DYNAMIC ENUMERATION ALGORITHM USING ARRAY ANTENNAS

PeterJ. Greenand Desmond®. Taylor

Universityof Canterlory
Departmentf ElectricalandElectronicEngineering
Christchurch
New Zealand

ABSTRACT

This paperdevelopsa robustmethodto enumerateheinci-
dentsignalsimpingingon a uniform but variablesizelinear
arrayindependanof theirextentof correlatiorin aRayleigh
flatfadingchannekrnvironment.Themethodalsooptimizes
by minimizing the numberof antennago the numberof
signalsandadaptscontinouslyto maintainoptimumperfor
mancein a mobile environmentwhereusers(signals)come
andgo. Thetechniqueis a modificationof the matrix de-
compositionmethodof Cozzensand Sousa.A new setof
stability, stoppingandadaptve controlcriteriais presented.
An algorithmis formulatedwith simulationandfield results
presented.

1. INTRODUCTION

High resolutionparameteestimatioralgorithmg[1] usedin

modernarray processingely on apriori knowledgeof the
numberof incidentsignals.Evenrecentwork [2] on spatial
diversity antennador distinguishingcochannekignalsby

exploiting differencesn thechannefrom eachuserrequires
thenumberof active usersto beknown.

Themobilecommunicatiorervironmentis dynamic.The
signalsthatarrive at the basestationantennawill therefore
consistof a mix of uncorrelatecand correlatedsignals,all
subjectedto somedegreeof fading. The ability to detect
andcorrectlyenumerateheincidentsignalsindependenof
theirextentof correlationin afadingchannekrvironments
crucial. This paperpresentarobustalgorithmthatachieves
this objectie.

Information-theoreticechniquef [3, 4] work well in
enumeratinguncorrelatedsourcesor sourcessubjectedto
independentiat fadingchannelsbut fails completelywhen
someor all of thesignalsourcesarecorrelated.

Thematrixdecompositioomethodof Di [5] andthemod-
ified ranksequencenethodof CozzensandSousg6] made
it possiblefor enumeratioralgorithmsto work in a corre-
latedsignalenvironment.Thesealgorithmswork for afixed
numberof antennasndachieze goodenumeratiormccurag
in anall white Gaussiamoiseernvironment.

This presentvork is basedon theinformation-theoretic
and modified rank sequencenethods. Thesemethodsare
thenusedwith a new stoppingcriterionto developa robust
algorithm that will enumeratureall incident signalsinde-
pendenbf theextentof their correlationin afadingchannel
ervironment.Theneaw algorithmalsooptimizesthe number
of antennago the numberof signalsand adaptscontinu-
ously to maintainoptimum performancen a mobile ervi-
ronmentwhereusers(signals)comeandgo.

2. PROBLEM FORMULATON

Considera linear antennaarray composedof M sensors.
Assumehat K narravbandsourcesgentredaroundaknown
frequeng, wg, impingeonthearrayfrom directions-of-arval
¢17 e 7¢K-

In matrix notationtherecevedsignalz(t) isan M x 1
comple vectorgivenby

a(t) = A($7))s(t) + n(t) @)

whereA (¢(5)) isan M x K matrixof steeringvectorssuch
that

A(¢F)) =[a(g1)a(¢2)a(ds) - a(¢k)]  (2)

with a(éx) anM x 1 complec vectorcharacterizethy un-
known angle¢x associateavith the k** signaland

s(t) = [s1(t)sa2(t) - sk (1)]7 ©)

is thesignal K x 1 vectorwith sy (t) beingacomplex wave-
form representinghe k** signalandn(t) isthe M x 1 com-
plex noisewaveformwith zeromeanandcovariancematrix
o2 I whereo? is anunknown constantand I is theidentity
matrix.

If we let the covariancematrix of s(t) be R, andpos-
itive definiteand A be a full columnrank matrix thenthe
covariancematrix of «(t) is givenby

R, 2 E[z(t)z" (1)) 4)



andtherankof AR, A is K. Denotingthe eigervalues
of R, by \y > Xy > --- > )\ it follows, therefore that
the smallestM — Kof its eigervaluesareall equalto o2.
Thusthe numberof signalsK canbe determinedrom the
numberof the smalleskigervaluesof R.

3. ENUMERATION OF FULLY CORRELATED
SIGNALS

Theinformation-theoreti¢echniquedail to enumerateor-
rectly whenthe covariancematrix of s(t) becomesionney-
ativedefinitefor thecoherensignals.They arehoweverstill
usedlaterin determiningherankof decorelatedmatrices.

In this section,the generalisedmatrix decomposition
methodof [6] will be detailedfollowedby a new stopping
criterionandadaptve selectionof antennasThe enumera-
tion algorithmis alsodescribed.

3.1. Generalised Matrix Decomposition
FromEq.(4),let

Co=AR,A" =R, — 021 (5)

The matrix decompositionof Cy is givenin [6] asa
collectionof matrices

Y (m,p) = [£(C,)?,e(C,)Y,... ,e(C,)™]  (6)
where
e(Co)™ = [C5™, 7,C ™M P ™MaM] ()

for2<p< Mand0<m < M — pand

Cl+m,1 Cl+m,2 Cl+m,M
Co+m,1 C24m,2 Cotm,M
cim = " " v ®)
Cp+m,1  Cp+m,2 Cp+m,M
with J, bethep x p “exchangematrix”
0 ... 1
Jp = 1 )
1 0

Usefulinformationcanbeextractedby studyingtheranksof
the matricesY (m, p). Thereexistsa setof ranksequences
definedas

<rankY(m,p):0<m<M—-p> (10)
Clearly, all suchsequencearenondecreasingndbounded
aboveby K.

Di'stheorem[5] stateghatif Cy isanM x M Hermi-
tianmatrixand R, is a K x K matrixwith nonull row (col-
umn)vector, thenthereis avalueof m denotedny < m—p
suchthat

rank [CY”,--- ,C{™ ] = rank [CY”, - ,C{™)]

(11)
andequalto K < pwherej =1,2,--- ;M — p — mg then
the numberof sourcess K. Thus,rank[C(()O), e ,C(()m)]
will increaseask increasesintil rank[C((]O),--- ,C(()m)] =
K for somem. Alsoif:
rank [C(()O), e ,C(()M_p_l)] < rank [C(()O), S ,CSM_p)]

(12)

andequalto p thenthetheorencannotivetheexactanswer
to the numberof signals,but only tells us thatthe number
of sigalsis notlessthanp.

If K < p, thentheranksequencevill strictly increase
until it reachesk, andthe point at which a rank sequence
levelsoff (two successie termshavethesamevalue)canbe
usedto estimatehe numberof signalsK.

In arealervironmentthearraycovariancematrixwhich
is usedin the matrix decompositiorandrankingprocesss
not known andone mustusethe samplecovariancematrix
givenby

N
R, = 1/N Y a(t))z(t;)" (13)
j=1

wherez (t) is sampledat N discretetimes,t;, j = 1,...,N.

It is obsenedduringsimulation,usingamix of Rayleigh
fadedandcoherensignalsthattheranksequenceanweakly
stabilizeat morethanonepoint (eg. multiple stabilization
points). The previous algorithm[5] which stopsafter two
successie termshaving the samevaluewill resultin false
estimationof the actualnumberof signals. The dynamic
algorithmof this paperis basedon calculatingthe effective
ranksin Y(M —p — 1,p) andY (M — p,p) andselect-
ing K basedon the highestfrequeng of occurrenceof the
calculateceffective ranks.

At initialization, an estimateof the numberof uncorre-
lated sourcesy is calculatedusingthe MDL algorithm of
[4]. Thentheeffectiveranksin Y (M —p—1,p) andY (M —
p, p) arecalculatedor valuesof p = 2, 3,4 suchthatatotal
of 6 estimatedanks;3 fromY (M — p — 1,p) and3 from
Y (M — p,p) areavailableto performa rank stabilization
check. Therank sequencés consideredstableonly when
thereexist a uniquerank, r’, which occurswith the highest
frequeny andr’ > 4. Otherwisep is increasedy oneand
theeffectiveranksin Y (M —p—1,p) andY (M —p, p) are
recalculatedor valuesof p = (2,3,4,5,---). Theprocess
is repeatedintil stabilizationis achievedor untilp = M —1.



If stabilizationis achievzedfor somep < M — 1, thens’
is takenastheestimateof K, i.e. thenumberof signals.The
next samplecovariancematrixis thentakenbut thistime the
effective ranksin Y(M — p — 1,p) andY (M — p,p) are
calculatedor valuesof p = ', '+ 1,7’ +2. Recalculations
per the methodoutlinedabove will be necessaryf it does
notstabilize.

If stabilizationoccurs processingf thenext sampleco-
variancematrixwill startwith avalueof p basednthepre-
viousestimateof theranki.e. p = r'.Thereare2 exceptions.

Thefirst exceptionoccurswhenr’ = 4 = 0. Thisim-
plies that the estimatechumberof signalsis zeroandthis
is possiblewhenthe signalsareatlow SNR andexperienc-
ing deepfades.Underthis condition,p is re-initialized(i.e.
p=2,34).

The secondexceptionoccurswhen the rank sequence
fails to stabilize. Whenthis conditionoccurs,the rank sta-
bilization checkis repeatedut thistime all estimatedanks
with valueslessthand areremoved. If stabilizationoccurs,
thenthis new estimatey’’ becomeghefinal estimate Oth-
erwise,thefinal estimatds takenfrom the roundedmedian
value of 3 previous estimates. Under this condition, p is
re-initialized(i.e. p = 2, 3, 4).

If therank sequenceloesnot stabilizeat or beforep =
M —1, thenanadditionalantennas added,antheprocesss
repeatedTo controlthe build-up of antennasn subsequent
trials, the following adaptve control criterionis applied. If
the rank sequencestabilizesusing 6 estimatedranks, the
numberof antennass maintainedat M for the next trial.
If morethan6 estimatedanksareneededo stabilize,then
the next trial will useoneantenndess.If M is smallcom-
paredto the numberof signals,the rank sequencavill fail
to stabilizeandadditionalantennaswill be addedoneat a
time until the rank sequencestabilizes. Likewise if M is
largeandthe numberof signalssmall,thealgorithmwill re-
move antennagsintil anoptimumis reached Thealgorithm
implicitly requiresthe numberof antennade greaterthan
thenumberof signalsby 2. If theconditionis violated,then
thealgorithmwill enumeratel/ — 2 signalsandtreatother
signalsasnoise.

3.2. Theenumeration algorithm

The dynamicsignalenumeratioDSE) algorithmcannow
bestatedas

1. Formthesamplecovariancematrix R,.

2. Performa singular value decomposition(SVD) on
R, andusetheMDL algorithmto estimatehe num-
berof uncorrelatedgourcesii.

3. Setinitial conditions; M;,itiat = 5,2 < p < 4 and
for 0 < m < M — p, andform thematricesY (m, p)
using R, asanestimateof Cj.

4. PerformaSVDonY (M —p — 1,p) andY (M —
p,p), andthen estimatetheir ranksusing the MDL
algorithmin anarrayYr

5. Performa rank stabilizationcheckon the elements
in Yr. If thereexistsa uniquere}nk, r' is the final
estimateof the numberof signalsK present.

In a situationwheretheranksin Yz do notstabilize,
theprocesss repeatedor p = p+1 until stabilization
is achiezedor untilp = M — 1.

6. Apply the adaptie control criterion to the rank se-
guence.The criterion determineghe numberof an-
tennado beusedto obtainthe next samplecovariance
matrix.

4. SIMULATION RESULTS

The dynamicperformanceof the new algorithmis showvn
in Figurel. It is simulatedusinga lineararraymodelwith
an initial numberof antennaq M;y,itia1) Setto 12. They
areequallyseparateat a distanceof A/2 andreceie 3 in-
dependanRayleighfadingsourcesand 3 coheent sources
arriving at —45°, —30°, —15°,0°,15° and30°. The num-
ber of signalsvary at randomfrom 3 to 6 usersbut remain
in one particularstateover 4 trials. The frequeng of the
signalsareall equalto simulatethe arrival of the mainand
reflectedsignalsandalsocochannesignals. The numberof
snapshot§N) pertrial is 100and100trialswereconducted.
Thetoptracein Figurel indicateshenumberof signals,
themiddletraceshaw the estimatechumberof sourcesand
theerrorbetweertheactualnumberof sourcesaandtheesti-
mate.Thebottomtraceshowns the numberof antennasised.
The generaltrendis for the algorithmto rampdown in the
first 10 trials to about7 or 8 antennas., Performancevas
bestat97 percentorrectestimatiorat 10dB SNRasshovn
in Figurel. At low SNR,the performancds predictably
poor andalgorithmtendsto underestimate.Ahigh SNR, a
slight degradationin performancds obsenedwith 91 per
centcorrectlyestimatedvith 9 percentover estimatedy 1.
Thereis no underestimation.In generalanover estimation
is usuallynotasseriousaproblemasanunderestimatioron
the numberof users.For example,the Viterbi algorithmof
[2] will still work correctlyif thenumberof sourcess over
estimatedalbeitmakingcomputationrmore complex but an
underestimatiomvill resultin systemfailure.

5. FIELD RESULTS

The algorithm was also verified on a real systemat 915
MHz. The systemconsistsof 5 receversand 2 transmit-
ters.5 monopolesreequallyseparatedtadistanceof A/2
andreceve 2 coheentsourcesarriving at—15° and15°, 10



metresaway. The numberof signalsvary atrandomfrom 0
to 2 users.Thenumberof snapshot$N) pertrial is 100and
420trials wereconducted.

Theuppertraceof Figure2 shawv the actualtransmitted
signals.The middle traceis the numberof signalsenumer
atedby the algorithmat the recever andthe lower traceis
the error. The enumeratioraccuray is 99 percentwith no
underestimation Performances betterthan simulatedbe-
causethe sourceglo not experienceRayleighfadingin the
field experiments.

6. CONCLUSIONS

The enumeratioralgorithmworks well in the presenceof
correlatedsignalsunderfading channelconditionsper the
conditionsoutlinedin the simulation. The dynamicnature
of thealgorithmensureshatthenumberof antennaseeded
is optimum for the numberof signalsand will adjustap-
propriatelywhenadditionalsignalsarrive or departaswill
happenin a real mobile ervironment. It will ensurethat
the amountof computationis keptto a minimumandin a
practicalsystem switchingoff or puttingon standy;RF, IF
anddigital circuits which are not neededandallowing the
reallocationof DSP workload for other applications. The
algorithmhasalsobeenverifiedgoodin limited field exper
iments.
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