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ABSTRACT

In using acoustic emissions (AE) for mechanical diagnostics, one
major problem is the differentiation of events due to crack growth
in a component from noise of various origins. This work presents
two algorithms for automatic clustering and separation of AE
events based on multiple features extracted from experimental
data. The first algorithm consists of two steps. In the first step,
the noise is separated from the events of interest and
subsequently removed using a combination of covariance
analysis, principal component analysis (PCA), and differential
time delay estimates. The second step processes the remaining
data using a self-organizing map (SOM), which outputs the noise
and AE signals into separate neurons. The algorithm is verified
with two sets of data, and a correct classification ratio of over
95% is achieved. The second algorithm characterizes the AE
signal subspace based on the principal eigenvectors of the
covariance matrix of an ensemble of the AE signals. The latter
algorithm has a correct classification ratio over 90%.

1. INTRODUCTION

The increased reliability and safety standard of engineering
structures requires the detection of the precursor or onset of
failures. A promising technique in addressing this challenge is
acoustic emission (AE), or the transient energy spontaneously
released by incremental crack growth. Compared to other
nondestructive testing (NDT) techniques, AE has the advantage
of real-time continuous monitoring of in-service structures [1]. A
major issue in applying the technique, however, is how to
differentiate the events of interest, i.e., those due to crack growth
or imminent failure, from noise of various nature in a large
dataset. Often the real AE events are measured in the presence of
noise due to vibration, fretting, and electromagnetic interference
etc, and automatic noise rejection is required before correlating
AE activities with crack initiations or progressive failures. This
essentially falls into a problem of pattern recognition and
classification for random waveforms. In many cases, traditional
signal processing techniques such as filtering, energy analysis,
spectrum analysis etc, are insufficient to separate the two, as the
noise often has similar temporal and frequency features as the
AEs due to crack activities, and new alternatives have to be
explored. One approach is to use neural networks that are
capable of automatically discovering features and patterns in a
larger collection of almost random observations [2].

This article presents a novel, efficient algorithm for automatic
clustering and separation of AE events based on multiple features
extracted from the original test data. The algorithm consists of
two steps. First, the noise events are separated from the events of
interest and subsequently removed, using a combination of
covariance analysis, principal component analysis (PCA), and
differential time delay estimates. The original data is reduced by
up to 70% after this step. The second step processes the
remaining data using a self-organizing map (SOM), which
clusters AE signals and noise signals to separate neuron outputs.
To improve the efficiency of classification, short-time Fourier
transform (STFT) is applied to retain the time-frequency
characteristics of the remaining events, and reducing the
dimension of the data. The algorithm is verified with two sets of
test data and a correct classification ratio over 95% is achieved.
Furthermore an AE signal subspace, i.e., a set of orthogonal basis
retaining the features of AE signals, is computed from the
separated AE’s. When applied to data from new tests, signals of
similar features, i.e., AE events of the same origin, are selected
automatically. The example in this study shows a correct
selection ratio of 90%.

2. CLUSTERING OF AE EVENTS FROM
THE TEST DATA

In this section, a system that removes the non-crack events and
applies a Kohonen network to cluster the potentially crack-
related AE signals is shown in Fig. 1.
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Figure 1. System for acoustic emission clustering
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Two sets of data (Testl and Test2) have been used for verifying
the performance of the system. Three techniques are employed to
remove the noise events. The first used a bandpass filter 20Kz -
IMhz, after collecting signals from four channels (sensors), to
remove low frequency noise, i.e., events whose ratio of energy in
the frequency band to the whole energy is below a certain
threshold. Second, using the first and second principal
components (PCs), (a larger number of PCs, e.g. 5, can be used if
needed) we remove clusters that correspond to the high
frequency mechanical signals such as those generated by the
grips that hold the sample, with a radial basis function (RBF)
network. In the third technique, cross-correlation is used to
measure the delays between the sensors to remove events that
have relatively large differential delays, i.e., the grip noise. At
this stage, a significant amount of noise would be removed from
the original test data. Next, a Self-Organizing Map (SOM) is
used to process the remaining data for separating the noise and
clustering AE signals. To improve the efficiency of classification,
short-time Fourier transform (STFT) is used to retain the time-
frequency characteristics of the remaining events, and reducing
the dimension of the data. Figure 2 shows the results of
successive removal of noise from the original data.
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Figure 2. Results of successive removal of noise

3. PRINCIPAL COMPONENTS OF THE
DATA

Principal components analysis can be used for separating AE and
non-AE signals and the corresponding spaces spanned by the
first few principal vectors are denoted as signal and noise
subspace respectively. In practice, however, the data recorded
from an AE test contains both, and an algorithm has to be able to
select one type or the other from the mixed data. Using this
combined signal and noise data, we performed the principal
component analysis. Figure 3 shows the distribution of the first
two principal components associated with the output of the RBF
network for each of the four sensors. It is noticed that the two
principal components are mainly divided into four clusters: the
cluster around the origin and three branches. Randomly choosing
and plotting a signal from these four regions shows that the
center cluster contains mainly AE signals, while the other three

branches are noise. This is also confirmed when projecting the
selected AE signals to the mixed space, and they overlap with the
center cluster.

This result is not surprising. The first two PCs are heavily
influenced by the intrinsic features of the grip noise, since they
account for more than 80% of the total events used in performing
the analysis. When signals of different nature, in this case, the
AE signals, are projected to these two directions, it leads to a
distribution of PCs around the origin, meaning no similarities
exist between the AE and noise. Some overlaps of the two are
due to the highly non-stationary nature of the two types of
signals. One then can use the clustered PCs to remove a large
number of non-AE events, either based on single sensor data or
by a validation or voting rule using the PCs from all the sensors.

To separate the clusters explicitly, a simple radial basis function
(RBF) network is employed. After this stage, a significant
portion of the noise data is successfully removed, and the data set
is reduced by almost 50%, i.e., the data is reduced from 3027 to
1506 and from 2141 to 1050 respectively for test 1 and test 2.
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Figure 3. Second PC vs. first PC for test 1 data

4. DELAY ESTIMATION FOR THE
MULTI-SENSOR DATA

To further reduce noise from the already halved data, time-delay
estimate is used. The estimate is based on the location of the
maximum of the cross-correlation between the signals of any two
sensors: for a pure delay model of propagation, two data
sequences from the same source will have the maximum cross-
correlation when the delay between these two data sequences is
compensated. The normalized cross-correlation value above a
threshold is used as the true delay. Ideally, a high threshold close
to 1 is desired. However, due to the presence of noise, this study
uses threshold values as low as 0.4, i.e., it is conservative in
keeping some noise signals rather than rejecting potential AE’s.
Figure 4 shows the estimated differential delays between the



signals received at 3 pairs of sensors. Using the delay estimation,
the two test data are reduced to 500 and 645 respectively.
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Figure 4. Delays between pairs of sensors for all 3027
events, test 1. (a): Sensors 1 and 2; (b): Sensors 1 and 3;
(c): Sensors 1 and 4.

5. CLUSTERING OF AE EVENTS USING
THE KOHONEN NETWORK

Some noise events still remain to be separated because of their
close resemblance to the AE signals. Since no precise model for
AE signals is available, a neural network-based scheme seems to
be an appropriate choice. This study uses a 4x4 Kohonen
network. The network is an unsupervised, i.e., the network is
presented with only the inputs and samples of self-similar are
grouped to the same node. The training set consists of 500 128-
dimensional vectors of the STFTs of AE signals and noise,
randomly chosen from the pool of one sensor. The test set
consists of all the remaining data from all the four sensors.
Figure 5 shows which event mapped to which neuron.

As crack-related signals have different time-frequency features
compared to grip and noise-related signals, it is expected that
crack-related signals to be mapped to special neurons. The results
show that almost all the AE signals mapped to the neurons 4-6.
Table 1 lists the AE’s classified by the network.

Table 1. Performance of the Kohonen network.

Test AE AE’s AE’s False % of correct
events | clustered | missed | alarm classification
1 385 382 5 2 98.7%
2 192 191 2 1 99.5%

6. EVENT CLASSIFICATION BASED ON
SIGNAL SUBSPACE PROJECTION

The scheme described above assumes no a-priori information
about the AE signal subspace (or equivalently the noise
subspace) is available.
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Figure 5. Output of the Kohonen network to all
potentially crack-related signals

In AE testing, however, calibration of the system and
repeatability of the test have to be ensured before applying the
technique to engineering application. Therefore, at least some
typical AE’s are available. If one is able to characterize the AE
signal subspace based on the principal eigenvectors of the
covariance matrix of available AE ensemble, or equivalently the
noise ensemble, the following possibilities may be explored:

. Having identified the AE signals from one test using
the developed system, one can use it as estimate of the
signal subspace for the subsequent tests;

. The events prior to the possibility of any measurable
crack-related events may be used to estimate the noise
subspace; and

. The high correlation among successive events during a
rapid rise in the event count may be used as an
indicator of a group of potential AE events, and used
for estimating the AE signal subspace;

Once the signal subspace has been estimated, data from new test
can be projected onto this subspace. The norm of this projection
is a measure of the closeness of the data to the signal subspace.
In this case a norm of 1 is a perfect fit to the signal. Thus, a
threshold, or averaged among several sensors, if necessary, can
be set for identifying the potential crack-related AE events.
Similarly, noise can be classified.

As an example, a signal subspace of dimension 5 based on AE
ensemble of test 2 is computed. Figure 6 shows the results when
projecting the complete data of test 2 on the signal subspace. It is
noticed that AE’s, i.e.,, cluster with higher values of the



projections) are effectively separated from the noise. Figure 7
shows the results when cross-projecting the test 1 data onto the
signal subspace of test 2. The result shows 175 correct
classifications, excluding 2 false alarms, out of 191 or a ratio of
correct classification of 89.4% is achieved. Similarly a ratio of
91.5% is achieved when cross-projecting test2 data onto the testl
AE subspace.

Table 2. Performance of the cross-projection method.

AE AE’s False Correct % Correct
Test | events | clustered | alarms | classifications | classification
1 385 353 9 344 89.4%
2 192 177 2 175 91.2%
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Figure 6. Norms of the projections of test 1 data onto the
test 2 signals subspace
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Figure 7. Norms of the projections of test 2 data onto the
test 1 signal subspace

7. CONCLUSION

This paper has presented a set of novel efficient algorithms for
automatic clustering and separation of AE events based on
multiple features extracted from the original test data. The
algorithm successfully removes the non-AE noise from the
original record using a combination of covariance analysis,

principal component analysis (PCA), and differential time delay
estimate. The algorithm leads to a reduction of the data by more
than 70%. A Self-Organizing Map (SOM) is then applied to
separate the AE’s from the noise in the remaining data. The
algorithm is verified with two sets of data, and a ratio of correct
classification over 98% is achieved. Also, an AE signal subspace,
is computed from the separated AE’s. When applied to data from
new tests, signals of similar features, i.e., AE events of the same
origin, are selected automatically. The example in this study
shows a correct selection ratio of 90%.
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