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ABSTRACT
This paperdevelopsa robustmethodto enumeratetheinci-
dentsignalsimpingingonauniformbut variablesizelinear
arrayindependantof theirextentof correlationin aRayleigh
flat fadingchannelenvironment.Themethodalsooptimizes
by minimizing the numberof antennasto the numberof
signalsandadaptscontinouslyto maintainoptimumperfor-
mancein a mobileenvironmentwhereusers(signals)come
andgo. The techniqueis a modificationof the matrix de-
compositionmethodof CozzensandSousa.A new setof
stability, stoppingandadaptivecontrolcriteriais presented.
An algorithmis formulatedwith simulationandfield results
presented.

1. INTRODUCTION

High resolutionparameterestimationalgorithms[1] usedin
modernarrayprocessingrely on apriori knowledgeof the
numberof incidentsignals.Evenrecentwork [2] on spatial
diversity antennasfor distinguishingcochannelsignalsby
exploitingdifferencesin thechannelfromeachuserrequires
thenumberof activeusersto beknown.

Themobilecommunicationenvironmentisdynamic.The
signalsthatarrive at thebasestationantennawill therefore
consistof a mix of uncorrelatedandcorrelatedsignals,all
subjectedto somedegreeof fading. The ability to detect
andcorrectlyenumeratetheincidentsignalsindependentof
theirextentof correlationin afadingchannelenvironmentis
crucial.Thispaperpresentsarobustalgorithmthatachieves
this objective.

Information-theoretictechniquesof [3, 4] work well in
enumeratinguncorrelatedsourcesor sourcessubjectedto
independentflat fadingchannels,but failscompletelywhen
someor all of thesignalsourcesarecorrelated.

Thematrixdecompositionmethodof Di [5] andthemod-
ified ranksequencemethodof CozzensandSousa[6] made
it possiblefor enumerationalgorithmsto work in a corre-
latedsignalenvironment.Thesealgorithmswork for afixed
numberof antennasandachievegoodenumerationaccuracy
in anall whiteGaussiannoiseenvironment.

This presentwork is basedon theinformation-theoretic
andmodifiedrank sequencemethods.Thesemethodsare
thenusedwith a new stoppingcriterionto developa robust
algorithm that will enumeratureall incident signalsinde-
pendentof theextentof theircorrelationin a fadingchannel
environment.Thenew algorithmalsooptimizesthenumber
of antennasto the numberof signalsand adaptscontinu-
ously to maintainoptimumperformancein a mobile envi-
ronmentwhereusers(signals)comeandgo.

2. PROBLEM FORMULATON

Considera linear antennaarray composedof
�

sensors.
Assumethat � narrowbandsources,centredaroundaknown
frequency, ��� , impingeonthearrayfromdirections-of-arrival���	��
�
�

�����

.
In matrixnotation,thereceivedsignal ������� is an

�����
complex vectorgivenby
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where +� � # ��$ � is an
�,� � matrixof steeringvectorssuch

that
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with 01� �3� � an
�9�"�

complex vectorcharacterizedby un-
known angle

���
associatedwith the :<;�= signaland
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is thesignal � �K� vectorwith %GL������ beingacomplex wave-
form representingthe : ;�= signaland (*����� is the

�M�N�
com-

plex noisewaveformwith zeromeanandcovariancematrixO 2PEQ where O 2P is anunknown constantand Q is theidentity
matrix.

If we let the covariancematrix of %3����� be RTS andpos-
itive definiteand  be a full columnrank matrix thenthe
covariancematrix of ������� is givenby
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andthe rank of  ZRZS^ Z_ is � . Denotingthe eigenvalues
of Ra` by b �ac b 2Zc 
�
�
 c b�d it follows, therefore,that
the smallest

�fe � of its eigenvaluesareall equalto O 2P .
Thusthenumberof signals� canbedeterminedfrom the
numberof thesmallesteigenvaluesof g .

3. ENUMERATION OF FULLY CORRELATED
SIGNALS

Theinformation-theoretictechniquesfail to enumeratecor-
rectlywhenthecovariancematrixof %E����� becomesnonneg-
ativedefinitefor thecoherentsignals.They arehoweverstill
usedlaterin determiningtherankof decorrelatedmatrices.

In this section, the generalisedmatrix decomposition
methodof [6] will bedetailedfollowedby a new stopping
criterionandadaptive selectionof antennas.Theenumera-
tion algorithmis alsodescribed.

3.1. Generalised Matrix Decomposition

FromEq.(4),leth �i�! ZRkjl [ �mR U e O 2P Q (5)

The matrix decompositionof
h � is given in [6] as a

collectionof matrices
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“exchangematrix”
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Usefulinformationcanbeextractedbystudyingtheranksof
thematrices

n ��o ��p � . Thereexistsa setof ranksequences
definedas�������E� n ��o ��p �5�D|\{~o�{ ��e p��

(10)

Clearly, all suchsequencesarenondecreasingandbounded
aboveby � .

Di’s theorem[5] statesthatif
h � is an

�f���
Hermi-

tianmatrixand R j is a � � � matrixwith nonull row (col-
umn)vector, thenthereis avalueof o denotedoV�

�
o e p

suchthat�����E�
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andequalto �
� p

where�N� � � z ��
�
�
�� ��e p e o � then
the numberof sourcesis � . Thus,rank . h # � $� ��
�
�
���h #vu $� 7
will increaseas : increasesuntil rank . h # � $� ��
�
�

��h #�u $� 7��� for someo . Also if:�����E�

. h # � $� ��
�
�

��h # dZy x y ��$� 7
�~���G�B�

. h # � $� ��
�
�
���h # dTy x�$� 7
(12)

andequalto
p

thenthetheoremcannotgivetheexactanswer
to the numberof signals,but only tells us that the number
of sigalsis not lessthan

p
.

If �
� p

, thenthe ranksequencewill strictly increase
until it reaches� , andthe point at which a rank sequence
levelsoff (two successivetermshavethesamevalue)canbe
usedto estimatethenumberof signals� .

In arealenvironment,thearraycovariancematrixwhich
is usedin thematrix decompositionandrankingprocessis
not known andonemustusethesamplecovariancematrix
givenby �

Ra`V� �^ l¡£¢¤�&¥�� ����� � �4����� � �4[ (13)

where�§¦4¨l© is sampledat
¡

discretetimes,� � , �\� � ��t�tvt�� ¡ .
It is observedduringsimulation,usingamix of Rayleigh

fadedandcoherentsignals,thattheranksequencecanweakly
stabilizeat morethanonepoint (eg. multiple stabilization
points). The previous algorithm[5] which stopsafter two
successive termshaving the samevaluewill result in false
estimationof the actualnumberof signals. The dynamic
algorithmof this paperis basedon calculatingtheeffective
ranksin

n � �ªe p e«� ��p � and
n � �ªe p¬��p � andselect-

ing � basedon thehighestfrequency of occurrenceof the
calculatedeffectiveranks.

At initialization, anestimateof thenumberof uncorre-
latedsources,­® is calculatedusingthe MDL algorithmof
[4]. Thentheeffectiveranksin

n � �¯e p eN� �°p � and
n � �±ep¬�°p � arecalculatedfor valuesof

p �²z �&³B�&´ suchthata total
of 6 estimatedranks;3 from

n � ��e p eY� ��p � and3 fromn � �fe p¬�°p � areavailableto performa rank stabilization
check. The rank sequenceis consideredstableonly when
thereexist a uniquerank, µ	¶ , which occurswith thehighest
frequency and µ	¶ c ­® . Otherwise,

p
is increasedby oneand

theeffectiveranksin
n � ��e p es� ��p � and

n � ��e p���p � are
recalculatedfor valuesof

p �¯�°z �&³E��´E��·<��
�
�
 � . Theprocess
is repeateduntil stabilizationis achievedor until

p � �¸eN� .



If stabilizationis achievedfor some
p { �¹e��

, then µ^¶
is takenastheestimateof � , i.e. thenumberof signals.The
next samplecovariancematrix is thentakenbut this timethe
effective ranksin

n � ��e p e²� ��p � and
n � �9e p���p � are

calculatedfor valuesof
p �mµ ¶ � µ ¶ ' � � µ ¶ 'Tz . Recalculations

per the methodoutlinedabove will be necessaryif it does
not stabilize.

If stabilizationoccurs,processingof thenext sampleco-
variancematrixwill startwith avalueof

p
basedonthepre-

viousestimateof theranki.e.
p �mµ^¶ .Thereare2 exceptions.

Thefirst exceptionoccurswhen µ^¶��º­® �»| . This im-
plies that the estimatednumberof signalsis zeroandthis
is possiblewhenthesignalsareat low SNRandexperienc-
ing deepfades.Underthis condition,

p
is re-initialized(i.e.p �mz �&³B�&´ ).

The secondexceptionoccurswhen the rank sequence
fails to stabilize.Whenthis conditionoccurs,the ranksta-
bilizationcheckis repeatedbut this timeall estimatedranks
with valueslessthan ­® areremoved.If stabilizationoccurs,
thenthis new estimate,µ^¶?¶ becomesthefinal estimate.Oth-
erwise,thefinal estimateis takenfrom theroundedmedian
value of 3 previous estimates.Under this condition,

p
is

re-initialized(i.e.
p �mz �&³B�&´ ).

If theranksequencedoesnot stabilizeat or before
p ��»e*�

, thenanadditionalantennaisadded,andtheprocessis
repeated.To controlthebuild-up of antennasin subsequent
trials, thefollowing adaptive controlcriterionis applied.If
the rank sequencestabilizesusing 6 estimatedranks, the
numberof antennasis maintainedat

�
for the next trial.

If morethan6 estimatedranksareneededto stabilize,then
thenext trial will useoneantennaless.If

�
is smallcom-

paredto the numberof signals,the ranksequencewill fail
to stabilizeandadditionalantennaswill be addedoneat a
time until the rank sequencestabilizes. Likewise if

�
is

largeandthenumberof signalssmall,thealgorithmwill re-
moveantennasuntil anoptimumis reached.Thealgorithm
implicitly requiresthe numberof antennasbe greaterthan
thenumberof signalsby 2. If theconditionis violated,then
thealgorithmwill enumerate

��e z signalsandtreatother
signalsasnoise.

3.2. The enumeration algorithm

Thedynamicsignalenumeration(DSE)algorithmcannow
bestatedas

1. Formthesamplecovariancematrix

�
RTU .

2. Perform a singular value decomposition(SVD) on

�
RZU andusetheMDL algorithmto estimatethenum-
berof uncorrelatedsources,­® .

3. Setinitial conditions;
�)¼ P ¼ ; ¼¾½�¿ � · , zH{ p { ´ and

for |\{~o�{ �Àe p
, andform thematrices

n ��o ��p �
using

�
RT` asanestimateof

h � .

4. Performa SVD on
n � �ªe p e«� ��p � and

n � �Áep¬��p � , and then estimatetheir ranksusing the MDL
algorithmin anarray

n�Â
5. Performa rank stabilizationcheckon the elements

in
n Â

. If thereexists a uniquerank, µ	¶ is the final
estimateof thenumberof signals ­� present.

In a situationwheretheranksin
n-Â

do not stabilize,
theprocessis repeatedfor

p � p ' � until stabilization
is achievedor until

p � ��eÃ�
.

6. Apply the adaptive control criterion to the rank se-
quence.The criterion determinesthe numberof an-
tennasto beusedto obtainthenext samplecovariance
matrix.

4. SIMULATION RESULTS

The dynamicperformanceof the new algorithm is shown
in Figure1. It is simulatedusinga lineararraymodelwith
an initial numberof antennas� �Ä¼ P ¼ ; ¼¾½�¿ � set to 12. They
areequallyseparatedat a distanceof b   z andreceive 3 in-
dependantRayleighfadingsourcesand3 coherent sources
arriving at

e ´A·DÅ	� e ³ | Å�� e*� ·GÅ^� | ÅG� � ·DÅ and
³ | Å . The num-

berof signalsvary at randomfrom 3 to 6 usersbut remain
in oneparticularstateover 4 trials. The frequency of the
signalsareall equalto simulatethearrival of themainand
reflectedsignalsandalsocochannelsignals.Thenumberof
snapshots(

¡
) pertrial is 100and100trialswereconducted.

Thetoptracein Figure1 indicatesthenumberof signals,
themiddletraceshow theestimatednumberof sourcesand
theerrorbetweentheactualnumberof sourcesandtheesti-
mate.Thebottomtraceshows thenumberof antennasused.
Thegeneraltrendis for thealgorithmto rampdown in the
first 10 trials to about7 or 8 antennas., Performancewas
bestat97percentcorrectestimationat10dBSNRasshown
in Figure1. At low SNR, the performanceis predictably
poor andalgorithmtendsto underestimate.Athigh SNR,a
slight degradationin performanceis observedwith 91 per-
centcorrectlyestimatedwith 9 percentoverestimatedby 1.
Thereis nounderestimation.In general,anoverestimation
is usuallynotasseriousaproblemasanunderestimationon
thenumberof users.For example,theViterbi algorithmof
[2] will still work correctlyif thenumberof sourcesis over-
estimatedalbeitmakingcomputationmorecomplex but an
underestimationwill resultin systemfailure.

5. FIELD RESULTS

The algorithm was also verified on a real systemat 915
MHz. The systemconsistsof 5 receiversand2 transmit-
ters.5 monopolesareequallyseparatedatadistanceof b   z
andreceive2 coherentsourcesarriving at

e*� · Å
and

� · Å
, 10



metresaway. Thenumberof signalsvary at randomfrom 0
to 2 users.Thenumberof snapshots(

¡
) pertrial is 100and

420trials wereconducted.
Theuppertraceof Figure2 show theactualtransmitted

signals.Themiddle traceis thenumberof signalsenumer-
atedby thealgorithmat the receiver andthe lower traceis
the error. Theenumerationaccuracy is 99 percentwith no
underestimation.Performanceis betterthansimulatedbe-
causethesourcesdo not experienceRayleighfadingin the
field experiments.

6. CONCLUSIONS

The enumerationalgorithmworks well in the presenceof
correlatedsignalsunderfadingchannelconditionsper the
conditionsoutlinedin the simulation. Thedynamicnature
of thealgorithmensuresthatthenumberof antennasneeded
is optimum for the numberof signalsand will adjustap-
propriatelywhenadditionalsignalsarrive or departaswill
happenin a real mobile environment. It will ensurethat
the amountof computationis kept to a minimum andin a
practicalsystem,switchingoff or puttingon standy;RF, IF
anddigital circuits which arenot neededandallowing the
reallocationof DSPworkload for otherapplications.The
algorithmhasalsobeenverifiedgoodin limited field exper-
iments.
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Fig. 1. Simulatedperformanceof algorithm to random
numberof usersatnominalSNR(10dB)
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Fig. 2. Performanceof algorithmin field testat 915MHz
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