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ABSTRACT

This paperaddresseshe problemof loudspeakr test. Two ap-

plicationsare investigated:loudspea&r manufcturing fault de-

tection and maintenance.In orderto comply with practicalre-

quirements,we proposea new, brief, nonstationarytest signal.

Recordedoudspea&r responseareprocessedisinganimproved

time-frequenyg decisionalgorithm. The fault detectionprocedure
is testedwith real data. Resultsshaw its accurag and practical
interest.

1. INTRODUCTION

1Soundsystemloudspeatr fault detectionis a twofold problem:
manufcturingandmaintenanceManufacturerseedo detectary
fault beforeselling the product; usershave to maintainthe loud-
speakr (e.g.replaceafaultytweeter) Thefaultdetectiorproblem
canbe statedasfollows: is it possibleto detectary loudspeakr
fault (manufcturing test), and measurets importance(mainte-
nancetest)?In this paperwe proposea satishctorysolution,con-
sistingin comparing- in the Time-Frequeng (TF) domain- the
responsef a givenloudspeakr to a setof "correct” loudspeakr
responses.

Classicalloudspeakr testsare e.g. on-axis,impedanceor im-
pulseresponsesand lead to the estimationof Thiele and Small
parameter§l]. Thisimplicitly relieson thelinearity assumption:
loudspeakrs can be modelledas linear filters, which are com-
pletely characterizedby a transferfunction. Thesemeasurement
techniquesreefficient for loudspeakr design,besidesvhich ad-
ditionaltechniquesuchasmembranelisplacemertasermeasure-
mentcanbeused.

Mary fault detectiontestsusethe samekind of measurements:
on-axisandimpedanceesponsehut alsohumanearing.However,
the aim is differentfrom loudspea&r design,and,in this context,
thesetechniqueshave dravbacks. On-axis, impedanceand im-
pulse(or step)responsesanactually be interpretedonly in case
of:

e stationarysignals:the testsignalhasto be a stationarytone
of givenfrequeny (or acollectionof tones).

e linearity.

However, a loudspeakr fault canresultin nonlinearity in which
casethe interpretationof thesemeasurement&ils. An important
conclusionis thenthat designmeasurementare not, from a the-
oretical point of view, adaptedto fault detection. This point is

1This work wasmainly performedwhile M. Davy wasstill atIRCCyN.
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experimentallyconfirmedin the classicaproblemof detectingthe
vibration causedoy a small object(e.g. a wire) touchinga mem-
brane(a problemknown asrub andbuz?: mostclassicakestsfail
in detectingthis noisyvibration!

In this paperwe proposea new fault detectiontest basedon
a nonstationanytestsignaland TF signal classification/detection.
This non-parametri¢gechniqueis completelymodel-freeand has
been applied to, e.g., the analysisof impulse responseq?2].
(Waterfall chartsare also basic Time-Frequeng Representations
(TFRs).) Using TFRsdoesnot requirethe definition of a signal
model; the linearity assumptioris thennot necessaryMoreovet,
TFRsare suitedto the analysisof nonstationarysignals,andwe
will shav all theloudspea&r bandwidthcanbe processedisinga
shortduration(< 100 ms)testsignal.

In section2, we presenta new, multicomponent-M testsig-
nal. In section3, animproved TF signal classification/detection
methodis proposed3]. In section4, resultsobtainedwith real
dataare exposed. We emphasizeahe robustneswof the proposed
procedure— in particular it canbe implementedn a noisy ervi-
ronment.Finally, someconclusionsaregiven,andfuturedevelop-
mentsexplained.

2. ATEST SIGNAL

Classicalon-axis responsemeasurementgonsistin measuring
the acousticpressureat mary stationaryfrequenciesn the loud-

speakr frequeny range(20Hz-20kHz),and plot the log-log re-

sponse. The proposedTF signal classification/detectiomethod
enablesthe useof nonstationantest signals,which can explore

theloudspeakr frequeny rangewithin a shortduration.

2.1. Multicomponent FM testsignal

The proposedtest signalis madeof 4 FM componentf con-
stantamplitude,in the range20Hz—10kHz. (The range 10kHz-
20kHzdoesnot containcrucialinformationfor soundsystenioud-
speakrfaultdetection.Thechoiceof thisupperfrequeng permits
a slower samplingrate and limits the numberof datato be pro-
cessed.)Figure 1 (left) representshe spectrogranof sucha test
signal. Signaldurationis 92.9ms(2048 points at samplingrate
22050Hz). Frequeng rangesof FM componentsio not overlap.
The slopeof eachcomponentdependon its frequeng: low fre-
guenciegi.e. longperiodsyequiremoretime: theslopeis smaller
Direct useof thetestsignalmayhowever causeproblemsin its
beginning andend, causedy amplitudejumps. Theseproblems
canbe avoidedby memging begin andend parts. Thefinal signal
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Fig. 1. Left: Spectrogranof the proposedestsignal (Hamming
window, 101 points). Right: Spectrogranof the completetest

signal. Thetestpart(seeleft) locationis indicatedby thearrow.

is thencomposedf threeparts:heatingpart, testsignalitself, and
endingpart. Figure1 (right) displaysthe completesignal.

2.2. Recording procedure

The test procedureconsistsin recording the responseof the
loudspeakr emitting the amplified test signal. The responséas
recordedusinga microphoneanda computersoundcard.
Therecordedoudspea&r responses preprocesseih orderto
extractthe testpart (i.e. eliminateheatingandend parts). Since
thecompletesignalis perfectlyknown, we proceedasfollows:

e To detectthe beginning of the completeemittedsignal(i.e.
theinitial point of theheatingpart);

e To extractthetestpartby countingthe time pointsafterthe
initial point.

The initial pointis detectecby comparingthe instantaneouam-
plitude of the responséo athresholdg. Thetime pointwhenthe
amplitudebecomesigherthan€ is decidedo betheinitial point.
Figure2 displaystheexampleresponsef asoundsystemoud-
speakr. Note thatthe amplitudeof the FM componentss made
time-varying by the loudspea&r. The amplitudemodulationcan
be interpretedasthe loudspeakr signature.Processinguchare-
sponsaevealspossiblefaults,asshavn in Sectiond. In particular
the presenceof enegy asidethe FM componentgprovoked by,
e.g.,mechanicabibrations)will be detected.

3. TF LOUDSPEAKER FAULT DETECTION

Processindpudspea&r responsesequiresspecificmethodssince
e.g. the frequeng spectrummay not be a relevant (it doesnot
discriminatecorrectloudspeakrs responsegrom faulty onesin
presencef, e.g.,rubandbuzzproblems).

TFRsareparticularlysuitedto the analysisof multicomponent
FM signalswith time-varying amplitude: Firstly, TFRs are non-
parametricwhich implies that no amplitudemodel hasto be de-
fined; Secondly Cohens class[4, 5] TFRsareadaptedo FM sig-
nalg. In this sectionwe first introducesomeelementsf TF clas-
sification/detectionthenwe explain how this techniquecanbeap-
pliedto loudspeaér fault detection.

2TheWignerVille distribution (awell-knovn TFRin Cohens class)is
perfectlylocalizedfor FM signals.
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Fig. 2. Spectrogranof the recordedresponsef a NEXO-PS15
loudspeakr emittingthe multicomponenfM testsignal.

3.1. TF classification/detection

TF classification/detectiotheory hasknown recentadvances[3,
6] thatleadto a higherefficiengy. The principle of TF methods
consistof comparingTFRs(definedby a given kernelwithin the
Cohens class)usinga TF distancemeasure A learningsetcom-
posedof labelledsignalsis usedto definearepresentate element.
We denoteby X; = {z},...,z},} thelearningsetcorrespond-
ing to the classw;, composedf n; learningsignals. Therearec
classes.In the particularcaseof loudspea&r fault detection the
learningsetis composef severalclasses:

e Theclassof correctloudspeakr responses;
e theclassesorrespondindo givenloudspeakr faults.

Both classesreidentifiedby anexpert.

In thefollowing, the TFR of asignalz(t), definedby akernelg,
is denoted’? (¢, ) wheret and f arethetime andfrequeny vari-
ables.

3.1.1. TF decisionrules

GivenaTFRkernelg, theclassificatiorof a givensignalin oneof
thec classeseliesonthefollowing decisionrule:

zisassignedow; < i = aigmind(CS(t, £),CL(t, ) (1)
Jj=1,...,c

whered is a TF distanceasdefinedobelow, C¢ (t, f) is the TFR of

thesignalto beclassifiechnd@f (t, f) istherepresentade TFR:

Ct) = -3¢0 @
k=1

In otherwords,z is assignedo theclasscorrespondingo thenear
estrepresentate TFR.

Sometimeshowever, the learningsetis only composedf the
classof correct loudspeakr responses andthe generalclassof

3Therearemary morecorrectlioudspeagrsthanfaulty ones.



not correct loudspea&r responses.The latter is rathera reject
classthanarealclass.In this casethereis only onerepresentate

(denoted?forrec(t, f), andthe decisionrule consistsof deciding
whethera givenloudspeaér is correct,or not:

& d(CL(t, £), Coomeclt, £)) <1
otherwise
3)

wheren is a given threshold. The distanced(C2 (t, f), C° (t, f))
indicatesheimportanceof theloudspeaér fault.

z is decidedcorrect
z is decidednot correct

3.1.2. TF distancemeasues

Thereexists mary TF distancemeasures.n this paper we con-
siderthe Kolmogorw distance:

deom(C2,C?) = / / [vezt, £) - N (e, )| dtdf @)

wherethenotationNC¢ (¢, f) emphasizethe prior normalization
of the TFR:

lca(t, £)|
cl(t, f)‘ dtdf

JI
This normalizationenableshe useof distancemeasuresdnitially
devotedto probability densitiescomparison.Otherdistancemea-
surescanbe foundin [7]. The correlationdistanceis often pro-
posedfor TFR comparisorandis written:

doon(C2,C) = / / o, Tt fydedf  (6)

Thechoiceof thedistancaneasureanresultfrom anoptimization
procedureasexplainedin [3]. However, the Kolmogorw distance
is preferredherefor its simplicity andaccurag. From a similar

point of view, the chosenTFR kernelis the Spectrogramwith

Hammingwindow (101 points),denotedS, (¢, f) whencomputed
for asignalz.

NCS(t, f) = (5)

3.2. Application to loudspealer fault detection

The resultingdetectionalgorithmis composedf two steps.The
learning stepconsistdn:
1. Recordingcorrectandnot correctloudspeakr responses;
2. Preprocessintheserecordsin orderto extractthetestpart;
3. Computingthe TFRsof the correct responsesind comput-
ing therepresentatie TFR E‘forrem(t, f) of the correct loud-
speakr responsegjsingeq.(2).
The teststepconsistsin comparingthe responser of a given
loudspeakr to the correctrepresentate TFR, asfollows:

1. Preprocesgherecordedresponsen orderto extractthe test
part,denotedr;

2. Computeits TFRCZ (¢, £);

3. Computethe Kolmogoraw distancedmm(cg’,@fmeca using
eq.(4);

4. Comparethis distanceto a thresholdn and decide (using
eg.(3)). This distancealsoindicatesthe importanceof the
fault.

In thefollowing sectionyesultsobtainedusingtheproposedest
signalandTF fault detectionprocedurearegiven.
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Fig. 3. Spectrogramsf threeresponsesf the sameoudspeakr.

4. RESULTS

We presentesultsobtainedvith NEXO-PS152-way active) loud-
speakrs. The test signal was emitted by a DAT reader and
recordedusingamicrophond.EM EMU 4535anda SoundBlaster
soundcard. Theresponsesave beenrecordedn a hall, without
specialacousticervironment: noiseand speechmay corruptthe
records,with a relative small enegy however. The microphone
positionis 80 cm from the loudspeaér, its heightscorrespondso
themiddle pointbetweerthe tweeterandthe bassconedrive.

In orderto evaluatethe robustness and the practicalinterest
of the method,threetestshave beenrun. The questiongnvesti-
gatedwere: First, is therecordedresponsestablefrom onetestto
another? Second,is the microphoneposition crucial? Third, is
it possibleto discriminatenew loudspeaé&rs from old ones,and
evaluateold loudspeakrsfatigue?

4.1. Stability

Stability is a crucial point. Actually, a testprocedurethatwould
lead to different resultsfor the sameloudspea&r would not be
accurate.

This point is investigatedasfollows. A loudspeaér is tested
threetimes,theresponsearedenoted z1, z2, x3). Spectrograms
(S21,Ses, Szg) and the representatie TFR (Ssame = (Szy +
Sz, + Sz3))/3) arecomputed. Figure 3 displaysSs, , Sz, and
Sz;. Table 1 displaysthe Kolmogorws distancebetweenthese
three responsesnd the representate TFR. Thesedistanceare
very small (comparedwith the distanceglottedFigure4), which
confirmsthe stability of the proposedprocedure.

dKoIm(Sml 3 gsame) dKoIm(SmZ 3 gsame) dKoIm(Sac3 ) gsamé
0.0675 0.0754 0.0590

Table 1. Distancebetweenthreeresponsespectrogramsind the
representate TFR.

4.2. Micr ophonepositioning errors

The next importantquestionconcernsthe robustnessof the test
procedurein front of microphonepositioning errors. We have
testeddifferent microphonelocationsarounda centrallocation,
in the six directions(up, down, left, right, forward, backward) of
1cm, thenof 5ecm. Table2 displaysthe testresults(distancebe-
tweenthespectrogranof theresponseecordedatagivenlocation,
andtherepresentadie spectrogram)For eachdisplacemenltength
(cmand5cm),therepresentatie TFRis computedastheaverage



Displacement Forward Backward
0.0549
0.1713

Left Right Up
0.0609 0.1280 0.0865 0.1209
0.1566 0.1757 0.2029 0.2887

Down

0.0469
0.1697

1cm

5cm

Table 2. Distancebetweerloudspeakr responsegecordedat differentmicrophondocationsarounda centralposition,andtherepresenta-

tive spectrogram.

of the six spectrograms;orrespondingdo the six records.A 1cm

positioningerrorresultsin a smallvariation(comparewith results
of Table1 andFigure4). Displacement®f 5¢cm causesnoreim-

portanterrors.In practice positioningthe microphonewithin 1cm

is easy(usinge.g. a calibratedtestbench)andenablesaccurate
loudspeakr response@rocessing.

4.3. Fault detection

A setof 7 new and14 old loudspeakrsis tested. Theaimis hereto
recognizeold loudspeakrsandevaluatetheir stateof fatigue.The
loudspeakr responsesare respectiely denoted(z1, z2, ... , z7)
and (y1,y2,... ,414). Of course,21 responsess not a large
enoughsetto enablestraightforvard processinghowever aleave
oneout procedurecanbeimplementecdasfollows:

1. Chooseone of the 7 new loudspea&r responses.This re-
sponseis denotedz. The learningsetconsistsof the 6 re-
mainingresponsesThe representatie Sney iS cOMputedas
the averageof the 6 correspondingpectrograms.

2. Computedioim(Sz, Snew);
3. Computedkom(Sy,, Snew) , j =1...14;

4. Choosenothemnew loudspeakr (anotheiz) anditeratefrom
stepl.

Figure4 displaysthe computeddistancesas plots. Eachsub-plot
correspondso a differentz. Its distanceto the representatie is
plottedasa black square.The 14 distancesorrespondindo old
loudspeakrsareplottedasblackcircles.

Three main obserations are: First, it is possibleto definea
thresholdy = 0.15, i.e. it is possibleto discriminatebetweemew
andold loudspeakrs. Secondpneold loudspeakr is positionedat
thedistancelkom ~ 0.5. Thisloudspeakr revealsto have ablown
fuse. Third, new loudspeakr #5 is above thethreshold(classified
asold). Furtherexaminationrevealsa fault (slightly De-centered
tweetermembrane)which explainsthis classificatiorresult.

5. CONCLUSION

The proposednonstationarytest signal, combinedwith the TF
classification procedure, enablesthe detection of loudspeakr
faultsaswell asanevaluationof loudspea&r fatigue. Its efficiency
andpracticalinterestis shavn: In particular pricetestcomponents
andary acousticervironmentmatch. This procedurecouldalsobe
appliedto loudspeakr objective quality evaluation(by comparing
to areference) Moreover, theaccurag canbeimproved by TFR
kerneloptimization,asexplainedin [3].
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