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Abstract — A new domain, termed the frequency-delay
domain, is used to design stable, all-pass digital filters
resembling a given delay response in the least-squares sense.
This spectral technique identifies the delay response of a stable,
second-order, all-pass digital filter as a double sideband
suppressed carrier amplitude modulated signal in  the
frequency-delay domain. Iterative maximum likelihood
techniques are used to render the filter coefficients. The
algorithm is a sgnificant improvement over related methods
because it results in a physically realizable stable all-pass filter
that closely approximates a desired delay response.

1. INTRODUCTION

The design of all-pass digital filters to satisfy a specific
phase or group delay function is described in [1]. All-pass
filters are frequently used for phase/delay compensation
because they do not introduce amplitude distortion as Finite
Impulse Response (FIR) or Infinite Impulse Response (IIR)
digital filters may do. In classical design methods for FIR
and IR filters, there is no well-established method for all-
pass filter design, although eigenfilter algorithms have been
successfully employed [2]. The existing methods are not
guaranteed to converge nor produce stable filters. This paper
describes a method that uses cascaded, second-order, all-pass
digital filters [3][4] whose parameters are restricted in such a
way, that convergence and stability can be achieved.

2. ALL-PASSDIGITAL FILTERS

All-pass digital filters have unity magnitude response
across the entire frequency band. This property introduces a
nonlinear relationship between the filter parameters and the
phase response, thereby limiting the filter design degrees of
freedom.

The Z-transform transfer function of an N order all-pass
digital filter can be expressed as
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The transfer function of an all-pass filter of order 2N can be
described as the product of the transfer function of N
second-order all-pass filters that have been cascaded. If we
designate the overal gain as M, the composite transfer
function can be written as
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where H;(e/¥) is the transfer function of the i second-
order all-pass unit, and ¢(w) isthe composite phase function.
Each second-order al-pass unit will have a gain M; and a
phase function ¢; (w) . Each second-order unit can be defined
in terms of two polynomial coefficients, a and b, and the
transfer function of unit i isgiven as
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With the transfer function of unit i defined in Eq. (3) in
teems of a and b, it is straightforward to show that

‘Hi(ej“’)‘: M; =1, for al «. The composite group delay

74(w) isgivenas
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where the group delay of each unit is r;(w) =-d¢; (w)/dw.
After some algebraic manipulations, the unit group delay can

be expressed as
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where ¢; istermed the frequency-shift parameter and

cos({;) = z_—h (6)
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To ensure stability, the poles of a digital filter must be
inside the unit circle in the z-plane. To achieve this, both 3,

and b must be properly bounded. The poles of the filter are
found by solving
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and are given by the complex conjugate pair
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From Eq. (8), we see that & must be a real, positive value
such that 0<a; <1. This restriction on &, combined with
Eq. (6), impliesthat b must be bounded, that is,

-2/ <b <2fq . (9)

Adhering to these boundson & and b will guarantee stable,

second-order, al-pass digital filtersthat can be used to realize
desired group delay characteristics.

3. ALL-PASSFILTER DELAY SIGNATURE AND THE
FREQUENCY-DELAY DOMAIN

The form of r;(w) in Eq. (5) resembles the spectrum of a
Double Side Band Suppressed Carrier Amplitude Modulated
(DSB-SC AM) signal with carrier frequency ¢;. We can
define a frequency-delay domain in which the delay is a
function of the amplitude parameter a and frequency ¢;.
The Fourier transform provides a link between the frequency-
delay domain and a time-delay domain. The later domain
serves our analysis, but has no physical interpretation. The
pseudo-modulation present in the delay response of a second-
order al-pass digital filter can be described in the time-delay
domain using the inverse Fourier transform, that is,
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With this formulation, f(t,a;) takes the role of a “baseband”

time-delay function.

A frequency-delay domain expression for the composi

group delay is,
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In the time-delay domain, using linearity, we have
N
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where f(t,a) is given by Eg. (11). The same equations also

apply in the discrete-time and discrete-frequency domai
However, since the inverse Fourier transform in Eqg. (1
cannot be found explicitly, an approximation is use
Dropping the subscript for notational convenience, the
simplest solution results with the following approximation,
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Now, f(t,a) isonly oneterm, that is,
f(t,a):e_‘EM, O<ac<l, (15)

where ¢ ispositiveand real. This corresponds to an estimate
of the frequency-delay domain baseband spectrum,
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The tempora and spectral estimate of f(t,a) is denoted the
all-pass filter delay signature. With the approximation given
in EqQ. (14), that the parameter ¢ dependson a asfollows
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where Q is defined as
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4. MAXIMUM LIKELIHOOD ESTIMATION OF
SECOND-ORDER ALL-PASSFUNCTIONS

An initial estimate for the N frequencies-shift values ¢,
and the N amplitude values a,, is found from the desired
function 74(kQg), where
Qp=2n/L, and L is chosen to satisfy the dimension of
74(w) . By taking the Inverse Discrete Fourier Transform

(IDFT) of this function, the L -point discrete time-delay
domain function, g4(n), or vector g4 isobtained, that is,

9a(n) = IDFT{74(kQo) }. (19)
The desired response, 74(kQ,) , isfound as the difference

between the maximum delay and the system delay response
to be compensated, 745(kQ,), in the band of interest, that is,

74(kQo) = max(rgs (K Q) )~ Tos (K Qo). (20)

nTshls design structure guarantees positive values for the

esired delay function in the band of interest [w,, ] . A well-
cnown property of all-passfilters[5], is
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where N isthe number of second-order all-pass digital filters
used. Approximating 74(w) with 74(w), we can establish a

lower bound for N, in the band of interest [w,, ], as

Wy
- 1
N Za’lz_nomax[r%(w)] o [fes(@da (22)
2]

4.1 Filter Design Formulation

If we generate L samples of g,(t), denoted gg4(n), the
N amplitude values & should be chosen such that g, (n)

closely approximates the L values of the desired discrete
time-delay domain function gg4(n). The sampled version of

gg(t) in Eq. (13) can be rewritten in matrix form, using the
approximation of Eq. (15), as

gg =A(y)s+n, (23)
where g isthe vector with L observationsin the time-delay
domain, A(y) isdefinedasa L x N Vandermode matrix [6]
when N second order al-pass filter are used in the design,
(24)
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Here A(y) is an array of column vectors a, of length L,

whose elements are defined at consecutives sample times and
that satisfies
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is a complex variable containing the parameters of interest.
Vector s holds the weighting coefficients used to improve
the overall estimation of 74(kQg) and n is a vector
representing any approximation error. In this formulation,
the vector s, isgiven by,

(29)
where
(26)
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where s is forced to be a positive integer denoting a
cascaded multiple of the i second-order all-passfilter time-
delay response. When s =1, there is only one second-order
al-pass filter with parameters y;,. When s =2, two units
with parameters y; are used in cascade. For simplicity, s is
rounded down to the nearest integer.

4.2 Estimation by Maximum Likelihood

Considering a Gaussian distribution for the error n, the
maximum likelihood estimate of the signal parameters y and

vectors of weighting coefficient s, is obtained by minimizing
the expression ||gg —A(y)s"2 . The lterative Quadratic

Maximum Likelihood (IQML) agorithm [6] provides a mean
tofind y by minimizing the squared error function &
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where the optimum weighting coefficient vector S, in the
least squares sense, isfound using the Moore-Penrose inverse

of A(y), denoted as A, such that
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where A" isthe Hermitian of A . The spectral factorization
of Eq. (23) can be written as[7]
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where R is the autocorrelation function of g, ,Agis a

diagonal matrix with the eigenvalues of A, and A,isaso a

diagonal matrix with the eigenvalues for the error. The
columns of U, span the range space of A whereas those of

U, span its orthogonal complement (or null-space). The
projection operator onto the noise subspace is defined as

ny=u, U =1-AA°. (31)

The metric to be minimized & in Eq. (28), can be rewritten
intermsof M and R as:
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using the trace property, y"x=tr(xy"). The basic idea
behind IQML is to re-parameterize the projection matrix M’
using a basis for the null-space of A . This method derives an
FIR filter that best suppresses the data, while making the
filter's roots the estimated parameteps. This is done by
defining a polynomiab(z) with roots ate” , i=1,..,N as

N
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a vectorb with the FIR filter coefficients
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and a matrix B" of rank L-N, with shifted versions of b,

such that B and A are orthogonal (B"A =0), that is,
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It can be shown [6], that the mean square error metric &
can be minimized by solving quadratic

b=minb"Cb, (36)
where
c=c"[8"8) "G, 37)
and
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Successive iterations of the Rayleigh principle will provide
the vector b with the maximum likelihood estimated
parameters y; .

5. OPTIMIZATION BY MEAN SQUARED
MINIMIZATION

Once & has converged to a minimum, b provides the
initial estimates of the N frequencies-shift values, ¢;, and

the N amplitude values, g, of the second-order all-pass
digital filters. To improve system compensation with 74(w),

we seek better estimates for ¢; and & viaaminimum mean
squared iterative gradient approach [8] adding a genetic
algorithm that minimizes the chances of converging to alocal
minimum. Each all-pass filter is optimized individually for a
better estimate of ¢; and then a better estimate of &,

iterating the process for smaller ¢ . Figure 1 shows a desired
delay and the composite effect of 8 second-order all-pass
filters found by the IQML technique. Figure 2 shows the
desired delay, initial and final optimized composite delays, as
well as the 8 second-order all-pass filter delays.

6. CONCLUSION

An agorithm to design all-pass digital filters is presented.
This method uses cascaded, second-order, all-pass digital
filters whose parameters are bounded to produce physicaly
realizable stable filters. Other methods provide a solution in
the mean squared error sense, however such solutions do not
aways provides a stable filter.
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Fig. 2. Group delay comparison after optimization.



