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ABSTRACT

This paper reports the results obtained in a speaker identification
system based in Bhattacharrya distance, which combines LP-
derived cepstral coefficients, with a nonlinear dynamic feature
namely fractal dimension. The nonlinear dynamic analysis starts
with the phase espace reconstruction, and the fractal dimension
of the correspondent attractor trajectory is estimated. This
analysis is performed in every speech window, providing a
measure of a time-dependent fractal dimension. The corpus used
in the tests is composed by 37 different speakers, and the best
results are obtained when the fractal dimension is included,
suggesting that the information added with this feature was not
present so far.

1. INTRODUCTION

A speaker identity is strongly dependent of the physiological
and behavioral characteristics of the speech production system.
The first step of a basic speaker recognition system is to extract
from the speech samples a “good” parametric representation.
These parameters must be, as much as possible, representative of
a speaker, presenting low variability for that speaker’s speech
samples, and great difference when used with others speakers’
speech samples.

Previous papers [1][2][3][4] have worked with speech
characterization and analysis using nonlinear dynamical features.
Sabanal et al. [2] used the time-dependent fractal dimensions
(TDFDs), extracted through critical exponent method (CEM),
and the time-dependent multifractal dimensions (TDMFDs) to
accomplish a speech recognizer. The target was to recognize
Japanese digits using a neural network. Kumar et al. [1]
estimated Lyapunov exponents, dimension and metric entropy in
phonemes signals, divided into eight different types. Banbrook et
al. [3] extracted correlation dimension, Lyapunov exponents,
and short-term predictability from a corpus of sustained vowels
sounds. The works mentioned used some nonlinear dynamical
features to characterize a speech sound, showing the speech low
dimensionality and the average exponential divergence of nearby
trajectories in the reconstructed phase space.

In this work a speaker identification is performed using a
combination of LP-derived cepstral coefficients with a nonlinear
dynamic invariant: the fractal dimension. While the use of LP-
derived cepstral coefficients can perform a speaker recognition
quite successfully, it may not be accurate enough for some
applications. The characterization of a speaker using a nonlinear
dynamic description can help on identifying people from their
voices. The assumptions used to extract the standard feature

parameters do not describe the nonlinear dynamic evolution of
the system. It will be shown that add nonlinear dynamic
qualitative information to the standard feature parameters, such
as fractal dimension, is equivalent to add speaker-dependent
features, not present in the standard feature parameters so far.
This combination will lead a speaker recognition system to more
accurate results.

2. PHASE ESPACE RECONSTRUCTION

In experimental applications, it is often available unidimensional
measurements of a dynamical system that evolves in a
multidimensional phase space. This scalar time series contains
the information available from that system. In many cases, no
further information is available, and an important challenge that
has to be solved is the calculation of the system’s real
multidimensional phase space trajectory. After that,
measurements that provide important knowledge about the
system behavior can be done.

To evaluate the properties of an attractor associated to a time
series it is first necessary to reconstruct its evolution in a proper
phase space. The most used way of reconstructing the full
dynamics of a system from scalar time series measurements was
proposed by Takens [5]. This method presents easy practical
implementation. Given a N-point time series x(ti) for i=1,2,...N
as follows

)}(),...,(),({)( 21 Ntxtxtxtx = ,

the m-dimensional vectors are reconstructed, according to
Takens delay method [5], as

)})1((),...,2(),(),({ pmtxptxptxtxX iiiii −+++=
&

,

where p is called time delay and m is the embedding dimension.
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 vectors represent the trajectory of the time series x(ti) in

a m-dimensional phase space.
The choice of the proper time delay (p) and embedding

dimension (m) values must be made carefully. A too small value

to time delay produces vectors 
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 very similar, and

consequently an autocorrelated attractor trajectory, probably
stretched along the diagonal. When p value is excessive the
reconstructed trajectory becomes too disperse. If the attractor is
unfolded into a phase space whose embedding dimension is
lower than the minimum necessary, there will be vectors that
remain close to one another not because of the system dynamics.
On the other hand, if the chosen embedding dimension is too

high, the number of vectors 
iX

&

 is reduced, and it is a problem

for time series composed by limited N numbers of points.



A criterion for an intermediate choice of time delay values is
based on the analysis of autocorrelation function [6]. The
autocorrelation function provides a measure of the similarity
between the samples of a signal, and typically the value of p is
set as the delay where the autocorrelation function first drops to
half of the initial value. Other methods for choosing time delay
can be found in [6].

An interesting method to estimate an acceptable minimum
embedding dimension is called method of false neighbors [7].
Basically, for each vector of the reconstructed attractor
trajectory, unfolded into a d embedding dimension phase space,
a search for its nearest neighbor vector is made. When the
embedding dimension is increased to d+1, it is possible to
discover the percentage of neighbors that were actually “false”
neighbors, and did not remain close because the d embedding
dimension was too small. When the false neighbors percentage
drops to an acceptable value, it is possible to state that the
attractor was completely unfolded.

3. FRACTAL DIMENSION ESTIMATION

Nakagawa [8] estimated the fractal dimensions of self-affine
data with power spectra in according with a power law based on
the moment exponent. The theoretical outlines of this method,
called critical exponent method (CEM), is reviewed below and a
particular adaptation for speech signals is suggested.

For time series of self-affine data, the fractal dimension D0

can be estimated as
D0=2-H ,

where H is the Hurst exponent.
The CEM is based on analyzing the momentum Iα associated

to the signal power spectrum, defined as
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where U is the upper limit to the normalized frequency u, and
P(u) is the power spectral density, and may be assumed to follow
the power law

β−≈ uuP )( .

Specifically to speech signals, consider kc the lower cut
frequency below which P(u) does not follow the power law. By
making u=k/kc, where k is the real frequency, these low
frequencies are correctly not considered [8]. However, the
estimation of proper values for kc is made heuristically, by
visualizing the speech power spectrum and “guessing” the
correct value. In this work, we suggest a way to determine
automatically a good approximation to kc based on a smoothness
representation of the power spectral density.

Figure 1 shows a typical frequency response from a 30ms
voiced speech window, obtained through fast Fourier transform
(FFT) algorithm. It is important to note that, after a determined
frequency, the power spectrum decreases, following
approximately the power law described previously. If it is
available a smoothness representation of the power spectrum, it
would be possible to search for the maximum and consider it the
lower cut frequency kc, above which an approximately
exponential decrease is presented. The use of a smoothness
representation of frequency response, instead of only choosing
the frequency whose magnitude is maximum in the window,
considers all its evolution and avoid choosing a frequency based
only in one (possibly incorrect) value. Furthermore, the

smoothness representation is capable of providing the exact
frequency where the magnitude stops increasing and starts
decreasing, avoiding small peaks.

Fig. 1. Typical frequency response from a 30ms voiced speech
window.

A smooth envelope representation of the power spectral
density is available using the linear prediction spectrum [9][10],
obtained from the estimation of the linear prediction coefficients
(LPC). A simple peak picking algorithm can easily find a good
approximation for kc.

After determining the lower cut off frequency, for practical
effects it is possible to differentiate the logarithm of moment Iα
to the 3rd order using the following equation
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where the nth derivative of Iα , 
nI α , can be evaluated from the

equation
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and solve the following equation to find the critical value αc ,
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From the above relation, exponent β (from power law
equation) is given as
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The method described previously can be applied in every
speech window, which provides the time-dependent fractal
dimensions (TDFDs). The values of fractal dimension obtained
with automatic search for lower cut frequency kc are very close
to the results reported in [2] for speech signals. Figure 2 (b)
shows the values of fractal dimensions obtained from the speech



signal in figure 2 (a), evaluating a 30ms hamming window of
speech, applied every 10ms.

Fig. 2. Waveform of a speech signal (a), the respective time-
dependent fractal dimensions (b).

4. THE SPEAKER RECOGNITION SYSTEM

A system based on the Bhattacharyya distance was used to
evaluate the recognition performance that can be obtained when
LP-derived cepstral coefficients is combined with fractal
dimension. This system is similar to the one described in [11].
Basically, some speech samples of every registered speaker in
the system are used to compose that speaker identity. It is done
by extracting the desired feature parameters from every window
of all speech samples from that speaker, and calculating its mean
and covariance matrix. When an unknown speech sample is
presented to the system, its feature parameters are extracted the
same way, the mean and covariance matrix are calculated and a
similarity measure is obtained for every registered speaker, using
the Bhattacharyya distance for multivariate Gaussian
distributions. The unknown speech sample is then assigned to
the registered speaker whose similarity measure is maximized.

4.1. LP-derived cepstral coefficients

Linear prediction (LP) analysis is an important method of
characterizing the spectral properties of speech in the time
domain. In this analysis method, each sample of the speech
signal is predicted as a linear weighted sum of the past p
samples. The weights which minimize the mean-squared
prediction error are called the predictor coefficients. The value
of p is approximately determined by the number of poles of the
vocal tract and the glottal wave transfer function, mathematically
modeled. An important method to estimate the linear prediction
coefficients (LPC) is called Durbin method, well detailed in
[9][10].

By definition, the cepstrum (or the cepstral coefficients) is
the inverse Fourier transform of the logarithm of the speech
signal spectrum. The cepstral coefficients obtained from the
predictor coefficients are called LP-derived cepstral coefficients.
The relationship between the cepstrum and the predictor
coefficients are [9][10]:
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where cm is the mth cepstral coefficient, am is the mth linear
prediction coefficient and p is the predictor order.

4.2. Bhattacharyya distance

In statistics, the proximity degree between two different
probability densities is related with the notion of distance
measure. An estimation to the upper bound on the Bays error can
be obtained using the Bhattacharyya distance. Considering two
probability densities p1(x) and p2(x), obtained from two different
classes of feature parameters, the Bhattacharyya distance [12] is
defined by
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Special cases of this general distance measure can be
calculated explicitly to a large types of probability densities. An
important case refers to the multivariate Gaussian distributions.
Considering pi(x) Gaussian probability densities, it is possible to
show [13] that the previous equation can be written as:
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where mi is the mean value and Σi is the covariance matrix,
obtained from the feature parameters of class i.

The Bhattacharyya distance can be applied to a wide variety
of known probability distributions, according to the best fit. The
assumption of Gaussian density for the parameters is not
arbitrary, since it is sufficient that the density be essentially
unimodal and approximately Gaussian in the center of its range.
These properties are often respected in physical systems.
Inspecting histograms obtained from the feature parameters, it is
possible to verify that their value distributions can be modeled as
Gaussian probability densities.

4.3. The Data Set

The corpus used to evaluate the speaker recognition performance
is composed with speech samples from 37 different speakers,
sampled at 11025Hz, with resolution of 16 bits per sample.
Every speaker provided three repetitions of the vocabulary,
composed by the words “first”, “second”, ... , and “tenth”,
spoken in Portuguese language. Every speech sample was about
618ms long, in average. The first two repetitions of the
vocabulary were used to generate the speakers identity. The third
repetition of the vocabulary of every speaker was used to test the
system accuracy, in a total of 370 different identifications for a
single test.

5. EXPERIMENTAL RESULTS

Different tests were accomplished, and the focus was to verify
the efficiency of fractal dimension in speaker recognition task.
From all speech samples, a hamming window with length of



30ms was applied every 10ms, and from every window LP-
derived cepstral coefficients and fractal dimension were
extracted according with the methods previously described.

The nonlinear feature parameters can help on improving the
accuracy obtained with Fourier and cepstral analysis, by
providing other kind of information, not considered so far. The
combination of Fourier and cepstral, with nonlinear dynamic
analysis can more accurately characterize a speaker, leading the
correspondent speaker recognition system to higher
performance. It can be seen in figure 3, where the number of LP-
derived cepstral coefficients vary. When nonlinear dynamic
information is combined with cepstral information there is a
improvement in the system’s performance, indicating that it
contains speaker-dependent information, which can distinguish
different speakers. The combination of cepstral analysis with
nonlinear features leads the speaker identification system to even
better results, achieving 97.29% of accuracy, which is a good
result considering the amount of speech used on trainning (about
1.2s per speaker, in average) and recognition (about 618ms per
identification, in average).

Fig. 3. System identification accuracy varying the number of LP-
derived Cepstral coefficients.

Figure 3 shows clearly that there is a considerable
performance gain when combining nonlinear dynamic features.
However, the processing time necessary to extract the nonlinear
features may be much greater than to extract cepstrum. For
comparison, a personal computer with an Pentium processor
running at 350 MHz takes about 69.2ms to extract fractal
dimension, and only 6.9ms to extract 17 LP-derived cepstral
coefficients from a window of 30ms of speech. The processing
time is heavily increased when the nonlinear feature is added. It
takes about 90.9% of the total processing time to complete the
nonlinear dynamical analysis and only 9,07% of the total
processing time for LP-derived cepstral coefficients extraction.
The previous estimation of time was based in an average, using
289 different windows from a speech file.

6. CONCLUSIONS

This work suggests new ideas to construct speaker recognition
systems more robust and reliable. Extract new information that
specifically distinguish different speakers is very important to
continue the development of this area. In the other hand, the
introduction of new techniques and new features to characterize
a speaker will bring an intrinsic computational processing

overhead. Particularly with nonlinear features, such processing
may not allow the construction of real time systems with the
hardware available today.

Many applications where the speaker recognition technology
can potentially be introduced are still searching for more
accurate systems. The nonlinear dynamic analysis can analyze
the speech production differently, as the result of a nonlinear
dynamic process, bringing up new information to characterize it
in a more complete way.
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