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ABSTRACT 

In using acoustic emissions (AE) for mechanical diagnostics, one 
major problem is the differentiation of events due to crack growth 
in a component from noise of various origins. This work presents 
two algorithms for automatic clustering and separation of AE 
events based on multiple features extracted from experimental 
data. The first algorithm consists of two steps. In the first step, 
the noise is separated from the events of interest and 
subsequently removed using a combination of covariance 
analysis, principal component analysis (PCA), and differential 
time delay estimates. The second step processes the remaining 
data using a self-organizing map (SOM), which outputs the noise 
and AE signals into separate neurons. The algorithm is verified 
with two sets of data, and a correct classification ratio of over 
95% is achieved. The second algorithm characterizes the AE 
signal subspace based on the principal eigenvectors of the 
covariance matrix of an ensemble of the AE signals. The latter 
algorithm has a correct classification ratio over 90%.  

1. INTRODUCTION 

The increased reliability and safety standard of engineering 
structures requires the detection of the precursor or onset of 
failures. A promising technique in addressing this challenge is 
acoustic emission (AE), or the transient energy spontaneously 
released by incremental crack growth. Compared to other 
nondestructive testing (NDT) techniques, AE has the advantage 
of real-time continuous monitoring of in-service structures [1]. A 
major issue in applying the technique, however, is how to 
differentiate the events of interest, i.e., those due to crack growth 
or imminent failure, from noise of various nature in a large 
dataset. Often the real AE events are measured in the presence of 
noise due to vibration, fretting, and electromagnetic interference 
etc, and automatic noise rejection is required before correlating 
AE activities with crack initiations or progressive failures. This 
essentially falls into a problem of pattern recognition and 
classification for random waveforms. In many cases, traditional 
signal processing techniques such as filtering, energy analysis, 
spectrum analysis etc, are insufficient to separate the two, as the 
noise often has similar temporal and frequency features as the 
AEs due to crack activities, and new alternatives have to be 
explored. One approach is to use neural networks that are 
capable of automatically discovering features and patterns in a 
larger collection of almost random observations [2].  

This article presents a novel, efficient algorithm for automatic 
clustering and separation of AE events based on multiple features 
extracted from the original test data. The algorithm consists of 
two steps. First, the noise events are separated from the events of 
interest and subsequently removed, using a combination of 
covariance analysis, principal component analysis (PCA), and 
differential time delay estimates. The original data is reduced by 
up to 70% after this step. The second step processes the 
remaining data using a self-organizing map (SOM), which 
clusters AE signals and noise signals to separate neuron outputs. 
To improve the efficiency of classification, short-time Fourier 
transform (STFT) is applied to retain the time-frequency 
characteristics of the remaining events, and reducing the 
dimension of the data. The algorithm is verified with two sets of 
test data and a correct classification ratio over 95% is achieved. 
Furthermore an AE signal subspace, i.e., a set of orthogonal basis 
retaining the features of AE signals, is computed from the 
separated AE’s. When applied to data from new tests, signals of 
similar features, i.e., AE events of the same origin, are selected 
automatically. The example in this study shows a correct 
selection ratio of 90%. 

2. CLUSTERING OF AE EVENTS FROM 
THE TEST DATA  

In this section, a system that removes the non-crack events and 
applies a Kohonen network to cluster the potentially crack-
related AE signals is shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

Figure 1. System for acoustic emission clustering 
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Two sets of data (Test1 and Test2) have been used for verifying 
the performance of the system. Three techniques are employed to 
remove the noise events. The first used a bandpass filter 20Kz - 
1Mhz, after collecting signals from four channels (sensors), to 
remove low frequency noise, i.e., events whose ratio of energy in 
the frequency band to the whole energy is below a certain 
threshold. Second, using the first and second principal 
components (PCs), (a larger number of PCs, e.g. 5, can be used if 
needed) we remove clusters that correspond to the high 
frequency mechanical signals such as those generated by the 
grips that hold the sample, with a radial basis function (RBF) 
network. In the third technique, cross-correlation is used to 
measure the delays between the sensors to remove events that 
have relatively large differential delays, i.e., the grip noise. At 
this stage, a significant amount of noise would be removed from 
the original test data. Next, a Self-Organizing Map (SOM) is 
used to process the remaining data for separating the noise and 
clustering AE signals. To improve the efficiency of classification, 
short-time Fourier transform (STFT) is used to retain the time-
frequency characteristics of the remaining events, and reducing 
the dimension of the data. Figure 2 shows the results of 
successive removal of noise from the original data. 

 

3. PRINCIPAL COMPONENTS OF THE 
DATA 

Principal components analysis can be used for separating AE and 
non-AE signals and the corresponding spaces spanned by the 
first few principal vectors are denoted as signal and noise 
subspace respectively. In practice, however, the data recorded 
from an AE test contains both, and an algorithm has to be able to 
select one type or the other from the mixed data. Using this 
combined signal and noise data, we performed the principal 
component analysis. Figure 3 shows the distribution of the first 
two principal components associated with the output of the RBF 
network for each of the four sensors. It is noticed that the two 
principal components are mainly divided into four clusters: the 
cluster around the origin and three branches. Randomly choosing 
and plotting a signal from these four regions shows that the 
center cluster contains mainly AE signals, while the other three 

branches are noise. This is also confirmed when projecting the 
selected AE signals to the mixed space, and they overlap with the 
center cluster.  

This result is not surprising. The first two PCs are heavily 
influenced by the intrinsic features of the grip noise, since they 
account for more than 80% of the total events used in performing 
the analysis. When signals of different nature, in this case, the 
AE signals, are projected to these two directions, it leads to a 
distribution of PCs around the origin, meaning no similarities 
exist between the AE and noise. Some overlaps of the two are 
due to the highly non-stationary nature of the two types of 
signals. One then can use the clustered PCs to remove a large 
number of non-AE events, either based on single sensor data or 
by a validation or voting rule using the PCs from all the sensors.  

To separate the clusters explicitly, a simple radial basis function 
(RBF) network is employed. After this stage, a significant 
portion of the noise data is successfully removed, and the data set 
is reduced by almost 50%, i.e., the data is reduced from 3027 to 
1506 and from 2141 to 1050 respectively for test 1 and test 2. 

 

 

Figure 3.  Second PC vs. first PC for test 1 data 

4. DELAY ESTIMATION FOR THE 
MULTI-SENSOR DATA 

To further reduce noise from the already halved data, time-delay 
estimate is used. The estimate is based on the location of the 
maximum of the cross-correlation between the signals of any two 
sensors: for a pure delay model of propagation, two data 
sequences from the same source will have the maximum cross-
correlation when the delay between these two data sequences is 
compensated. The normalized cross-correlation value above a 
threshold is used as the true delay. Ideally, a high threshold close 
to 1 is desired. However, due to the presence of noise, this study 
uses threshold values as low as 0.4, i.e., it is conservative in 
keeping some noise signals rather than rejecting potential AE’s. 
Figure 4 shows the estimated differential delays between the 
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Figure 2. Results of successive removal of noise



signals received at 3 pairs of sensors.  Using the delay estimation, 
the two test data are reduced to 500 and 645 respectively. 

 

Figure 4. Delays between pairs of sensors for all 3027 
events, test 1. (a): Sensors 1 and 2; (b): Sensors 1 and 3; 
(c): Sensors 1 and 4. 

5. CLUSTERING OF AE EVENTS USING 
THE KOHONEN NETWORK 

Some noise events still remain to be separated because of their 
close resemblance to the AE signals. Since no precise model for 
AE signals is available, a neural network-based scheme seems to 
be an appropriate choice. This study uses a 4×4 Kohonen 
network. The network is an unsupervised, i.e., the network is 
presented with only the inputs and samples of self-similar are 
grouped to the same node. The training set consists of 500 128-
dimensional vectors of the STFTs of AE signals and noise, 
randomly chosen from the pool of one sensor. The test set 
consists of all the remaining data from all the four sensors. 
Figure 5 shows which event mapped to which neuron.  
As crack-related signals have different time-frequency features 
compared to grip and noise-related signals, it is expected that 
crack-related signals to be mapped to special neurons. The results 
show that almost all the AE signals mapped to the neurons 4-6. 
Table 1 lists the AE’s classified by the network. 
 

Table 1. Performance of the Kohonen network. 

Test AE 
events 

AE’s  
clustered 

AE’s 
missed 

False 
alarm 

% of correct 
classification 

1 385 382 5 2 98.7% 

2 192 191 2 1 99.5% 

6. EVENT CLASSIFICATION BASED ON 
SIGNAL SUBSPACE PROJECTION 

The scheme described above assumes no a-priori information 
about the AE signal subspace (or equivalently the noise 
subspace) is available. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5. Output of the Kohonen network to all 
potentially crack-related signals 

In AE testing, however, calibration of the system and 
repeatability of the test have to be ensured before applying the 
technique to engineering application. Therefore, at least some 
typical AE’s are available. If one is able to characterize the AE 
signal subspace based on the principal eigenvectors of the 
covariance matrix of available AE ensemble, or equivalently the 
noise ensemble, the following possibilities may be explored: 

• Having identified the AE signals from one test using 
the developed system, one can use it as estimate of the 
signal subspace for the subsequent tests; 

•   The events prior to the possibility of any measurable 
crack-related events may be used to estimate the noise 
subspace; and 

• The high correlation among successive events during a 
rapid rise in the event count may be used as an 
indicator of a group of potential AE events, and used 
for estimating the AE signal subspace; 

Once the signal subspace has been estimated, data from new test 
can be projected onto this subspace. The norm of this projection 
is a measure of the closeness of the data to the signal subspace. 
In this case a norm of 1 is a perfect fit to the signal. Thus, a 
threshold, or averaged among several sensors, if necessary, can 
be set for identifying the potential crack-related AE events. 
Similarly, noise can be classified. 

As an example, a signal subspace of dimension 5 based on AE 
ensemble of test 2 is computed. Figure 6 shows the results when 
projecting the complete data of test 2 on the signal subspace. It is 
noticed that AE’s, i.e., cluster with higher values of the 
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projections) are effectively separated from the noise. Figure 7 
shows the results when cross-projecting the test 1 data onto the 
signal subspace of test 2. The result shows 175 correct 
classifications, excluding 2 false alarms, out of 191 or a ratio of 
correct classification of 89.4% is achieved. Similarly a ratio of 
91.5% is achieved when cross-projecting test2 data onto the test1 
AE subspace.  

Table 2. Performance of the cross-projection method. 

 
Test 

AE 
events 

AE’s 
clustered 

False 
alarms 

Correct 
classifications 

% Correct 
classification 

1 385 353 9 344 89.4% 

2 192 177 2 175 91.2% 

 
Figure 6. Norms of the projections of test 1 data onto the 
test 2 signals subspace  

 

Figure 7.  Norms of the projections of test 2 data onto the 
test 1 signal subspace  

7. CONCLUSION 
This paper has presented a set of novel efficient algorithms for 
automatic clustering and separation of AE events based on 
multiple features extracted from the original test data. The 
algorithm successfully removes the non-AE noise from the 
original record using a combination of covariance analysis, 

principal component analysis (PCA), and differential time delay 
estimate. The algorithm leads to a reduction of the data by more 
than 70%. A Self-Organizing Map (SOM) is then applied to 
separate the AE’s from the noise in the remaining data. The 
algorithm is verified with two sets of data, and a ratio of correct 
classification over 98% is achieved. Also, an AE signal subspace, 
is computed from the separated AE’s. When applied to data from 
new tests, signals of similar features, i.e., AE events of the same 
origin, are selected automatically. The example in this study 
shows a correct selection ratio of 90%. 
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