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ABSTRACT

Some recursive least-squares algorithms for multichannel active
noise control have recently been introduced, including
computationally efficient (i.e. “fast”) versions. However, these
previously published algorithms suffer from numerical instability
due to finite precision computations. In this paper, numerically
robust recursive least-squares algorithms for multichannel active
noise control systems are introduced, using QR decompositions
and lattice structures. It is shown through simulations of
broadband multichannel active noise control that the recursive
least-squares algorithms introduced in this paper are indeed more
numerically robust than the previously published algorithms,
while keeping the same convergence behavior, and therefore they
are more suitable for practical implementations.

1. INTRODUCTION

In a recently published paper [1], recursive least-squares (RLS)
algorithms and fast-transversal-filter (FTF) algorithms were
introduced for multichannel active noise control (ANC). It was
reported that these algorithms can greatly improve the
convergence speed of ANC systems, compared to steepest
descent algorithms or their variants, as expected. However,
numerical instability of the algorithms was an issue that needed
to be resolved. In this paper, extensions of stable realizations of
recursive least-squares algorithms such as the inverse QR-RLS
algorithm [2] and the QR decomposition least-squares-lattice
(QRD-LSL) algorithm [2] are introduced for the specific problem
of multichannel ANC, and simulation results will be presented to
validate their numerical stability. The algorithms described in
this paper will be combined with an ANC structure previously
introduced in a modified version of the filtered-x LMS algorithm
[3]. This structure is to be called the "modified filtered-x
structure" in this paper. This structure is a delay-compensating
structure that eliminates the need to reduce the adaptive gain in
the update equation of the adaptive filters, because of the delay
found in the “error path” between the actuators and the error
sensors. It is also a structure that computes estimates of the
disturbance signals (i.e. primary field signals), which is a
requirement for the QRD-LSL ANC algorithm to be developed in
this paper. Figure 1 shows a block diagram of an ANC system
with the modified filtered-x structure.

2. INVERSE QR-RLS ALGORITHM FOR
MULTICHANNEL ANC SYSTEMS

For broadband multichannel ANC systems, it is important that an
adaptive filtering algorithm explicitly computes the time domain
coefficients of the filters. For example, looking at Fig. 1 it can
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Figure 1. The “modified filtered-x” or delay-compensated
structure for ANC

be seen that the adaptive filters coefficients in the lower path
(adaptation or optimization path) need to be copied to the upper
path (the control path). Therefore it is not sufficient to have an
algorithm that produces an estimate of a target signal for each
iteration of the algorithm, it is also required to have the
knowledge of the adaptive filters coefficients. The inverse QR-
RLS algorithm does compute explicitly the adaptive filters
coefficients [2], and to describe the inverse QR-RLS algorithm
for multichannel ANC systems, the following notation is defined:
I number of reference sensors in an ANC system
J number of actuators in an ANC system
K number of error sensors in an ANC system
L length of the FIR adaptive filters
M length of FIR filters modeling the plant (transfer

functions between the actuators and the error sensors in
an ANC system)

)(nix value at time n of the i th reference sensor signal

)(njy value at time n of the j th actuator signal

)(nkd value at time n of the primary sound field at the k th

error sensor
)(nke value at time n of the k th error sensor signal

)(ˆ nkd estimate of )(nkd , computed in the modified filtered-
x structure of Fig. 1

)(ˆ nke error computed with )(ˆ nkd

)(,, nljiw value at time n of the l th coefficient in the adaptive FIR

filter linking )(nix and )(njy

mkjh ,, value of the m th coefficient in the FIR filter modeling

the plant between )(njy and )(nke .



)(,, nkjiv value at time n of the filtered reference signal, i.e. the

signal obtained by filtering the )(nix signal with the

plant model kj,h filter (see (12) ).

[ ]TnLjiwnjiwnjiwnji )(,,),(2,,),(1,,)(,w L= (1)

[ ]TMkjhkjhkjhkj ,,,2,,,1,,,h L= (2)

[ ]TLnkjivnkjivnkjivnkji )1(,,),1(,,),(,,)(,, +−−=v L (3)

[ ]TLnixnixnixni )1(),1(),()( +−−=x L (4)

[ ]TMnixnixnixni )1(),1(),()( +−−=′x L (5)

[ ]TMnjynjynjynj )1(),1(),()( +−−=y L (6)
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[ ])(),(2),(1)( nKenenene L= (9)

[ ])(ˆ),(2ˆ),(1ˆ)(ˆ nKenenene L= (10).

With the interlaced notation of (7) and (8), the samples in
)(nV are the samples of )1( −nV that have been delayed by one

sample (i.e. shifted down by one block size in (7)), except for the
first (upper) block of samples in )(nV which are new samples,
and the last block of samples in )1( −nV which are discarded.
This "block delay line" structure or "block transversal" structure
is a requirement if low-computational (i.e. “fast”) versions of
RLS algorithms such as the FTF algorithm in [1] and the QRD-
LSL algorithm of Section 3 are to be developed for multichannel
ANC systems. Using the above notation and the equations of the
original inverse QR-RLS algorithm [2], the inverse QR-RLS
algorithm for multichannel ANC with the modified filtered-x
structure (Fig. 1) is described by (11)-(15):
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with the following initial conditions:

0w =)0( (18)

IP 21)0(21 −= δ (19).
Note that because of the modified filtered-x structure no µ

factor or adaptive gain factor is required in (17). In (15), λ is the
“forgetting factor” scalar common to all least-squares algorithms
(typically 19.0 ≤≤ λ ), )(nΓ is the multichannel KK ×
“innovation factor” or “conversion factor” sometimes used in
least-squares algorithms to convert a priori errors to a posteriori
errors, )(nP is the IJLIJL × inverse of the weighted time-

averaged correlation matrix i.e.
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δ is a small positive constant that represents the initial value of
the diagonal components of this time-averaged correlation
matrix, )(nK is a KIJL × gain matrix with the same
dimensions as )(nV , I is a KK × identity matrix, and 0 is a

KIJL × zero matrix. )(nΘ represents the set of unitary
transformations that are required to transform the left side matrix
in (15) to the matrix on the right side of (15). To perform the
required matrix rotations, simple Givens rotations can be used.
Note that no iterative process is required for the complete
transformation: only one rotation is required for each element to
be zeroed [4]. The computational load of the inverse QR-RLS
algorithm for multichannel ANC is evaluated in [4].

3. QRD-LSL ALGORITHM FOR MULTICHANNEL ANC
SYSTEMS

The inverse QR-RLS for multichannel ANC systems introduced
in the previous section has a computational load proportional to

( )2IJL , like the RLS algorithm for multichannel ANC systems
previously published [1]. For adaptive FIR filters with a lot of
coefficients (high values of L ), this computational load can
become too high for real-time implementations. This is the
motivation for developing “fast” RLS algorithms for
multichannel ANC systems, where the computational load will

increase with L , and not with 2L . A low computational
realization is the fast-transversal-filter (FTF) algorithm, and a
FTF algorithm for multichannel ANC was introduced in [1].
However it suffers from numerical instability, even with the use
of a “rescue variable” (whose value is not easy to adjust for
multichannel ANC systems). The QR-decomposition least-
squares-lattice (QRD-LSL) algorithm [2] is known to be a very
numerically robust algorithm, and it is an algorithm that can be
extended to multichannel ANC systems (as opposed to some
other “fast” RLS algorithms [4]). The QRD-LSL algorithm can
be developed for multichannel ANC systems from the classical
description [2] and using the following additional definitions:

)(, nmbE KIJ × angle-normalized backward prediction error of

a multichannel backward predictor [2] of order m , at
time n .
)(, nmfE KIJ × angle-normalized forward prediction error of a

multichannel forward predictor of order m , at time n .
)(nmε K×1 angle-normalized error of a multichannel joint-

process predictor [2] of order m , at time n



)(21
1 nm−B IJIJ × square root of the weighted sum of angle-
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)(1, nmb −P IJIJ × auxiliary coefficients [2] of the

multichannel backward predictor of order 1−m , at
time n

)(1, nmf −P IJIJ × auxiliary coefficients of the multichannel

forward predictor of order 1−m , at time n
)(1 nm−p 1×IJ auxiliary coefficients of the multichannel joint-

process predictor of order 1−m , at time n

)1(21 −nmΓ KK × square root of the innovation factor from the

angle-normalized error )1( −nmε

)(1, nm-bΘ matrix that represents the combination of all the

unitary rotations required to compute (22)
)(1 nf,m-Θ matrix that represents the combination of all the

unitary rotations required to compute (21).
The QRD-LSL algorithm for multichannel ANC systems

with the modified filtered-x structure is then described by (11)-
(13) and (20)-(35):
For 1,,2,1 −= Lm K
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and the following initial conditions:
for Lm ,,2,1 K=

0p =)0(1m- (26)

IBBF 21)1(21
1)0(21
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1 δ=−−=−=− mmm (27)

for 1,,2,1 −= Lm K

0PP == )0(1,)0(1, m-bm-f (28).

The unitary rotations in (20)-(22) can be computed in a
similar manner to the rotation in (15), using Givens rotations [4].
Equation (22) provides the multichannel auxiliary joint-process
coefficients )(1 nm-p , but these coefficients are not the time-

domain adaptive filters coefficients )(,, nljiw that are required

for the upper path of an ANC structure as shown in Fig. 1. A
time-varying inverse transformation from the )(1 nm-p

coefficients to the )(,, nljiw coefficients is thus required. Such

an inverse transformation exists for the classical QRD-LSL
algorithm [2], and it can be extended to the multichannel ANC
case. However, the inverse transform will have a computational

load proportional to ( )2IJL , and the reason for developing the
QRD-LSL for multichannel ANC systems was to avoid such a

( )2IJL dependency. But it is possible to update the multichannel
joint-process auxiliary coefficients )(1 nm-p on a sample by

sample basis, as in any recursive least-squares algorithm, and to
update the time-domain coefficients )(,, nljiw at a reduced rate.

As long as the period between updates is less than the time
constant caused by the forgetting factor λ , this will not greatly
affect the convergence performance or the tracking performance
of the algorithm. The computational load of the resulting QRD-
LSL algorithm for multichannel ANC is evaluated in [4].

The transformation from the coefficients )(1 nm-p to the

)(,, nljiw coefficients is computed by (29)-(35), where

)(, nmfK and )(, nmbK have dimensions IJIJ × , and

)(nmk has dimensions 1×IJ . The transposed operation in (29)-

(31) is only required if )(21
1 nm−B and )(21

1 nm−F are upper

triangular (they could be lower triangular depending on the
sequence of Givens rotations that were used in (20)-(22) [4]).

)(0 nA and )(0 nC are IJIJ × identity matrices, and all the

components of )(nmA , )(nmC or )(nL shown in (32)-(34) also

have dimensions IJIJ × .
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4. SIMULATION RESULTS

Simulations of a broadband multichannel ANC system with
1=I , 2=J and 2=K were performed, using the same

experimentally measured acoustic transfer functions as in [1].
The simulations were performed using a C program
implementation, in single precision floating point representation
(32 bits). The code from [5] was used for matrix inversions with
LU decompositions. Adaptive filters with 100=L coefficients
were used. The convergence gain of least-squares algorithms
over steepest descent algorithms for multichannel ANC systems
has already been documented [1], so results about numerical
stability of the recursive-least-squares algorithms will mostly be
discussed here. Table 1 compares the numerical stability of the
different recursive least-squares algorithms. If the algorithm is

Multichannel
ANC algorithm

0.1=λ ,
0.1=δ

999.0=λ ,
0.1=δ

RLS unstable,
500 iterations

unstable,
200 iterations

FTF (no rescue
variable)

unstable,
50000 iterations

unstable,
27000 iterations

inverse QR-
RLS

stable, 25 dB
average attenuation

stable, 23 dB
average attenuation

QRD-LSL stable, 25 dB
average attenuation

stable, 22 dB
average attenuation

Table 1. Simulation results of multichannel ANC.

stable, then the steady state performance of the algorithm is
shown, and if the algorithm is unstable, the approximate number
of iterations before the algorithm diverges is shown. From Table
1, it is clear that the RLS and FTF algorithms developed for
multichannel ANC systems are numerically unstable, as
previously reported in [1]. The inverse QR-RLS and QRD-LSL
algorithms were stable over millions of iterations.

Although the QRD-LSL requires less computations than the
inverse QR-RLS algorithm (if the time domain coefficients are
not updated on a sample by sample basis), the inverse QR-RLS is
simpler to implement and preliminary simulation results with low
precision numerical representations (12 or 16 bits in fixed point)
or with ill-conditioned systems (with more actuators than error
sensors for example) have shown that it is more stable than the
QRD-LSL. Therefore if one can afford the computational
complexity of the inverse QR-RLS algorithm, then it is a good
recursive-least-squares algorithm to use for multichannel ANC.

5. CONCLUSION

This paper addressed the development of recursive least-squares
algorithm with good numerical stability for multichannel ANC
systems. Two numerically stable multichannel ANC recursive-
least-squares algorithms were introduced: the inverse QR-RLS
and QRD-LSL algorithms. The QRD-LSL algorithm requires less
computations than the inverse QR-RLS algorithm, if the time
domain coefficients are not computed on a sample by sample
basis. Simulation results have shown that the two algorithms are
stable in a 32 bits floating point number representation
environment.
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