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ABSTRACT

This paperaddressesthe problemof loudspeaker test. Two ap-
plicationsare investigated:loudspeaker manufacturingfault de-
tection and maintenance.In order to comply with practical re-
quirements,we proposea new, brief, nonstationarytest signal.
Recordedloudspeaker responsesareprocessedusinganimproved
time-frequency decisionalgorithm. Thefault detectionprocedure
is testedwith real data. Resultsshow its accuracy andpractical
interest.

1. INTR ODUCTION

1Soundsystemloudspeaker fault detectionis a twofold problem:
manufacturingandmaintenance.Manufacturersneedto detectany
fault beforeselling the product;usershave to maintainthe loud-
speaker(e.g.replaceafaultytweeter).Thefaultdetectionproblem
canbe statedasfollows: is it possibleto detectany loudspeaker
fault (manufacturing test), and measureits importance(mainte-
nancetest)?In this paper, we proposea satisfactorysolution,con-
sistingin comparing– in theTime-Frequency (TF) domain– the
responseof a given loudspeaker to a setof ”correct” loudspeaker
responses.

Classicalloudspeaker testsaree.g. on-axis,impedanceor im-
pulseresponses,and lead to the estimationof Thiele andSmall
parameters[1]. This implicitly relieson thelinearity assumption:
loudspeakers can be modelledas linear filters, which are com-
pletely characterizedby a transferfunction. Thesemeasurement
techniquesareefficient for loudspeaker design,besideswhich ad-
ditionaltechniquessuchasmembranedisplacementlasermeasure-
mentcanbeused.

Many fault detectiontestsusethesamekind of measurements:
on-axisandimpedanceresponse,but alsohumanearing.However,
theaim is differentfrom loudspeaker design,and,in this context,
thesetechniqueshave drawbacks. On-axis, impedanceand im-
pulse(or step)responsescanactuallybe interpretedonly in case
of: �

stationarysignals:the testsignalhasto bea stationarytone
of givenfrequency (or a collectionof tones).�
linearity.

However, a loudspeaker fault canresult in nonlinearity, in which
casetheinterpretationof thesemeasurementsfails. An important
conclusionis thenthatdesignmeasurementsarenot, from a the-
oretical point of view, adaptedto fault detection. This point is

1Thiswork wasmainlyperformedwhile M. Davy wasstill at IRCCyN.

experimentallyconfirmedin theclassicalproblemof detectingthe
vibrationcausedby a smallobject(e.g. a wire) touchinga mem-
brane(a problemknown asrub andbuzz): mostclassicaltestsfail
in detectingthisnoisyvibration!

In this paperwe proposea new fault detectiontest basedon
a nonstationarytestsignalandTF signalclassification/detection.
This non-parametrictechniqueis completelymodel-freeandhas
been applied to, e.g., the analysis of impulse responses[2].
(Waterfall chartsarealsobasicTime-Frequency Representations
(TFRs).) Using TFRsdoesnot requirethe definition of a signal
model; the linearity assumptionis thennot necessary. Moreover,
TFRsaresuitedto the analysisof nonstationarysignals,andwe
will show all theloudspeaker bandwidthcanbeprocessedusinga
shortduration( ������� ms)testsignal.

In section2, we presenta new, multicomponentFM test sig-
nal. In section3, an improved TF signalclassification/detection
methodis proposed[3]. In section4, resultsobtainedwith real
dataareexposed. We emphasizethe robustnessof the proposed
procedure— in particular, it canbe implementedin a noisyenvi-
ronment.Finally, someconclusionsaregiven,andfuturedevelop-
mentsexplained.

2. A TEST SIGNAL

Classicalon-axis responsemeasurementsconsist in measuring
the acousticpressureat many stationaryfrequenciesin the loud-
speaker frequency range(20Hz-20kHz),andplot the log-log re-
sponse.The proposedTF signal classification/detectionmethod
enablesthe useof nonstationarytest signals,which can explore
theloudspeaker frequency rangewithin a shortduration.

2.1. Multicomponent FM test signal

The proposedtest signal is madeof 4 FM componentsof con-
stantamplitude,in the range20Hz–10kHz. (The range10kHz-
20kHzdoesnotcontaincrucialinformationfor soundsystemloud-
speaker faultdetection.Thechoiceof thisupperfrequency permits
a slower samplingrateand limits the numberof datato be pro-
cessed.)Figure1 (left) representsthe spectrogramof sucha test
signal. Signal durationis 92.9ms(2048points at samplingrate
22050Hz). Frequency rangesof FM componentsdo not overlap.
The slopeof eachcomponentdependson its frequency: low fre-
quencies(i.e. longperiods)requiremoretime: theslopeis smaller.

Direct useof thetestsignalmayhowever causeproblemsin its
beginning andend,causedby amplitudejumps. Theseproblems
canbe avoidedby merging begin andendparts. Thefinal signal
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Fig. 1. Left: Spectrogramof the proposedtestsignal(Hamming
window, 101 points). Right: Spectrogramof the completetest
signal.Thetestpart(seeleft) locationis indicatedby thearrow.

is thencomposedof threeparts:heatingpart,testsignalitself, and
endingpart.Figure1 (right) displaysthecompletesignal.

2.2. Recording procedure

The test procedureconsistsin recording the responseof the
loudspeaker emitting the amplified test signal. The responseis
recordedusinga microphoneanda computersoundcard.

Therecordedloudspeaker responseis preprocessedin orderto
extract the testpart (i.e. eliminateheatingandendparts). Since
thecompletesignalis perfectlyknown, we proceedasfollows:�

To detectthe beginning of the completeemittedsignal(i.e.
the initial point of theheatingpart);�
To extract the testpart by countingthe time pointsafter the
initial point.

The initial point is detectedby comparingthe instantaneousam-
plitudeof theresponseto a threshold	 . Thetime point whenthe
amplitudebecomeshigherthan 	 is decidedto betheinitial point.

Figure2 displaystheexampleresponseof asoundsystemloud-
speaker. Note that the amplitudeof theFM componentsis made
time-varying by the loudspeaker. The amplitudemodulationcan
beinterpretedastheloudspeaker signature.Processingsucha re-
sponserevealspossiblefaults,asshown in Section4. In particular,
the presenceof energy asidethe FM components(provoked by,
e.g.,mechanicalvibrations)will bedetected.

3. TF LOUDSPEAKER FAULT DETECTION

Processingloudspeaker responsesrequiresspecificmethods,since
e.g. the frequency spectrummay not be a relevant (it doesnot
discriminatecorrect loudspeakers responsesfrom faulty onesin
presenceof, e.g.,rubandbuzzproblems).

TFRsareparticularlysuitedto theanalysisof multicomponent
FM signalswith time-varying amplitude: Firstly, TFRsarenon-
parametricwhich implies that no amplitudemodelhasto be de-
fined;Secondly, Cohen’s class[4, 5] TFRsareadaptedto FM sig-
nals2. In this section,wefirst introducesomeelementsof TF clas-
sification/detection,thenweexplainhow this techniquecanbeap-
plied to loudspeaker fault detection.

2TheWigner-Ville distribution (awell-known TFR in Cohen’s class)is
perfectlylocalizedfor FM signals.
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Fig. 2. Spectrogramof the recordedresponseof a NEXO-PS15
loudspeaker emittingthemulticomponentFM testsignal.

3.1. TF classification/detection

TF classification/detectiontheoryhasknown recentadvances[3,
6] that leadto a higherefficiency. The principle of TF methods
consistsof comparingTFRs(definedby a givenkernelwithin the
Cohen’s class)usinga TF distancemeasure.A learningsetcom-
posedof labelledsignalsis usedto definearepresentativeelement.
We denoteby 
���
���� � ����������� � ������ the learningsetcorrespond-
ing to theclass� � , composedof � � learningsignals.Thereare �
classes.In the particularcaseof loudspeaker fault detection,the
learningsetis composedof severalclasses:�

Theclassof correctloudspeaker responses;�
theclassescorrespondingto givenloudspeaker faults.

Bothclassesareidentifiedby anexpert.
In thefollowing, theTFRof asignal � �"!$# , definedby akernel % ,

is denoted&�'( �"! �*) # where! and ) arethetimeandfrequency vari-
ables.

3.1.1. TF decisionrules

GivenaTFRkernel % , theclassificationof agivensignalin oneof
the � classesrelieson thefollowing decisionrule:� is assignedto �+�-,/.0
 argmin1�2 �$3 4 4 4$3 576 �"& '( �"! �8) # � & '1 �"! �8) #$# (1)

where 6 is a TF distanceasdefinedbelow, &�'( �"! �8) # is theTFR of

thesignalto beclassifiedand & '� �"! �8) # is therepresentative TFR:

& '1 �"! �8) #9
 �� 1
�;:<= 2 � & '( : > �"! �*) # (2)

In otherwords,� is assignedto theclasscorrespondingto thenear-
estrepresentative TFR.

Sometimes,however, the learningsetis only composedof the
classof correct loudspeaker responses3, andthe generalclassof

3Therearemany morecorrectloudspeakersthanfaulty ones.



not correct loudspeaker responses.The latter is rathera reject
classthanarealclass.In thiscase,thereis only onerepresentative

(denoted& 'correct�"! �$) # , and the decisionrule consistsof deciding
whethera givenloudspeaker is correct,or not:� is decidedcorrect , 6 �"&�'( �"! �8) # � & 'correct�"! �8) #$#?�A@� is decidednotcorrect otherwise

(3)

where @ is a given threshold.The distance6 �"&�'( �"! �*) # � & ' �"! �$) #$#
indicatestheimportanceof theloudspeaker fault.

3.1.2. TF distancemeasures

Thereexists many TF distancemeasures.In this paper, we con-
sidertheKolmogorov distance:6 Kolm �"& '( � & '1 #B
DCECGFFF H & '( �"! �*) #JI H & '1 �"! �$) #�FFF 6 ! 6 ) (4)

wherethenotation H &�'( �"! �8) # emphasizestheprior normalization
of theTFR:

H & '( �"! �8) #B
 FF & '( �"! �8) # FFK�K FFF & '( �"! �8) #�FFF 6 ! 6 ) (5)

This normalizationenablesthe useof distancemeasuresinitially
devotedto probabilitydensitiescomparison.Otherdistancemea-
surescanbe found in [7]. The correlationdistanceis often pro-
posedfor TFR comparisonandis written:6 Corr �"& '( � & '1 #9
LCECM& '( �"! �8) # & '1 �"! �8) # 6 ! 6 ) (6)

Thechoiceof thedistancemeasurecanresultfrom anoptimization
procedureasexplainedin [3]. However, theKolmogorov distance
is preferredherefor its simplicity andaccuracy. From a similar
point of view, the chosenTFR kernel is the Spectrogram,with
Hammingwindow (101points),denotedN ( �"! �8) # whencomputed
for a signal � .

3.2. Application to loudspeaker fault detection

The resultingdetectionalgorithmis composedof two steps.The
learningstepconsistsin:

1. Recordingcorrectandnotcorrect loudspeaker responses;

2. Preprocessingtheserecordsin orderto extractthetestpart;

3. Computingthe TFRsof the correct responsesandcomput-

ing the representative TFR & 'correct�"! �8) # of the correct loud-
speaker responses,usingeq.(2).

The teststepconsistsin comparingthe response� of a given
loudspeaker to thecorrectrepresentative TFR,asfollows:

1. Preprocesstherecordedresponsein orderto extract the test
part,denoted� ;

2. Computeits TFR & '( �"! �*) # ;
3. Computethe Kolmogorov distance6 Kolm �"&�'( � & 'correct# using

eq.(4);

4. Comparethis distanceto a threshold @ and decide(using
eq. (3)). This distancealsoindicatesthe importanceof the
fault.

In thefollowing section,resultsobtainedusingtheproposedtest
signalandTF fault detectionprocedurearegiven.
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Fig. 3. Spectrogramsof threeresponsesof thesameloudspeaker.

4. RESULTS

Wepresentresultsobtainedwith NEXO-PS15(2-wayactive)loud-
speakers. The test signal was emitted by a DAT reader, and
recordedusingamicrophoneLEM EMU 4535andaSoundBlaster
soundcard. The responseshave beenrecordedin a hall, without
specialacousticenvironment: noiseandspeechmay corrupt the
records,with a relative small energy however. The microphone
positionis 80 cm from theloudspeaker, its heightscorrespondsto
themiddlepointbetweenthetweeterandthebassconedrive.

In order to evaluatethe robustness,and the practical interest
of the method,threetestshave beenrun. The questionsinvesti-
gatedwere:First, is therecordedresponsestablefrom onetestto
another? Second,is the microphoneposition crucial? Third, is
it possibleto discriminatenew loudspeakers from old ones,and
evaluateold loudspeakersfatigue?

4.1. Stability

Stability is a crucial point. Actually, a testprocedurethat would
lead to different resultsfor the sameloudspeaker would not be
accurate.

This point is investigatedas follows. A loudspeaker is tested
threetimes,theresponsesaredenoted�S� � � �UT � �UV�# . Spectrograms�"N (;P � N (�Q � N (�R # and the representative TFR ( N same 
W�"N (;PYXN (�Q X N (�R #$#$Z�[ ) arecomputed.Figure3 displays N (;P , N (�Q andN (�R . Table 1 displaysthe Kolmogorov distancebetweenthese
three responsesand the representative TFR. Thesedistanceare
very small (comparedwith thedistancesplottedFigure4), which
confirmsthestabilityof theproposedprocedure.

6 Kolm �"N (;P � N same# 6 Kolm �"N (�Q � N same# 6 Kolm �"N (�R � N same#
0.0675 0.0754 0.0590

Table 1. Distancebetweenthreeresponsespectrogramsandthe
representative TFR.

4.2. Micr ophonepositioning errors

The next importantquestionconcernsthe robustnessof the test
procedurein front of microphonepositioning errors. We have
testeddifferent microphonelocationsarounda central location,
in thesix directions(up, down, left, right, forward,backward) of
1cm, thenof 5cm. Table2 displaysthe testresults(distancebe-
tweenthespectrogramof theresponserecordedatagivenlocation,
andtherepresentativespectrogram).For eachdisplacementlength
(1cmand5cm),therepresentativeTFRis computedastheaverage



Displacement Forward Backward Left Right Up Down

1cm 0.0469 0.0549 0.0609 0.1280 0.0865 0.1209

5cm 0.1697 0.1713 0.1566 0.1757 0.2029 0.2887

Table2. Distancebetweenloudspeaker responsesrecordedatdifferentmicrophonelocationsaroundacentralposition,andtherepresenta-
tive spectrogram.

of thesix spectrograms,correspondingto thesix records.A 1cm
positioningerrorresultsin a smallvariation(comparewith results
of Table1 andFigure4). Displacementsof 5cmcausesmoreim-
portanterrors.In practice,positioningthemicrophonewithin 1cm
is easy(usinge.g. a calibratedtestbench)andenablesaccurate
loudspeaker responseprocessing.

4.3. Fault detection

A setof 7 new and14old loudspeakersis tested.Theaimis hereto
recognizeold loudspeakersandevaluatetheir stateof fatigue.The
loudspeaker responsesarerespectively denoted�S� � � � T �����\�]� �U^�#
and �S_ � � _`T ���\���]� _ �ba # . Of course,21 responsesis not a large
enoughsetto enablestraightforwardprocessing,however a leave
oneoutprocedurecanbeimplementedasfollows:

1. Chooseone of the 7 new loudspeaker responses.This re-
sponseis denotedc� . The learningsetconsistsof the 6 re-
mainingresponses.The representative N new is computedas
theaverageof the6 correspondingspectrograms.

2. Compute6 kolm �"N+d( � N new # ;
3. Compute6 kolm �"N0e : � N new # �0f 
g� ����� �\h ;
4. Chooseanothernew loudspeaker(anotherc� ) anditeratefrom

step1.

Figure4 displaysthecomputeddistancesasplots. Eachsub-plot
correspondsto a different c� . Its distanceto the representative is
plottedasa black square.The 14 distancescorrespondingto old
loudspeakersareplottedasblackcircles.

Threemain observationsare: First, it is possibleto definea
threshold@i
j� � ��k , i.e. it is possibleto discriminatebetweennew
andold loudspeakers.Second,oneold loudspeaker is positionedat
thedistance6 Kolm l � � k . Thisloudspeaker revealsto haveablown
fuse.Third, new loudspeaker #5 is above thethreshold(classified
asold). Furtherexaminationrevealsa fault (slightly De-centered
tweetermembrane),which explainsthis classificationresult.

5. CONCLUSION

The proposednonstationarytest signal, combinedwith the TF
classificationprocedure,enablesthe detection of loudspeaker
faultsaswell asanevaluationof loudspeaker fatigue.Its efficiency
andpracticalinterestis shown: In particular, pricetestcomponents
andany acousticenvironmentmatch.Thisprocedurecouldalsobe
appliedto loudspeaker objective qualityevaluation(by comparing
to a reference).Moreover, theaccuracy canbe improvedby TFR
kerneloptimization,asexplainedin [3].
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[6] C.RichardandR.Lengelĺe, “Datadrivendesignandcomplex-
ity control of time frequency detectors,” SignalProcessing,
vol. 77,no.1, pp.37–48,1999.

[7] M. Basseville, “Distancemeasuresfor signalprocessingand
patternrecognition,” SignalProcessing, vol. 18,no.4, pp.349
– 369,1989.


