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ABSTRACT

We present a fractional Gabor expansion on a general, non-
rectangular time-frequency lattice. The traditional Gabor
expansion representsasignal intermsof time and frequency
shifted basis functions, called Gabor logons. This constant-
bandwidth analysis results in a fixed, rectangular time fre-
guency plane tiling. Many of the practical signals require
a more flexible, non-rectangular time-frequency lattice for
a compact representation. The proposed fractional Gabor
expansion uses a set of basis functions that are related to
the fractional Fourier basis and generate a non-rectangular
tiling. The completeness and bi-orthogonality conditions of
the new Gabor basis are discussed.

1. INTRODUCTION

Time—frequency (TF) analysis provides a characterization
of signalsintermsof joint time and frequency content[1, 2].
One of the fundamental issues in the TF analysisis obtain-
ing the distribution of signal energy over joint TF planewith
a delta function concentration [2]. The Gabor expansionis
one of the TF analysis methods which represents a signal
in terms of time and frequency trandated basis functions
called TF atoms [3, 4, 5]. Gabor basis functions ., x(t)
are obtained by shifting and modulating with a sinusoid a
single window function h(t), which results in a fixed and
rectangular TF plane tiling. Many of the practica signals
such as speech, music, biological, and seismic signals how-
ever, have time-varying frequency nature that is not appro-
priate for sinusoidal analysis[6, 7, 8]. Thus the Gabor ex-
pansion of such signals will require large number of Gabor
coefficients yielding a poor TF localization. The compact-
ness of the Gabor representation is improved if the basis
functions match the time-varying frequency behavior of the
signal [7, 8, 9, 10]. Here we present a fractional Gabor ex-
pansion on a more flexible, non—rectangular TF lattice. The
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basis functions of the proposed expansion are related to the
fractional Fourier basis.

2. PRELIMINARIES

In this section, we briefly present the traditional Gabor ex-
pansion, and the fractional Fourier transform. We give an
introduction to the fractional Fourier series expansion.

2.1. The Gabor Expansion

The traditional Gabor expansion [3, 4, 5] represents a sig-
nal in terms of time and frequency shifted basis functions,
and has been used in various applications to analyze the
time-varying frequency content of asigna [7, 11, 12]. Ba
sis functions of the Gabor representation are obtained by
trandating and modulating with sinusoids a single window
function, resulting in a fixed and rectangular TF sampling
lattice. An example of such a sampling geometry is shown
inFig. 1. The Gabor expansion of a continuous-timesignal
x(t) isgiven by [4, 5]

z(t) = Z Z Ak Gm k(1) 1)
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where the basis function

gm i (t) = g(t — mT)e? M )

and T is the linear time-shift parameter, and 2 is the fre-
quency sampling interval. The synthesis window function
g(t), is normalized to unit energy for definiteness [4]. Ex-
istence, unigqueness, convergence and numerical stability of
the expansion depend on the choices of parameters T' and
Q: criticaly sampled case is obtained when QT = 2.
0T < 2r iscaled over-sampling which results in redun-
dancy in the Gabor coefficients, and Q7" > 2r iscaled
under-sampling which causes aloss of information [4].

In general, the set of time and frequency shifted win-
dow functions {h, ,(t)} forms a non-orthogonal basis for
the sguare—summable continuous functions space L»(R).



Fig. 1. Rectangular time-frequency plane tiling used in the
Gabor expansion.

Hence the calculation of the Gabor coefficientsisnot asim-
ple task since projection by the usual inner product cannot
be used. One of the methods [13], introduced by Bastiaans
[14], uses an auxiliary function ~y(t) called the biorthogonal
window or dual function of g(n). Then the Gabor coeffi-
cients {a, i} can be evaluated by

ans= [ ) v (0) dt ®
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where the analysis functions are

Y,k (t) = y(t — mT) e? ", (4)

Completeness condition of the basis set is obtained by sub-
gtituting (3) into (1) to get that

S Y g =5t —1) )

m=—00 k=—o00

where §(-) denotes the Dirac delta function. The above
completenessrel ation yields equivalent but simpler biorthog-
onality condition between the analysis and synthesis basis
sets viathe Poisson-sum formula[4]:

2§ t—mTyy (t— |m+E22|T) =60 (6)
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where k = 0,+1,+2, - - -, and the factor 2% is a measure

of over-sampling.
In the last decade, the solution of the analysis function
for the critical and the over-sampled cases have been given

for both continuous- and discrete-time signals[4, 5]. In re-
cent works, Gabor expansion on a non—rectangular TF grid
has attracted a considerable attention [7, 8, 15]. A non—
rectangular lattice is more appropriate for the TF analysis
of signals with time—varying frequency content. Thus the
motivation for a fractional Gabor signal expansion.

2.2. Fractional Fourier Transform and Fractional Fourier
Series

The Fractional Fourier Transform (FRFT) of a continuous—
timesignal z(t) isgivenas[17]
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Here K, (t,u) is the kernel function and it reduces to the
classical Fourier kernel for o = 7/2 [17]. In [16] the fol-
lowing fractional Fourier seriesis given using a set of basis
functions similar to the FRFT kernel

oo
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wherec,, ;, arethefractional Fourier series coefficients. The
basis functions, ¢, 1 (t), form an orthogona basis over the
range [—-7/2,T /2] and they are chosen to be impulses in
the « fractional domain:
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wherek = 0,41, 12, ..., controlsthe frequency sampling.
The instantaneous frequencies of these basis functions can
easily be obtained as

2
Wa,k(t) = —t cota + k% (7

which are linear functions of time. Hence these basis func-
tions can be used to tile the TF plane in a non—rectangular
fashion.

In the next section, we define a Gabor expansion on a
non—rectangular TF lattice by means of basisfunctionswith
linear instantaneous frequencies.

3. FRACTIONAL GABOR TRANSFORM

We obtain the fractional Gabor expansion by using basis
functions with linear instantaneous frequencies, instead of



the usual sinusoidal Gabor kernel. The fractional Gabor ex-
pansion of asignal z(t) is given by

z(t) = Z Z am,k,agm,k,a(t) 8
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where g, 1.« (t), Synthesis basis functions, are given by

gm,k,a(t) = g(t - mT) Wa,k(t) (9)
and the fractional kernel is,

Wak(t) = exp {j [—% (#* + (kQsina)?) cot a + kﬂt] } :

where 2 and T are the time and frequency sampling steps,
respectively,and 0 < a < 2x. Thebasisfunctions g, i, (%)
generated by using the above fractional kernel have the lin-
ear instantaneous frequency given in (7). Hence the set of
fractiona basis functions { g, 1 o (t)} generates a parallel-
ogram shaped TF sampling lattice shown in Fig. 2. The
fractional Gabor coefficients, a., ;o Can be calculated as
before by

G = / £(t) Yo (D)t (10)

where v, 1o (t) arethe analysis functions,

Vm ko (t) = y(E —mT) W i (t) (11)
and they are calculated to be biorthogonal to g, 1 o (t) Syn-
thesis functions. When we have a = 7, equation (8) re-
duces to the classical Gabor expansion given in (1). Then
the traditional Gabor expansion can be thought as a special
case of the fractional expansion. In the following, we ex-
plore the completeness and the biorthogonality conditions
of the fractional case.

3.1. Completeness of the Fractional Basis

Completeness condition of the fractional Gabor expansion

can be obtained by substituting equation (10) into (8) as
Y Gmka@rmpat) =0E-1)  (12)
m,k

Substituting for the analysis and synthesis functions from
(9) and (11), we obtain the explicit condition to be

Z g(t — mT)y*(t’ —mT) X

exp {j B (t'2 - t2) con: +EQ(t — t')} } —8(t—t)

Itisclear that for « = 7, above condition simplifies to the
completeness condition of the traditional Gabor expansion
givenin (5).

Fig. 2. Time-frequency plane tiling used in the fractional
Gabor expansion.

3.2. Fractional Biorthogonality Condition

Now we obtain the biorthogonality condition that the frac-
tional analysis and synthesis function sets must satisfy. The
completeness condition in (13) can be rewritten as

3 stt=mTy (¢ =) exp {51 (12 =) et

m
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Applying the Poisson-sum formulato the k-summation [4],
we obtain

. ’ 271' ’ 271'
zk: exp{jkQ(t —t)} = ;J(t—t — k%) (13)

Substituting (13) into (13) yields

2m " 2m
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m
1 2r\* .
X exp {]5 (t—k%) —tZ] cota}

> 5(t—t'—k%7r):5(t—t')
k

We conclude from the above equation that the fractional
biorthogonality conditionis
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m,k = 0,+£1,£2,---. Notice that the exponentia term
in the above equation is due to the a-fractional basis, and
for a = 7, we obtain the biorthogonality condition of the
Gabor expansiongivenin (6). This showsthat the fractional
Gabor expansionin (8) isthe generalization of the usual Ga-
bor expansion into a non—rectangular time—frequency grid.

The analysis window ~y(t) necessary to find the frac-
tional Gabor coefficientsis calculated by solving the linear
equation system obtained from (14). Then the analysis set
{Ym,k,a(t)} is used in equation (11) to calculate the frac-
tional Gabor coefficients a, 1 -

4. RESULTSAND DISCUSSION

In this paper, we present a new fractional Gabor expan-
sion for the time—frequency representation of chirp signals.
The new representation tiles the TF plane in parallelogram
shapes which clearly is a better way of representing chirp
signals than the traditional rectangular grid. The basis func-
tions of the fractional expansion are related to the kernel of
thefractional Fourier transform and they areimpulsesin the
fractional domain. The biorthogonality relation between the
synthesis and analysis functionsfor the proposed expansion
is derived.
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