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Bahçeşehir University

Bahçeşehir, Istanbul, 34900, Turkey
yalcin@eng.bahcesehir.edu.tr

ABSTRACT

We present a fractional Gabor expansion on a general, non-
rectangular time-frequency lattice. The traditional Gabor
expansion represents a signal in terms of time and frequency
shifted basis functions, called Gabor logons. This constant-
bandwidth analysis results in a fixed, rectangular time fre-
quency plane tiling. Many of the practical signals require
a more flexible, non-rectangular time-frequency lattice for
a compact representation. The proposed fractional Gabor
expansion uses a set of basis functions that are related to
the fractional Fourier basis and generate a non-rectangular
tiling. The completeness and bi-orthogonality conditions of
the new Gabor basis are discussed.

1. INTRODUCTION

Time–frequency (TF) analysis provides a characterization
of signals in terms of joint time and frequency content [1, 2].
One of the fundamental issues in the TF analysis is obtain-
ing the distribution of signal energy over joint TF plane with
a delta function concentration [2]. The Gabor expansion is
one of the TF analysis methods which represents a signal
in terms of time and frequency translated basis functions
called TF atoms [3, 4, 5]. Gabor basis functions hm;k(t)
are obtained by shifting and modulating with a sinusoid a
single window function h(t), which results in a fixed and
rectangular TF plane tiling. Many of the practical signals
such as speech, music, biological, and seismic signals how-
ever, have time-varying frequency nature that is not appro-
priate for sinusoidal analysis [6, 7, 8]. Thus the Gabor ex-
pansion of such signals will require large number of Gabor
coefficients yielding a poor TF localization. The compact-
ness of the Gabor representation is improved if the basis
functions match the time-varying frequency behavior of the
signal [7, 8, 9, 10]. Here we present a fractional Gabor ex-
pansion on a more flexible, non–rectangular TF lattice. The
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basis functions of the proposed expansion are related to the
fractional Fourier basis.

2. PRELIMINARIES

In this section, we briefly present the traditional Gabor ex-
pansion, and the fractional Fourier transform. We give an
introduction to the fractional Fourier series expansion.

2.1. The Gabor Expansion

The traditional Gabor expansion [3, 4, 5] represents a sig-
nal in terms of time and frequency shifted basis functions,
and has been used in various applications to analyze the
time–varying frequency content of a signal [7, 11, 12]. Ba-
sis functions of the Gabor representation are obtained by
translating and modulating with sinusoids a single window
function, resulting in a fixed and rectangular TF sampling
lattice. An example of such a sampling geometry is shown
in Fig. 1. The Gabor expansion of a continuous–time signal
x(t) is given by [4, 5]

x(t) =

1X
m=�1

1X
k=�1

am;kgm;k(t) (1)

where the basis function

gm;k(t) = g(t�mT )ej
kt (2)

and T is the linear time-shift parameter, and 
 is the fre-
quency sampling interval. The synthesis window function
g(t), is normalized to unit energy for definiteness [4]. Ex-
istence, uniqueness, convergence and numerical stability of
the expansion depend on the choices of parameters T and

: critically sampled case is obtained when 
T = 2�.

T < 2� is called over-sampling which results in redun-
dancy in the Gabor coefficients, and 
T > 2� is called
under-sampling which causes a loss of information [4].

In general, the set of time and frequency shifted win-
dow functions fhm;k(t)g forms a non–orthogonal basis for
the square–summable continuous functions space L2(R).
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Fig. 1. Rectangular time-frequency plane tiling used in the
Gabor expansion.

Hence the calculation of the Gabor coefficients is not a sim-
ple task since projection by the usual inner product cannot
be used. One of the methods [13], introduced by Bastiaans
[14], uses an auxiliary function 
(t) called the biorthogonal
window or dual function of g(n). Then the Gabor coeffi-
cients fam;kg can be evaluated by

am;k =

Z
1

�1

x(t) 
�m;k(t) dt (3)

where the analysis functions are


m;k(t) = 
(t�mT ) ej
kt: (4)

Completeness condition of the basis set is obtained by sub-
stituting (3) into (1) to get that

1X
m=�1

1X
k=�1

gm;k(t)

�

m;k(t
0) = Æ(t� t0) (5)

where Æ(�) denotes the Dirac delta function. The above
completeness relation yields equivalent but simpler biorthog-
onality condition between the analysis and synthesis basis
sets via the Poisson-sum formula [4]:

2�




1X
m=�1

g(t�mT )
�
�
t�

�
m+ k

2�


T

�
T

�
= Æk (6)

where k = 0;�1;�2; � � � , and the factor 2�

T is a measure

of over-sampling.
In the last decade, the solution of the analysis function

for the critical and the over-sampled cases have been given

for both continuous- and discrete-time signals [4, 5]. In re-
cent works, Gabor expansion on a non–rectangular TF grid
has attracted a considerable attention [7, 8, 15]. A non–
rectangular lattice is more appropriate for the TF analysis
of signals with time–varying frequency content. Thus the
motivation for a fractional Gabor signal expansion.

2.2. Fractional Fourier Transform and Fractional Fourier
Series

The Fractional Fourier Transform (FRFT) of a continuous–
time signal x(t) is given as [17]

X�(u) =

Z
1

�1

x(t)K�(t; u)dt =

r
1� j cot�

2�

� e
u
2

2
cot�

Z
�1

1

x(t)e
t
2

2
cot��jut csc�dt

Here K�(t; u) is the kernel function and it reduces to the
classical Fourier kernel for � = �=2 [17]. In [16] the fol-
lowing fractional Fourier series is given using a set of basis
functions similar to the FRFT kernel

x(t) =

1X
k=�1

c�;k ��;k(t) t 2 [�T=2; T=2]

where c�;k are the fractional Fourier series coefficients. The
basis functions, ��;k(t), form an orthogonal basis over the
range [�T=2; T=2] and they are chosen to be impulses in
the � fractional domain:

��;k(t) =

r
sin�+ j cos�

T
e�j

1

2
[t2+(k 2�

T
sin�)2] cot�+jk 2�

T
t

where k = 0;�1;�2; : : : ; controls the frequency sampling.
The instantaneous frequencies of these basis functions can
easily be obtained as

!�;k(t) = �t cot� + k
2�

T
(7)

which are linear functions of time. Hence these basis func-
tions can be used to tile the TF plane in a non–rectangular
fashion.

In the next section, we define a Gabor expansion on a
non–rectangular TF lattice by means of basis functions with
linear instantaneous frequencies.

3. FRACTIONAL GABOR TRANSFORM

We obtain the fractional Gabor expansion by using basis
functions with linear instantaneous frequencies, instead of



the usual sinusoidal Gabor kernel. The fractional Gabor ex-
pansion of a signal x(t) is given by

x(t) =

1X
m=�1

1X
k=�1

am;k;�gm;k;�(t) (8)

where gm;k;�(t), synthesis basis functions, are given by

gm;k;�(t) = g(t�mT )W�;k(t) (9)

and the fractional kernel is,

W�;k(t) = exp

�
j

�
�
1

2

�
t2 + (k
 sin�)2

�
cot�+ k
t

��
:

where 
 and T are the time and frequency sampling steps,
respectively, and 0 � � � 2�. The basis functions gm;k;�(t)
generated by using the above fractional kernel have the lin-
ear instantaneous frequency given in (7). Hence the set of
fractional basis functions fgm;k;�(t)g generates a parallel-
ogram shaped TF sampling lattice shown in Fig. 2. The
fractional Gabor coefficients, am;k;� can be calculated as
before by

am;k;� =

Z
1

�1

x(t) 
�m;k;�(t)dt (10)

where 
m;k;�(t) are the analysis functions,


m;k;�(t) = 
(t�mT )W�;k(t) (11)

and they are calculated to be biorthogonal to gm;k;�(t) syn-
thesis functions. When we have � = �

2 , equation (8) re-
duces to the classical Gabor expansion given in (1). Then
the traditional Gabor expansion can be thought as a special
case of the fractional expansion. In the following, we ex-
plore the completeness and the biorthogonality conditions
of the fractional case.

3.1. Completeness of the Fractional Basis

Completeness condition of the fractional Gabor expansion
can be obtained by substituting equation (10) into (8) asX

m;k

gm;k;�(t)

�

m;k;�(t
0

) = Æ(t� t
0

) (12)

Substituting for the analysis and synthesis functions from
(9) and (11), we obtain the explicit condition to be

X
m;k

g(t�mT )
�(t
0

�mT ) �

exp

�
j

�
1

2

�
t
02 � t2

�
cot�+ k
(t� t

0

)

��
= Æ(t� t

0

)

It is clear that for � = �
2 , above condition simplifies to the

completeness condition of the traditional Gabor expansion
given in (5).
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Fig. 2. Time-frequency plane tiling used in the fractional
Gabor expansion.

3.2. Fractional Biorthogonality Condition

Now we obtain the biorthogonality condition that the frac-
tional analysis and synthesis function sets must satisfy. The
completeness condition in (13) can be rewritten as

X
m

g(t�mT )
�(t
0

�mT ) exp

�
j
1

2

�
t
02 � t2

�
cot�

�

�
X
k

expfjk
(t� t
0

)g = Æ(t� t
0

)

Applying the Poisson-sum formula to the k-summation [4],
we obtain

X
k

expfjk
(t� t
0

)g =
2�




X
k

Æ(t� t
0

� k
2�



) (13)

Substituting (13) into (13) yields

2�




X
m

g(t�mT )
�
�
t�

�
m+ k

2�


T

�
T

�

� exp

(
j
1

2

"�
t� k

2�




�2

� t2

#
cot�

)

�
X
k

Æ(t� t
0

� k
2�



) = Æ(t� t

0

)

We conclude from the above equation that the fractional
biorthogonality condition is



2�



exp

�
j
2k�




�
k�



� t

�
cot�

�
�

X
m

g(t�mT )
�
�
t�

�
m+ k

2�


T

�
T

�
= Æk (14)

m; k = 0;�1;�2; � � � . Notice that the exponential term
in the above equation is due to the �-fractional basis, and
for � = �

2 , we obtain the biorthogonality condition of the
Gabor expansion given in (6). This shows that the fractional
Gabor expansion in (8) is the generalization of the usual Ga-
bor expansion into a non–rectangular time–frequency grid.

The analysis window 
(t) necessary to find the frac-
tional Gabor coefficients is calculated by solving the linear
equation system obtained from (14). Then the analysis set
f
m;k;�(t)g is used in equation (11) to calculate the frac-
tional Gabor coefficients am;k;�.

4. RESULTS AND DISCUSSION

In this paper, we present a new fractional Gabor expan-
sion for the time–frequency representation of chirp signals.
The new representation tiles the TF plane in parallelogram
shapes which clearly is a better way of representing chirp
signals than the traditional rectangular grid. The basis func-
tions of the fractional expansion are related to the kernel of
the fractional Fourier transform and they are impulses in the
fractional domain. The biorthogonality relation between the
synthesis and analysis functions for the proposed expansion
is derived.
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