency domain for the LFM s;:
SNR; =

. SNR,. (2.25)

2Jwi]

Therefore, we have

0.8v/2 /
SNRmaX — TFSNRt =1.6V27 |w1|SNRf
VWi

(2.26)



This result implies that, when

lwi| > 1/(1.6v27)% = 0.0622, (2.27)
we have
SNRj™ > SNRy. (2.28)

3 Simulation

We next want to see a simulation result to show
the theoretical result in (2.26). The theoretical
SNR ratio SNRj}™/SNR; = 1.6\/2m|w:], solid
line, and its simulation, marked by *, are shown
in Fig. 1, where T" = 200 is used. The test chirp
signal is

s(t) = exp(—j (50t + 3t%/2)), t € (—100,100).

4 Conclusion

In this paper, we analyzed the SNR in the
continuous-time STFT domain with Gaussian
windows for linear chirp signals of finite length.
It was compared with the SNRs in the time and
the frequency domains.
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Figure 1: The SNR ratio SNR{3* /SN Ry.



