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ABSTRACT

An adaptive minimum bit error rate (MBER) linear mul-
tiuser detector (MUD) is proposed for DS-CDMA systems.
Based on the approach of kernel density estimation for ap-
proximating the bit error rate (BER) from training data, a
least mean squares (LMS) style adaptive algorithmis devel -
oped for training linear MUDs. Computer simulation results
show that thisadaptive MBER linear MUD outperformstwo
existing LM S-style adaptive MBER algorithms.

1. INTRODUCTION

Within theclass of linear MUDs, the minimum mean square
error (MMSE) detector [1],[2] is popular, as it often per-
forms adequately and has simple adaptive implementation.
However, the BER of the MMSE MUD can be inferior to
the MBER solution, and there exist two true stochastic gra-
dient algorithmsfor realizing the MBER MUD [3],[4]. The
algorithm of [3] uses a difference approximation to estimate
the gradient of error probability. It does not assume the
noise probability density function (p.d.f.) but has a com-
plexity of O(M?), M being the detector dimension. This
algorithm will be called DMBER. Asit only adjusts the de-
tector weights when an error occurs, the algorithm requires
a very long training sequence to converge. The approxi-
mate MBER (AMBER) MUD of [4] is appealing dueto its
computational simplicity. It has a same form to the signed-
error LMS algorithm [5], except in the vicinity of the deci-
sion boundary where it is modified to continue updating the
weights when the signed-error LM S would not.

Adaptive MBER linear equalizers have been investigated
for alonger time [6]-[8]. The LMS-style MBER equaliser
of [7],[8], called least BER (LBER), has been shown to out-
perform the AMBER eqgualizer of [9], which is the coun-
terpart of the AMBER linear MUD [4]. In this paper, we
extend the LBER algorithm of [7],[8] to multiuser detec-
tion for DS-CDMA channels, and develop a new adaptive
MBER MUD. Our study shows that this new LBER is su-

perior in performance over the DMBER and AMBER.
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Figure 1: Discrete-time model of synchronous CDMA.

2. SYSTEM MODEL

The synchronous DS-CDMA system with N users and M
chips per bit is depicted in Fig. 1, where b;(k) € {£1}
denotes the k-th bit of user ¢, the signature sequence for
useris; = [5i1 --- 5;m)7 is normalized to have a unit
length, and the channel impulse response (CIR) is
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The received signal sampled at chip rateis given by [10]:
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wherethe Gaussian noisevector n(k) = [ny (k) - - - nas (k)7
with E[n(k)n? (k)] = o2I; the user bit vector b(k) =
[bi(k) --- bn(k)]*; theuser signature sequence matrix S =
[s1 - -+ sn]; thediagonal user signa amplitude matrix A =
diag{A; --- Ay};the M x LM CIR matrix H



ho hi
ho M

hnh—l

hnhfl

ho hi Py, —1

©)
and the system matrix P has a dimension M x LN. The
intersymbol interference span L depends on the length of
the CIR related to the length of the chip sequence. Fornj, =
1,L=1;forl <n, <M,L=2;for M <np <2M,
L = 3; and so on. Consider the linear MUD:

bi(k) = sgu(y(k)) with y(k) = w'r(k), (4

where w = [w; --- wy]? is the detector weight vec-
tor for user i. Let the N, = 2%V possible sequences of
b7 (k) bT(k—1) --- bT(k — L+ 1)]” be

b (k)
bW (k —1)

) = , 1<j<Ny, (5
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and b7 the ith element of b(?) (k). Define the noise-free
signa statest; = Pb¥), 1 < j < N, and the set:

yi=wirj, 1<j<N,. (6)

3. THE MBER LINEAR MUD

The error probability of the linear detector (4) is:
Pg(w) = Prob{sgn(b;(k))y(k) < 0}. (7
Following [7],[8], define the signed decision variable
ys (k) = sgn(bi(k)y(k) = sgn(bi(k)y (k) +n'(k), (8)
where
b(k)
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andn' (k) = sgn(b;(k))wPn(k). Notethat 3 (k) can only
take the values from the set (6) and n' (k) is Gaussian with
zero mean and variance o 2w’ w. Assuming equiprobable
rj, thep.df. of y,(k) is

by (ys) =
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Thus o
Pp(w) = / Py(ys) dys - (11)
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Given the gradient of P (w) with respect to w, VPg(w),
aMBER steepest-descent gradient algorithmis:

w(l+1)=w(l) — pVPg(w(l)). (12)

As the orientation of w defines the decision boundary and
thus the BER, not its size, it is computationally advanta-
geous to normalize w to a unit-length after each iteration:

w=w/VwTw. (13)

A simplified conjugate gradient algorithm [11] can offer a
better convergencerate:

Initialization. Choose . > 0 and termination scalar 5 > 0;
givenw(l) andd(l) = —VPg(w(l)); setl = 1.

Loop. If [[VPg(w(I))|| < B: goto Sop.
w(l+ 1) =w(l) + pd(l)
w(l+1)=w(l+1)/[|w(l+ 1)
¢ = IVPe(w(l +1))I1?/IIV Pp(w ()|
d(l+1) =¢d(l) — VPg(w(l + 1))
l =1+ 1, goto Loop.

Stop. w(!l) isthe solution.

4. ADAPTIVE MBER LINEAR MUD

Kernel density estimationisknownto producedreliablep.d.f.
estimates with short datarecords [12]. Given ablock of K
training samples {r(k), b;(k)}, akernel density estimate of
the p.df. p,(ys) isgiven by:
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where the radius parameter p,, is related to the noise stan-
dard deviation o, [12]. From the estimated error probabil-
ity Pg(w), VPg(w) can be calculated, and block adaptive
gradient algorithms can similarly be devel oped.

Furthermore, a LM S-style adaptive algorithm with sample-
by-sample adjustment, asin [7],[8], can be derived. At sam-
ple k£, a point estimate of the p.d.f. issimply:

1

Py(ys(k)) = VoS wTw X
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Using the instantaneous or stochastic gradient
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and re-scaling after each update to ensure w I (k)w(k) = 1
givesriseto aLMS style stochastic algorithm

_ p y* (k)
w(k+1)=w(k) + Vanon exp <— 22 ) X

sgn(bi(k))(r(k) — w(k)y(k)) - (17)

The motivation of this LBER MUD isdifferent from that of
the AMBER MUD [4]. The latter can be expressed as

w(k + 1) = w(k) + ul(k)sgn(e(k))r(k)  (18)
with e(k) = b;(k) — y(k) and the indicator function

1) = 5 (1 - sn(i(k)y(k) 7)), (19)

where 7 is a nonnegative threshold.

Inthe AMBER, non-zero  defines aregion around decision
boundary where the algorithm will continue to update even
when errors do not occur. In the LBER, the effect of the
distance from the decision boundary is controlled by an ex-
ponential term. This can be viewed as a soft distance mea-
sure. The size of an update is a continuous and decreasing
function of the distance from the boundary. Both algorithms
have a complexity of O(M) with two agorithm parameters
that require tuning. Another existing adaptive algorithm,
the DMBER [3], also hastwo tunabl e algorithm parameters,
adaptive step size and differencing step size. The complex-
ity of the DMBER, however, isat least O (M ?).
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Figure 2: Distribution of the signed decision variable for
user 1 of Example 1. SNR; =SNR, = 16.5 dB.
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Figure 3: Convergence behaviours of the two block
adaptive MBER agorithms for user 1 of Example 1.
SNR; =SNR; = 16.5 dB.

5. SSIMULATION EXAMPLES

Example 1. This was a two-user system with 4 chips per
bit. The two code sequences were (+1,+1,—1,—1) and
(+1,—1,—1,+1), respectively, and the CIR was

H(z) =1.0+40.252"1 +0.5272. (20)

The two users had equal signal power, that is, the user 1
signal to noiseratio SNR; was equal to SNR,, of user 2. The
BER difference between the MMSE and MBER solutions
for user 1issignificant for the range of SNR; 14 to 26 dB.
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Figure 4: Learning curves of the three stochastic adaptive
MBER agorithms and the LMS for user 1 of Example 1.
SNR; =SNR; = 19 dB.

The kernel density estimate (14) constructed from 100 data
samples at SNR; =SNR, = 16.5 dB is compared with the
true p.d.f. (10) in Fig. 2. Using this constructed kernel den-
sity estimate, the block adaptive steepest-descent and con-
jugate gradient algorithms were applied to find a MBER
solution, and the two iterative procedures are illustrated in
Fig. 3. The three stochastic algorithms, LBER, AMBER
and DMBER, were applied to user 1 with SNR; =SNR, =
19 dB. The convergence performance of these three algo-
rithms together with that of the LMS are shown in Fig. 4,



where the results were averaged on 100 runs. Thetwo algo-
rithm parameters for each stochastic adaptive MBER algo-
rithm were tuned to give a best combined result of conver-
gence rate and steady-state error. The initial weight vector
was set to the MM SE solution.

Example 2. Thiswas a4-user system with 8 chips per sym-
bol. The four code sequences were (+1,+1,+1,+1, —1,
_]-7_]-7_1)’(+]~7_]-7+]-7_17_17+1a_17+1)’(+17+17
-1,-1,-1,-1,+1,+1) and (+1,—-1,—-1,+1,—1,+1,
+1, —1), respectively, and the CIR was

H(z)=04+40.72"1 404272, (21)

The four users had equall power. The LBER, AMBER and
DMBER were applied to user 1 with SNR; = 15dB, 1 <
i < 4. The convergence performance of these three algo-
rithms are shown in Fig. 5, where the results were averaged
over 50 runs. Again each stochastic adaptive MBER algo-
rithm had its two algorithm parameters tuned to give a best
combined result of convergence rate and steady-state error.
Theinitial weight vector was set to the MM SE solution.
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Figure 5: Learning curves of the three stochastic adaptive
MBER algorithmsfor user 1 of Example2. SNR; = 15 dB,
1<i<d4.

6. CONCLUSIONS

Motivated from the kernel density estimation of the BER as
a smooth function of the training data, block-based adap-
tive gradient algorithms have been developed to realize the
MBER MUD. This has further led to the derivation of a
LMS-styleLBER MUD. A desired feature of this stochastic
gradient algorithm s that the amount of the weight updating
isa continuous and decreasing function of the distance from
the decision boundary. Simulation results indicate that this
adaptive LBER MUD outperformstwo existing LM S-style
adaptive MBER algorithms.
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