ALGORITHMSTO ESTIMATING FRACTAL DIMENSION OF TEXTURED IMAGES
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ABSTRACT

Two algorithmsthat canobtainmoreaccurateestimate
of the fractal dimensionare proposed.Oneis the shifting
DBC (SDBC) algorithmandthe otheroneis the scanning
BC (SBC)algorithm. It is theoreticallyproventhatthe SD-
BC algorithmapproacheshe estimatedvalue closerto the
exactfractal dimensionthanthe DBC method. Simulation
resultsshowv thatthe proposedalgorithmsconsistentlygive
moresatistctoryresultson texturedimages.

1. INTRODUCTION

Most of the objectsin the real world are so complex and
irregularin naturethatthey cannotbe describedby classi-
cal geometry Fractaltheoryhasbecomevastly popularin

therecentdecade.The complex shapedescriptionin terms
of self-similarity wasintroducedby Mandelbrot[1]. The
topologicaldimensiorof asetis alwaysanintegerwhile the
Hausdorf dimensioror fractaldimensiommaybeafraction.

However, theHausdorf dimensioror hasanelegantmathe-
maticaltreatmentBesideghetheoreticaldefinition,oneof

the mostpopulardefinitionsis the box dimensionwhichis

anupperboundof theHausdorf dimensior{1][2]. Thebox

dimension,sometimegeferredto be the similarity dimen-
sion, is the fractional conceptof choicefor experimental
sciencesinceit is more computationallynanageabl¢han
the Hausdorf dimension.In general the Hausdorf dimen-
sionandthe box dimensionoften have the samenumerical
value. As a very usefulmeasureof a fractal set,the com-

putationof fractal dimensionbecomesan importantissue.
TheexistingmethodsuchastheBC andtheDBC methods,
however, possesproblemsthatthey usuallyover-countthe

numberof boxes so that the exact value of fractal dimen-
sion cannot be obtained. Therefore the aim of this paper
is to investigatethe problemsandthenproposetwo simple
andefficientalgorithmsfor obtainingthe estimated/alueof

fractaldimensiorcloserto the exactvalue.

2. FRACTAL DIMENSION

Let #(R™) bethe spaceof all nonemptycompactsubsets
of the EuclideanspaceR™. A setA € H(R™) is saidto

beself-similarif A is theunionof distinctof closedballsof
radiusr neededo cover A. Let N(A,r) bethe numberof
closedballsof radiusr neededo cover A. If

. InN(A,71)

Dy(A) = lim “In(i/r) 1)
exists,thenD¢ (.A) is calledthefractal dimension of A and
wewill say“ A hasfractaldimensionD;(A).” In generaljt
is hardto directly computethe exactvalueof Dy (A). The
box-countingmethodis the mostpopularmethod[3]—[5].

Sarkarand Chaudhuri[6]-[8] proposedan efficient ap-
proachcalledthedifferential box-counting (DBC) approach,
to estimatethe fractal dimension(also referredas box di-
mension)Dg of a 2-D gray-level imageand assertedhat
it canpreciselyestimateDg. Although the DBC method
gives a betterestimationof the fractal dimension,its ma-
jor shortcomingis thatthe estimatedvaluesof N,.(A) are
not exactly the leastnumberof boxesof sider neededo
cover the 2-D fractal intensity surface. The possibility of
error exists dueto the effect of the quantizationnatureof
the approach especiallywhen the imageintensity surface
is smooth. A modified approachof the DBC methodwith
randomshift of whole columnof boxesin the z direction
(or z/y direction)wasproposedhat the small variation of
the grayvaluein imagecanbe captured However, theran-
domshifting operationof columnsneedsadditionalcompu-
tation involving randomnumbergeneratoand differential
box countingin eachcolumn.

3. THE PROPOSED ALGORITHMS

A. The Shifting DBC (SDBC)Algorithm

It is easyto find out thatthe DBC methodusuallyover-
countsthe numberof boxesn..(i, j) coveringtheimagein-
tensity surfacein the (i, j)-th grid column. The example,
shavnin Figurel, demonstratethatthequantityof 3 boxes
ratherthan4 boxesis enoughto cover the gray level vari-
ation of the intensity surfacein the columnof boxesif the
boxesare appropriatelyshiftedalongthe 2 direction. This
resultsfrom the quantization effect thatin the BC method
the gray level variationin the z coordinateis subdvided
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Fig. 1. Thefirst problemof theBC andDBC methods.

into someintervals with size s’. Insteadof the processof
“ quanti zation-computation” adoptedby the DBC method,
the procesf “ computation-quantization” is adoptedn our
approacho overcomethe quantizatioreffect. The process
of “quantization-computation” meansthat before comput-
ing the numberof boxescoveringthe intensity surface,the
guantizatiorof the z coordinatds donefirst. More precise-
ly, we give thefollowing theorem.

Theorem 1 Let A € H(R™). For m = 1,2, 3, we have

_ , (@ _ (b) (9
27" Njpn (A) < 27" Npna (A) < N(A4,27) <
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Ny (A) < No-n(A), (2)

whenever n € N. Furthermore, if

InN;_.(A)

D% (A) = lim In(2 ")

n— oo

3)

exists, then A has fractal dimension D (A). Conversely, if
A hasfractal dimension D (A), then Dy (A) = D% (A).

B. The ScanningBox-Counting(SBC) Algorithm
Unfortunately the SDBC algorithm only can conquer
thefirst problembut thesecondandthethird one.In thefol-
lowing, for estimatingnoreaccuratelythanthe DBC method
andthe SDBC algorithm a more generaland efficient ap-
proachis proposed.If interpretedasa 3-D terrainwhose
heightof the 3rd dimensionis given by the pixel value,a
2-D imageintensitysurfacemay virtually be consideredis
a continuoussurfaceon the 3-D space.By patrtitioningthe
continuoussurfaceinto fixed boxes,boththe DBC method
andthe SDBC algorithmarehighly possibleto over-count
thenumberof boxes.To overcomeheshortcomingsuchas
over-countingand undercounting,we proposea novel ap-
proach,calledthe scanningoox-counting(SBC) algorithm.
Thefundamentaprincipleof the SBCalgorithmis counting
thenumberof boxesby trackingtheimageintensitysurface
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Fig. 2. Theprinciple of the SBCalgorithm.

changeatherthanpartitioningthe 3-D spacento fixedbox-
es.

Suppose:(m, n) representshegray level of a2-D im-
age, wherem andn are the coordinateindexes, respec-
tively. For eachpixel z(m,n), two gray level differences
Azy (m,n) andAzg (m,n) arecomputedwhereAzy (m,n) =
z(m,n)—z(m,n—1) representthedifferencebetweerthe
pixel z(m,n) andthe previousneighboringpixel z(m,n —

1) in the vertical direction,and Azg (m,n) = z(m,n) —
z(m—1,n) representthedifferencebetweenhepixel z(m, n)
andthe previousneighboringpixel z(m — 1,n) in thehori-
zontaldirection.OnethensplitsAzy (m, n) andAzg (m, n)
into [Az"gm’"ﬁ and (AZHS"’”)} sub-sgmentsin two di-
rections.

Similarly, for eachsub-sgmentin both two directions
onechecksf it hasalreadybeencoveredby oneof thes x s
previousneighboringboxescreatedn the scanninghistory.

If “no,” thenanew box coveringthis sub-sgmentis created
andcountedinto N (s, A) (i.e., N..(A)) by 1, andits corre-
spondinglocationis recorded.Otherwise,no new box for
this sub-sgmentneeddo be created.After checkingall of
thesub-sgmentdor thecurrentpixel z(m, n), thescanning
algorithmskipsto the next pixel. The procedureproceeds
until all of the pixelsin the computedmageareprocessed.
However, overlappingwill occurif the pixel scanningorder
by horizontalscanning(i.e., row by row), vertical scanning
(i.e., columnby column), or zig-zagscanningis used. In
orderto avoid the overlappingproblem,a specialscanning
orderis proposedn the 2-D SBCalgorithm.

4. EXPERIMENTAL RESULTS

Experimentshave beenperformedon two setsof sixteen
naturalttexturedimagedakenfrom Brodatzsimagedatabase
[9] and two setsof sixteensynthetictexture-like images.
Theimagesizesare128 x 128. Thegraylevelsrangefrom 0
to 255. For thefirst experimentwe generate setof sixteen



naturaltexturedimageswith the sameresolution,asshavn
in Figure3(a),in which eachoneis simply acopy of aseed
imagevia 16 distinctgraylevel shifts.

The valuesof fractal dimensionestimatedoy the DBC
methodandthe SDBC algorithm performedon the image
generatedabove are shovn in Figure 3(b). As described
previously, the correspondindractaldimensionsshouldbe
the sameif two intensitysurfacesare entirely identicalex-
ceptthey arewith differentaveragegray levels. We note
thatthe estimatedraluesof thefractaldimensionobtained
by the DBC methoddrift alongwith the gray level shift-
ing, althoughthis contradictshe conceptof fractal dimen-
sion. Corversely the SDBC algorithmcomputeshe same
estimatedraluesof fractaldimensiondor differentimages.
The reasonis thatin the SDBC algorithmthe boxes used
in covering the image are allowed to drift up or down a-
long with the gray level shifting up or down. This, how-
ever, cannotbe donein the DBC method. Consequently
the SDBC algorithm modified from the DBC methodwill
estimatefractal dimensionmore preciselythan the DBC
method. Similarly, as shavn in Figure 3(b), the SBC al-
gorithmalsocomputeghe sameestimatedraluesof fractal
dimensiondor the samesetof imagesshavn in Figure3(a)
so that the SBC algorithmwill estimatefractal dimension
morepreciselythanthe DBC method.Thatis, boththe SD-
BC algorithmandthe SBC algorithmreflectthe roughness
of animagesurfacemorefaithfully thanthe DBC method.
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Fig. 3. (a) Naturaltexturedimageswith 16 distinct gray

level shifts. (b) The comparisorof the estimatedvaluesof
fractaldimensions.

For thesecondxperimentwe generate@ setof sixteen
128 x 128 synthetictexture-like images,asshavn in Fig-
ure 4(a). The pixel gray levels of the 1stimageareall set
to be“0.” Thepixel graylevelsof eachof four sub-images
(theresolutionsare64 x 64) in the2ndimageare“0,” “85,”
“170,” and“255," respectiely. Theremainingimages(3rd,
4th, ..., 8th) aregeneratedrom the previouslevel imageby
down-samplingthe resolutionby 2 andthen copying it to
four quadrants.Similarly, the pixel gray levels of the 9th
imageareall setto be“255." Thepixel graylevelsof each
of four sub-imagedn the 10thimageare“0,” “255," “255,”

and“0,” respectiely. Following the samegeneratiornpro-
cessasabove, the remainingimages(11st,12nd, ..., 16th)
arealsogenerated.
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Fig. 4. (a) 16 Synthetictexture-like images. (b) The esti-
matedvaluesof thefractaldimensions.

The SBC methodis performedto estimatethe fractal
dimensionfor eachof this setof syntheticimages.As Fig-
ure 4(b) shaws, for thoseimageshaving sharpgray level
abruptionjust at the borderof two neighboringboxes, the
estimatedvaluesof fractaldimensiondy the DBC method
may lie outsidethe rangebetween2 and3. This result, of
coursejs notreasonablelt clearlydemonstratethattheD-
BC methodcannotexactly estimatefractal dimension thus
cannotexactly manifestthe roughnes®f animage. Con-
versely the SBC algorithmconsiderghe discreteintensity
imageasa continuoussurfaceandleadsthe boxestracking
thesurface.This boxtrackingprocesswill notmissoutary
box at the location having thr sharpgray level abruption.
As a result, the SBC methodcan estimatefractal dimen-
sion more exactly. Therefore,the SBC algorithmreflects
the roughnes®f animagesurfacemorefaithfully thanthe
DBC methodfor this kind of texturedimages.However, it
hasa slightly highercomputationabomplexity thanthatof
the DBC method. Unfortunately the SDBC algorithmstill
cannotresohetheproblem.

Figure5 demonstratethe comparisorof the valuesof
the fractal dimensionsestimatedby the DBC method,the
SDBCalgorithm,andthe SBC algorithmfor thefirst setof
sixteenBrodatzs naturaltextured images. All of the ap-
proachesestimatethe fractal dimensionvaluesvery close.
Two closecurvesreflectthe very similar degreeof rough-
nesdiscrimination.Strictly speakingthefractaldimension
valuesestimatedy the SDBCalgorithmis alittle bit small-
erthanthatby theDBC method.Theresulttotally coincides
with the statemensupportecby Theoreml. Similarly, Fig-
ure5 alsodemonstratethe comparisorof the valuesof the
fractal dimensionsestimatedby the DBC methodandthe
SBC algorithmfor the samesetof images. From the fig-
ure, the SBC algorithm obtainsthe leastestimatedfractal
dimensionvaluesfor thefirst eight naturaltexturedimages
while for theremainingeightimagesf notso.
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Fig. 5. The comparisorof the estimatedvaluesof fractal
dimensiondor thefirst setof images.
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Fig. 6. (a) Sixteennaturaltexturedimagesfrom Brodatz
database(b) Comparisorof thefractaldimensions.

Finally, the threeapproachesre againappliedto esti-
matefractal dimensiongfor the setof sixteendistinct tex-

turedimagesasshovnin Figure6(a),from Brodatzsdatabase.

Thefitted error E expressedasthe root mean-squaredis-
tanceof the datapoints from the line is definedas £ =

n (mzitc—y;)2
i=1 " (1m?2)

— . Theerror E providesa good measure
of fit sothatthe lower the value E, the betterthe fit. The
fractal dimensionsandthe errors E computedfor the im-
agesshown in Figure6(a) usingdifferentalgorithmsare p-
resentedn Tablel. The experimentalresultis alsodepict-
edin Figure6(b). It is readily found that both the SDBC
and SBC algorithmare superiorto the DBC algorithmand
concludedhatthe SBCalgorithmis the bestfrom the view
point of fitted error.

5. CONCLUSION

In this papertwo simple and efficient algorithmsare pro-
posedo obtainmoreaccurateestimateof fractaldimension
for 2-D texturedimages.As comparedo the DBC method
andthe otherkind of methodsQur algorithmsardoothgive
moresatisactoryresults.

Table 1. The valuesof fractal dimensionandfitted errors
for the2ndsetof images.

DBC T SDBC T SBC

images | FD [ E | FD [ E | FD [ E
1 2.133415 0.011122 2.092197 0.010120 2.198054 0.003119
2 2.250913 0.019251 2.229082 0.014112 2.316987 0.008835
3 2.599949 0.031037 2.601203 0.029028 2.583010 0.025773
4 2.655817 0.034717 2.650059 0.032335 2.643636 0.026560
5 2.470243 0.029972 2.491461 0.028589 2.507317 0.021436
6 2.516046 0.026402 2.542373 0.022635 2.571014 0.016201
7 2.631907 0.037651 2.627138 0.034498 2.627080 0.026294
8 2.677373 0.031890 2.672149 0.030420 2.665015 0.024411
9 2.305452 0.020534 2.336494 0.021650 2.371888 0.013025
10 2.390279 0.026098 2.398498 0.021640 2.422303 0.015371
11 2.399804 0.025913 2.386965 0.021676 2.430104 0.013988
12 2.516629 0.033771 2.517884 0.031688 2.527595 0.024141
13 2.492698 0.031454 2.517179 0.028788 2.526153 0.020914
14 2.504440 0.021431 2.509932 0.018509 2.527374 0.014425
15 2.551598 0.034458 2.540916 0.034036 2.548192 0.025639
16 2.581626 0.026041 2.583370 0.023330 2.585091 0.019299

average error 0.027608 0.025190 0.018714
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