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Abstract − A new domain, termed the frequency-delay 

domain, is used to design stable, all-pass digital filters 
resembling a given delay response in the least-squares sense. 
This spectral technique identifies the delay response of a stable, 
second-order, all-pass digital filter as a double sideband 
suppressed carrier amplitude modulated signal in the 
frequency-delay domain. Iterative maximum likelihood 
techniques are used to render the filter coefficients. The 
algorithm is a significant improvement over related methods 
because it results in a physically realizable stable all-pass filter 
that closely approximates a desired delay response. 

 

1.  INTRODUCTION 

The design of all-pass digital filters to satisfy a specific 
phase or group delay function is described in [1]. All-pass 
filters are frequently used for phase/delay compensation 
because they do not introduce amplitude distortion as Finite 
Impulse Response (FIR) or Infinite Impulse Response (IIR) 
digital filters may do.  In classical design methods for FIR 
and IIR filters, there is no well-established method for all-
pass filter design, although eigenfilter algorithms have been 
successfully employed [2]. The existing methods are not 
guaranteed to converge nor produce stable filters. This paper 
describes a method that uses cascaded, second-order, all-pass 
digital filters [3][4] whose parameters are restricted in such a 
way, that convergence and stability can be achieved. 

 

 2.  ALL-PASS DIGITAL FILTERS 

All-pass digital filters have unity magnitude response 
across the entire frequency band. This property introduces a 
nonlinear relationship between the filter parameters and the 
phase response, thereby limiting the filter design degrees of 
freedom.  

The Z-transform transfer function of an thN  order all-pass 
digital filter can be expressed as 
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The transfer function of an all-pass filter of order N2  can be 
described as the product of the transfer function of N  
second-order all-pass filters that have been cascaded. If we 
designate the overall gain as ,M  the composite transfer 
function can be written as 
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where )( ωj
i eH  is the transfer function of the thi  second-

order all-pass unit, and )(ωϕ  is the composite phase function. 
Each second-order all-pass unit will have a gain iM  and a 
phase function )(ωϕi .  Each second-order unit can be defined 
in terms of two polynomial coefficients, ia  and ib , and the 
transfer function of unit i  is given as 
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 With the transfer function of unit i  defined in Eq. (3) in 
terms of ia  and ib , it is straightforward to show that 
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i MeH ω , for all ω . The composite group delay 

)(ωτ g  is given as 
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where the group delay of each unit is ./)()( ωωϕωτ dd ii −=  
After some algebraic manipulations, the unit group delay can 
be expressed as 
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where iζ  is termed the frequency-shift  parameter and 
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 To ensure stability, the poles of a digital filter must be 
inside the unit circle in the z-plane.  To achieve this, both ia  
and ib  must be properly bounded. The poles of the filter are 
found by solving 

                                 01 21 =++ −− zazb ii ,                             (7) 
 
and are given by the complex conjugate pair 
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From Eq. (8), we see that ia  must be a real, positive value 

such that 10 << ia . This restriction on ia , combined with 

Eq. (6), implies that ib  must be bounded, that is, 
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Adhering to these bounds on ia  and ib  will guarantee stable, 
second-order, all-pass digital filters that can be used to realize 
desired group delay characteristics. 
 

3.  ALL-PASS FILTER DELAY SIGNATURE AND THE 
FREQUENCY-DELAY DOMAIN 

 The form of )(ωτ i  in Eq. (5) resembles the spectrum of a 
Double Side Band Suppressed Carrier Amplitude Modulated 
(DSB-SC AM) signal with carrier frequency iζ . We can 
define a frequency-delay domain in which the delay is a 
function of the amplitude parameter ia  and frequency iζ .  
The Fourier transform provides a link between the frequency-
delay domain and a time-delay domain. The later domain 
serves our analysis, but has no physical interpretation. The 
pseudo-modulation present in the delay response of a second-
order all-pass digital filter can be described in the time-delay 
domain using the inverse Fourier transform, that is, 
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With this formulation, ),( iatf  takes the role of a “baseband” 
time-delay function. 
 
 A frequency-delay domain expression for the composite 
group delay is,  
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In the time-delay domain, using linearity, we have 
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where ),( iatf  is given by Eq. (11).  The same equations also 
apply in the discrete-time and discrete-frequency domains. 
However, since the inverse Fourier transform in Eq. (13) 
cannot be found explicitly, an approximation is used. 
Dropping the subscript i for notational convenience, the 
simplest solution results with the following approximation,  
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Now, ),(ˆ atf  is only one term, that is, 
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where c  is positive and real.  This corresponds to an estimate 
of the frequency-delay domain baseband spectrum, 
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The temporal and spectral estimate of  f(t,a) is denoted the 
all-pass filter delay signature. With the approximation given 
in Eq. (14), that the parameter c  depends on a  as follows 
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where Q is defined as 
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4.  MAXIMUM LIKELIHOOD ESTIMATION OF 
SECOND-ORDER ALL-PASS FUNCTIONS 

 
 An initial estimate for the N  frequencies-shift values iζ , 

and the N  amplitude values ia , is found from the desired 

discrete-frequency delay function )( 0Ωkdτ , where 

L/20 π=Ω , and L  is chosen to satisfy the dimension of 

)(ωτ g . By taking the Inverse Discrete Fourier Transform 

(IDFT) of this function, the L -point discrete time-delay 
domain function, ),(ngd  or vector dg  is obtained, that is,  
 
                          { })(IDFT)( 0Ω= kng dd τ .                     (19) 
 

The desired response, )( 0Ωkdτ , is found as the difference 
between the maximum delay and the system delay response 
to be compensated, )( 0Ωksysτ , in the band of interest, that is, 

 
             ( ) ).()(max)( 000 Ω−Ω=Ω kkk syssysd τττ             (20) 

 
This design structure guarantees positive values for the 
desired delay function in the band of interest [ ]10 ,ωω . A well-
known property of all-pass filters [5], is 
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where N  is the number of second-order all-pass digital filters 
used. Approximating )(ωτ d  with )(ωτ g , we can establish a 

lower bound for N , in the band of interest [ ]10 ,ωω , as 
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4.1  Filter Design Formulation 
 
 If we generate L  samples of )(tgg , denoted )(ngg , the 

N  amplitude values ia  should be chosen such that )(ngg  

closely approximates the L  values of the desired discrete 
time-delay domain function )(ngd . The sampled version of 

)(tgg  in Eq. (13) can be rewritten in matrix form, using the 

approximation of Eq. (15), as 
 
                                   nsAg += )(γg ,                                 (23) 

 
where gg  is the vector with L  observations in the time-delay 

domain, )(γA  is defined as a NL x  Vandermode matrix [6] 

when N  second order all-pass filter are used in the design,  
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Here )(γA  is an array of column vectors a , of length L , 
whose elements are defined at consecutives sample times and 
that satisfies 
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where 
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is a complex variable containing the parameters of interest. 
Vector s  holds the weighting coefficients used to improve 
the overall estimation of )( 0Ωkdτ  and n  is a vector 
representing any approximation error.  In this formulation, 
the vector s , is given by,  
 

                                [ ]TNsss L21=s ,                      (27) 
 
where is  is forced to be a positive integer denoting a 

cascaded multiple of the  thi  second-order all-pass filter time-
delay response. When 1=is , there is only one second-order 

all-pass filter with parameters iγ . When 2=is , two units 

with parameters iγ  are used in cascade. For simplicity, is  is 
rounded down to the nearest integer. 

 
4.2 Estimation by Maximum Likelihood 
 
     Considering a Gaussian distribution for the error n , the 
maximum likelihood estimate of the signal parameters γ  and 

vectors of weighting coefficient s , is obtained by minimizing 

the expression ( ) 2
sAg γ−g . The Iterative Quadratic 

Maximum Likelihood (IQML) algorithm [6] provides a mean 
to find γ  by minimizing the squared error function ξ  
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where the optimum weighting coefficient vector ŝ , in the 
least squares sense, is found using the Moore-Penrose inverse 

of )(γA , denoted as ◊A , such that 
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where HA  is the Hermitian of A . The spectral factorization 
of Eq. (23) can be written as [7] 
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where R  is the autocorrelation function of gg , sΛ is a 

diagonal matrix with the eigenvalues of A , and nΛ is also a 
diagonal matrix with the eigenvalues for the error. The 
columns of sU span the range space of A  whereas those of 

nU span its orthogonal complement (or null-space). The 
projection operator onto the noise subspace is defined as 
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     The metric to be minimized ξ in Eq. (28), can be rewritten 

in terms of ⊥Π A  and R  as: 
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using the trace property, )( HH tr xyxy = . The basic idea 

behind IQML is to re-parameterize the projection matrix ⊥Π A  
using a basis for the null-space of A . This method derives an 
FIR filter that best suppresses the data, while making the 
filter’s roots the estimated parameters iγ . This is done by 

defining a polynomial )(zb  with roots at ieγ , Ni ,..,1=  as 
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a vector b  with the FIR filter coefficients  



                                  [ ]TN bb 11L=b ,                         (34) 
 

and a matrix HB of rank NL − , with shifted versions of b , 

such that HB  and A  are orthogonal ( 0=ABH ), that is, 
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   It can be shown [6], that the mean square error metric ξ  
can be minimized by solving quadratic  
                                       bCbb Hminˆ = ,                             (36) 
where  
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Successive iterations of the Rayleigh principle will provide 
the vector b̂  with the maximum likelihood estimated 
parameters iγ . 

5.  OPTIMIZATION BY MEAN SQUARED 
MINIMIZATION 

Once ξ  has converged to a minimum, b̂  provides the 
initial estimates of the N  frequencies-shift values, iζ , and 

the N  amplitude values, ia , of the second-order all-pass 

digital filters. To improve system compensation with )(ωτ g , 

we seek better estimates for iζ  and ia  via a minimum mean 
squared iterative gradient approach [8] adding a genetic 
algorithm that minimizes the chances of converging to a local 
minimum.  Each all-pass filter is optimized individually for a 
better estimate of iζ  and then a better estimate of ia , 

iterating the process for smaller ξ .  Figure 1 shows a desired 
delay and the composite effect of 8 second-order all-pass 
filters found by the IQML technique. Figure 2 shows the 
desired delay, initial and final optimized composite delays, as 
well as the 8 second-order all-pass filter delays.  

6.  CONCLUSION 

An algorithm to design all-pass digital filters is presented. 
This method uses cascaded, second-order, all-pass digital 
filters whose parameters are bounded to produce physically 
realizable stable filters. Other methods provide a solution in 
the mean squared error sense, however such solutions do not 
always provides a stable filter. 
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Fig.  1.   Desired group delay compared to IQML match and 

individual filter contributions. 
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Fig.  2.   Group delay comparison after optimization. 


