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ABSTRACT

An adaptive minimum bit error rate (MBER) linear mul-
tiuser detector (MUD) is proposed for DS-CDMA systems.
Based on the approach of kernel density estimation for ap-
proximating the bit error rate (BER) from training data, a
least mean squares (LMS) style adaptive algorithm is devel-
oped for training linear MUDs. Computer simulation results
show that this adaptive MBER linear MUD outperforms two
existing LMS-style adaptive MBER algorithms.

1. INTRODUCTION

Within the class of linear MUDs, the minimum mean square
error (MMSE) detector [1],[2] is popular, as it often per-
forms adequately and has simple adaptive implementation.
However, the BER of the MMSE MUD can be inferior to
the MBER solution, and there exist two true stochastic gra-
dient algorithms for realizing the MBER MUD [3],[4]. The
algorithm of [3] uses a difference approximation to estimate
the gradient of error probability. It does not assume the
noise probability density function (p.d.f.) but has a com-
plexity of O(M 2), M being the detector dimension. This
algorithm will be called DMBER. As it only adjusts the de-
tector weights when an error occurs, the algorithm requires
a very long training sequence to converge. The approxi-
mate MBER (AMBER) MUD of [4] is appealing due to its
computational simplicity. It has a same form to the signed-
error LMS algorithm [5], except in the vicinity of the deci-
sion boundary where it is modified to continue updating the
weights when the signed-error LMS would not.

Adaptive MBER linear equalizers have been investigated
for a longer time [6]-[8]. The LMS-style MBER equaliser
of [7],[8], called least BER (LBER), has been shown to out-
perform the AMBER equalizer of [9], which is the coun-
terpart of the AMBER linear MUD [4]. In this paper, we
extend the LBER algorithm of [7],[8] to multiuser detec-
tion for DS-CDMA channels, and develop a new adaptive
MBER MUD. Our study shows that this new LBER is su-

perior in performance over the DMBER and AMBER.
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Figure 1: Discrete-time model of synchronous CDMA.

2. SYSTEM MODEL

The synchronous DS-CDMA system with N users and M
chips per bit is depicted in Fig. 1, where bi(k) 2 f�1g
denotes the k-th bit of user i, the signature sequence for
user i �si = [�si;1 � � � �si;M ]T is normalized to have a unit
length, and the channel impulse response (CIR) is

H(z) =

nh�1X
i=0

hiz
�i : (1)

The received signal sampled at chip rate is given by [10]:
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where the Gaussian noise vectorn(k) = [n1(k) � � �nM (k)]T

with E[n(k)nT (k)] = �2nI; the user bit vector b(k) =
[b1(k) � � � bN (k)]T ; the user signature sequence matrix �S =
[�s1 � � � �sN ]; the diagonal user signal amplitude matrixA =
diagfA1 � � � ANg; the M � LM CIR matrix H
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(3)
and the system matrix P has a dimension M � LN . The
intersymbol interference span L depends on the length of
the CIR related to the length of the chip sequence. For nh =
1, L = 1; for 1 < nh � M , L = 2; for M < nh � 2M ,
L = 3; and so on. Consider the linear MUD:

b̂i(k) = sgn(y(k)) with y(k) = w
T
r(k) ; (4)

where w = [w1 � � � wM ]T is the detector weight vec-
tor for user i. Let the Nb = 2LN possible sequences of
[bT (k) bT (k � 1) � � � bT (k � L+ 1)]T be

b
(j) =

2
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3
7775 ; 1 � j � Nb ; (5)

and b
(j)
i the ith element of b(j)(k). Define the noise-free

signal states rj = Pb
(j), 1 � j � Nb, and the set:

yj = w
T
rj ; 1 � j � Nb : (6)

3. THE MBER LINEAR MUD

The error probability of the linear detector (4) is:

PE(w) = Probfsgn(bi(k))y(k) < 0g : (7)

Following [7],[8], define the signed decision variable

ys(k) = sgn(bi(k))y(k) = sgn(bi(k))y
0

(k) + n
0

(k) ; (8)
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and n
0
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T
n(k). Note that y

0
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take the values from the set (6) and n

0

(k) is Gaussian with
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Thus

PE(w) =

Z 0

�1

py(ys) dys : (11)

Given the gradient of PE(w) with respect to w, rPE(w),
a MBER steepest-descent gradient algorithm is:

w(l + 1) = w(l)� �rPE(w(l)) : (12)

As the orientation of w defines the decision boundary and
thus the BER, not its size, it is computationally advanta-
geous to normalize w to a unit-length after each iteration:

w = w=
p
wTw : (13)

A simplified conjugate gradient algorithm [11] can offer a
better convergence rate:

Initialization. Choose � > 0 and termination scalar � > 0;
given w(1) and d(1) = �rPE(w(1)); set l = 1.

Loop. If krPE(w(l))k < �: goto Stop.

w(l + 1) = w(l) + �d(l)

w(l + 1) = w(l + 1)=kw(l+ 1)k
�l = krPE(w(l + 1))k2=krPE(w(l))k2

d(l + 1) = �ld(l)�rPE(w(l + 1))

l = l + 1, goto Loop.

Stop. w(l) is the solution.

4. ADAPTIVE MBER LINEAR MUD

Kernel density estimation is known to produced reliable p.d.f.
estimates with short data records [12]. Given a block of K
training samples fr(k); bi(k)g, a kernel density estimate of
the p.d.f. py(ys) is given by:
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where the radius parameter �n is related to the noise stan-
dard deviation �n [12]. From the estimated error probabil-
ity P̂E(w), rP̂E(w) can be calculated, and block adaptive
gradient algorithms can similarly be developed.

Furthermore, a LMS-style adaptive algorithm with sample-
by-sample adjustment, as in [7],[8], can be derived. At sam-
ple k, a point estimate of the p.d.f. is simply:

p̂y(ys(k)) =
1p
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p
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Using the instantaneous or stochastic gradient
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and re-scaling after each update to ensure wT (k)w(k) = 1
gives rise to a LMS style stochastic algorithm

w(k + 1) = w(k) +
�p
2��n

exp

�
�y2(k)
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�
�

sgn(bi(k))(r(k) �w(k)y(k)) : (17)

The motivation of this LBER MUD is different from that of
the AMBER MUD [4]. The latter can be expressed as

w(k + 1) = w(k) + �I(k)sgn(e(k))r(k) (18)

with e(k) = bi(k)� y(k) and the indicator function

I(k) =
1

2
(1� sgn(bi(k)y(k)� �)) ; (19)

where � is a nonnegative threshold.

In the AMBER, non-zero � defines a region around decision
boundary where the algorithm will continue to update even
when errors do not occur. In the LBER, the effect of the
distance from the decision boundary is controlled by an ex-
ponential term. This can be viewed as a soft distance mea-
sure. The size of an update is a continuous and decreasing
function of the distance from the boundary. Both algorithms
have a complexity of O(M) with two algorithm parameters
that require tuning. Another existing adaptive algorithm,
the DMBER [3], also has two tunable algorithm parameters,
adaptive step size and differencing step size. The complex-
ity of the DMBER, however, is at least O(M 2).
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Figure 2: Distribution of the signed decision variable for
user 1 of Example 1. SNR1 =SNR2 = 16:5 dB.
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Figure 3: Convergence behaviours of the two block
adaptive MBER algorithms for user 1 of Example 1.
SNR1 =SNR2 = 16:5 dB.

5. SIMULATION EXAMPLES

Example 1. This was a two-user system with 4 chips per
bit. The two code sequences were (+1;+1;�1;�1) and
(+1;�1;�1;+1), respectively, and the CIR was

H(z) = 1:0 + 0:25z�1 + 0:5z�3 : (20)

The two users had equal signal power, that is, the user 1
signal to noise ratio SNR1 was equal to SNR2 of user 2. The
BER difference between the MMSE and MBER solutions
for user 1 is significant for the range of SNR1 14 to 26 dB.
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Figure 4: Learning curves of the three stochastic adaptive
MBER algorithms and the LMS for user 1 of Example 1.
SNR1 =SNR2 = 19 dB.

The kernel density estimate (14) constructed from 100 data
samples at SNR1 =SNR2 = 16:5 dB is compared with the
true p.d.f. (10) in Fig. 2. Using this constructed kernel den-
sity estimate, the block adaptive steepest-descent and con-
jugate gradient algorithms were applied to find a MBER
solution, and the two iterative procedures are illustrated in
Fig. 3. The three stochastic algorithms, LBER, AMBER
and DMBER, were applied to user 1 with SNR1 =SNR2 =
19 dB. The convergence performance of these three algo-
rithms together with that of the LMS are shown in Fig. 4,



where the results were averaged on 100 runs. The two algo-
rithm parameters for each stochastic adaptive MBER algo-
rithm were tuned to give a best combined result of conver-
gence rate and steady-state error. The initial weight vector
was set to the MMSE solution.

Example 2. This was a 4-user system with 8 chips per sym-
bol. The four code sequences were (+1;+1;+1;+1;�1;
�1;�1;�1), (+1;�1;+1;�1;�1;+1;�1;+1), (+1;+1;
�1;�1;�1;�1;+1;+1) and (+1;�1;�1;+1;�1;+1;
+1;�1), respectively, and the CIR was

H(z) = 0:4 + 0:7z�1 + 0:4z�2 : (21)

The four users had equall power. The LBER, AMBER and
DMBER were applied to user 1 with SNRi = 15 dB, 1 �
i � 4. The convergence performance of these three algo-
rithms are shown in Fig. 5, where the results were averaged
over 50 runs. Again each stochastic adaptive MBER algo-
rithm had its two algorithm parameters tuned to give a best
combined result of convergence rate and steady-state error.
The initial weight vector was set to the MMSE solution.
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Figure 5: Learning curves of the three stochastic adaptive
MBER algorithms for user 1 of Example 2. SNRi = 15 dB,
1 � i � 4.

6. CONCLUSIONS

Motivated from the kernel density estimation of the BER as
a smooth function of the training data, block-based adap-
tive gradient algorithms have been developed to realize the
MBER MUD. This has further led to the derivation of a
LMS-style LBER MUD. A desired feature of this stochastic
gradient algorithm is that the amount of the weight updating
is a continuous and decreasing function of the distance from
the decision boundary. Simulation results indicate that this
adaptive LBER MUD outperforms two existing LMS-style
adaptive MBER algorithms.
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