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ABSTRACT

For the electro-acoustical simulation of sound reinforce-
ment systems, calculation and simulation of the sound
�eld distribution requires measurement and storage of
the frequency dependent directivity characteristics (lev-
el and phase) of the used loudspeaker models. In mod-
ern simulation programs, the spatial resolution can be
less than �ve degrees in third { or even twelfth { octave
frequency bands. Therefore, modeling of the directiv-
ity diagram of loudspeakers can reduce storage place
and simulation time and may even increase the accu-
racy of the simulation.
Modeling { in the sense of mapping the resulting enor-
mous amount of measured data { can be realized very
eÆciently and with small approximation error using
second order neural networks. To reduce the model
development time, we in addition created a new adap-
tation rule for feedforward neural networks with im-
proved convergence behavior. This is achieved only by
using the training data and the output error to ana-
lytically determine values for the learning parameters
momentum and learning rate in each learning step.
We will show the advantages of using neural networks
with optimized learning parameters by the example of
modeling measured directional response patterns of two
real loudspeakers. For measurement we used maximum
length sequences (MLSSA).

1. NEURAL NETWORKS IN MODELING

AND OPTIMIZATION

1.1. Introduction

Arti�cial neural networks are structures that are com-
pletely characterized by topology, activation function
and adaptation rule. They are widely applied in re-
search and sciences because of their interpolating or
associative properties. Besides, increasing computing
speed enables an e�ective use of the properties of higher
order sigma pi neurons. They are not subject to the

condition of linear separability, thus complex transfor-
mations can be realized by small network structures.
We use neural networks in the development of behav-
ior models and use their interpolating properties. Here,
we use amultilayer feedforward network to approximate
multidimensional nonlinear continuous functions.
A loudspeakers directivity pattern, can be approximated
very accurately by an appropriate network paradigm
and adapted learning rule in a multilayer feedforward
neural network with, for example, a backpropagation
approach. This algorithm is based on the classical
gradient{descent method. It approximates any con-
tinuous input{output mappings in a given tolerance
range [1]. Although the directivity is measured at dis-
crete angles and frequencies, the interpolating property
of neural networks maps them into continuous func-
tions. The mathematical description of the functions
is then used during simulation to determine angle and
frequency dependent levels and phases. The exactness
of the approximation to the original terminal behavior
is driven by the activation rule, the size of the neural
network and the number of learning steps.

1.2. ACL { New adaptation rule for backprop-

agation based algorithms

We have improved the rate of convergence of the neu-
ral network adaptation by an evaluation of the learning
parameters with respect to the output error.
Generalized delta{rule is applied to use interpolating
and associative properties of multi{layered feedforward
neural networks. Slow convergence is the major disad-
vantage of its direct application. Modi�cation of the
basic algorithm by using variable learning rate may
lead to an improvement of the rate of convergence [3].
In some methods the rate of convergence depends on
the initial values of the learning parameters, and in oth-
ers they are simply estimated. The momentum of the
adaptation rule is hereby either constant or not taken
into consideration.



The fastest known learning rules which can be applied
to Sigma{Pi Networks are SuperSAB, Quickprop and
backpropagation based algorithms [6]. There, learning
parameters depend on their initial value and are es-
timated at the beginning of the adaptation or in each
learning step. An improvement of the convergence prop-
erties of the basic algorithm can only be achieved by
a formal description of the learning dynamics. Their
adaptation to the approximation error in each training
step accelerates the gradient descent { and thus the
rate of convergence. We have developed a new learning
algorithm with improved convergence behavior, where
the learning parameters are calculated in each learning
step, depending on output error and convergence condi-
tion. We developed analytical equations for momentum
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Figure 1: Strategy for the adaptive calculation of the
learning parameters

and learning rate for each learning step for feedforward
sigma{pi networks. This ACL (adaptive correction of
learning parameters) backpropagation learning's con-
vergence was compared to SuperSAB, Quickprop and
extended backpropagation learning. Benchmark exam-
ples show a superiority of the ACL{BP concerning con-
vergence behavior: a small overall error is yielded with
far fewer iterations (factor 150 typically). The reason
lies in a controlled increase of the learning parameter
values with decreasing error, overstepping the interval
[0; 1].
The network learning dynamics can be described by
the following equation [4]:
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The net term of the activation function times the steep-
ness parameters is written in the standard framework
[4], where Ip is the input vector to the neuron k, and
� is the steepness parameter.
The change of z determines the network dynamics:

zjk(t+ 1) = �k(t+ 1)wjk(t+ 1) (2)
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Equation (3) demonstrates that only a calculation of
optimal learning parameters, �(t) and �(t), can in-
crease the learning dynamics.
Figure 1 represents the analytical evaluation of the
learning parameters. We apply the least square er-
ror criterion to the output layer and the generalized
delta rule to the sigma{pi networks. This new adapta-
tion rule links the system information B(t) (including
the pattern information and the approximation error)
to the adaptive correction of the learning parameters
D(t), and the state vector of the neural network A(t).
The result is a new state vector, A(t+ 1).
The initial values are chosen randomly and the pat-
terns are measured, or given data, respectively. There-
fore, an improvement of the learning convergence can
only be achieved by an adaptive variation of the learn-
ing parameters. This is equivalent to a variation of the
network information, D(t). The learning parameters
are determined by the approximation error of the last
two training steps.
In the �rst step we apply a sigma{pi network assuming
that the network parameters only change if this mini-
mizes the approximation error

E(t; A(t + 1)) < 
(t)E(t� 1; A(t)); (4)

with E(t) approximation error, A(t) state vector and

(t) 2 ]0;1[ scaling parameter at step t, respectively.
Thus equation (4) yields an upper limit of the learning
parameters (�

UL
; �

UL
).

In the second step we use the knowledge of the bound-
ary value condition [1] and the convergence condition
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where k:kF is a Frobenius norm and A a limiting value
of the state vector. After some calculations the equa-
tion (5) leads to
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with �A(t) = f(�; �)

An interpretation of the equation (6) results in the
curve tracking of a polynomial function. There the
optimized values of the learning parameters can be cal-
culated using this function in its local/global sub-zero
extreme value. The only condition that should be ful-
�lled is that optimal learning parameters are smaller
than their upper limits calculated from equation (4).

2. MODELING OF DIRECTIVITY

DIAGRAMS

The above described ACL backpropagation learning
was used to model the radiation directivity diagram
of loudspeakers. The size of the neural network deter-
mines the amount of the resulting model equations and
thus the simulation time. Therefore the input data,
that are the measured frequency dependent values of
levels and phases, are normalized. Activation rules
adjusted to the characteristic curves are chosen in or-
der to decrease the size of the neural network which is
necessary for yielding an accurate approximation. A
coding of the data with �rst and second order weights
increases exactness in spatial representation without
making storage or measurement of additional data nec-
essary. Especially when level curves in adjoining fre-
quency bands are similar, the information depth of the
networks increases considerable.
The training set was received by measurement with
maximum length sequences (MLSSA system, [2]). As
examples, we modeled the polar pattern of the loud-
speaker Yamaha MS 60 and the radiation pattern of
the Fostex 6301 B. Both loudspeakers are widely used
for monitoring in studios and in computer based sound
editing. Although they are not typically for sound re-
inforcement systems, they can show the high accuracy
of our modeling approach.

2.1. Polar diagram of Yamaha MS 60

Figure 2 shows the polar diagram of the loudspeaker
Yamaha MS 60, measured with MLSSA, for di�erent
frequencies. We approximated the frequency depen-
dent polar pattern of the Yamaha monitor using a neu-
ral network with one hidden layer, consisting of �ve
neurons. The relative error is less than 2 %. This is
within the accuracy of measurement. Figure 3 shows
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Figure 2: Polar diagram of Yamaha MS 60

the approximated polar diagram for 1 kHz and the rel-
ative error versus the polar angle.
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Figure 3: Yamaha MS 60: Approximation of the polar
diagram at 1 kHz and relative error in percent versus
polar angle

2.2. Radiation pattern of Fostex 6301 B

The spatial directivity pattern of the active loudspeaker
Fostex 6301 B was measured in steps of 5 degrees with
MLSSA. Figure 4 shows the waterfall diagram, and �g-
ure 5 shows the measured spatial data at 1 kHz, pre-
pared for mapping by a neural network. For clearness,
we show them in Cartesian coordinates.

The frequency dependent directivity pattern was mea-
sured for each spatial angle. For modeling, the data
were classi�ed into frequencies and were mapped by an
neural network. It consists of one hidden layer with 40
neurons.
Figure 6 shows the angle{dependent relative error of
the approximation. It is less than 2.5 %.



Figure 4: Waterfall diagram of Fostex 6301 B
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Figure 5: Fostex 6301 B: Measured directivity pattern
at 1 kHz in Cartesian coordinates

3. RESULTS

The modeling of loudspeaker directivity pattern for
electro-acoustical simulation can widely be done auto-
matically owing to the application of neural networks:
First the directivity pattern of the loudspeaker is mea-
sured. The measured data are then classi�ed into fre-
quencies and scaled or normalized. They represent the
training set of the neural network. The adaptation of
the network is continued until a prede�ned, minimal
error is reached.
Finally, the network paradigm can automatically be
transformed into equations for use in calculation of
sound �eld distribution.
The proposed improvement of the generalized delta
rule causes an acceleration of convergence speed. The
learning parameters momentum and learning rate can
now be calculated and thus optimized for each adapta-
tion step. The presented ACL backpropagation learn-
ing was used in sigma-pi networks in the adaptation
of loudspeaker directivity patterns. The new algorithm
achieved a very high degree of accuracy in smaller num-
ber of training periods than other known algorithms {
the typical improvement factor is 150.
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Figure 6: Fostex 6301 B: Relative error in % versus
spatial angles, f = 1 kHz

We have used the presented method for the develop-
ment of simulation models of loudspeakers directivity
pattern for electro-acoustical simulation. The adapted
representation of the measured directivity pattern is
yielded accurately and with short development time by
using neural networks.
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