

All-Pass Digital Filter Design in the Frequency-Delay Domain Using the Iterative Quadratic Maximum Likelihood Algorithm

Javier J. Tapia
 PacketVideo Corp.
 DSP Laboratory
 Hoffman Estates, Illinois 60192

Abstract – A new domain, termed the frequency-delay domain, is used to design stable, all-pass digital filters resembling a given delay response in the least-squares sense. This spectral technique identifies the delay response of a stable, second-order, all-pass digital filter as a double sideband suppressed carrier amplitude modulated signal in the frequency-delay domain. Iterative maximum likelihood techniques are used to render the filter coefficients. The algorithm is a significant improvement over related methods because it results in a physically realizable stable all-pass filter that closely approximates a desired delay response.

Guillermo E. Atkin, Joseph L. LoCicero
 Department of Electrical and Computer Engineering
 Illinois Institute of Technology
 Chicago, Illinois 60616

where $H_i(e^{j\omega})$ is the transfer function of the i^{th} second-order all-pass unit, and $\phi(\omega)$ is the composite phase function. Each second-order all-pass unit will have a gain M_i and a phase function $\phi_i(\omega)$. Each second-order unit can be defined in terms of two polynomial coefficients, a_i and b_i , and the transfer function of unit i is given as

$$H_i(e^{j\omega}) = \frac{a_i + b_i e^{-j\omega} + e^{-j2\omega}}{1 + b_i e^{-j\omega} + a_i e^{-j2\omega}} = M_i e^{j\phi_i(\omega)}. \quad (3)$$

With the transfer function of unit i defined in Eq. (3) in terms of a_i and b_i , it is straightforward to show that $|H_i(e^{j\omega})| = M_i = 1$, for all ω . The composite group delay $\tau_g(\omega)$ is given as

$$\tau_g(\omega) = -\frac{d\phi(\omega)}{d\omega} = -\sum_{i=1}^N \frac{d\phi_i(\omega)}{d\omega} = \sum_{i=1}^N \tau_i(\omega), \quad (4)$$

where the group delay of each unit is $\tau_i(\omega) = -d\phi_i(\omega)/d\omega$. After some algebraic manipulations, the unit group delay can be expressed as

$$\tau_i(\omega, a_i, \zeta_i) = \frac{(1 - a_i)}{1 + a_i + 2\sqrt{a_i} \cos(\omega - \zeta_i)} + \frac{(1 - a_i)}{1 + a_i + 2\sqrt{a_i} \cos(\omega + \zeta_i)}, \quad (5)$$

where ζ_i is termed the frequency-shift parameter and

$$\cos(\zeta_i) = \frac{-b_i}{2\sqrt{a_i}}. \quad (6)$$

To ensure stability, the poles of a digital filter must be inside the unit circle in the z-plane. To achieve this, both a_i and b_i must be properly bounded. The poles of the filter are found by solving

$$1 + b_i z^{-1} + a_i z^{-2} = 0, \quad (7)$$

and are given by the complex conjugate pair

$$z_p^{-1}, (z_p^{-1})^* = \sqrt{a_i} \left[\left(\frac{-b_i}{2\sqrt{a_i}} \right) \pm j \sqrt{1 - \left(\frac{-b_i}{2\sqrt{a_i}} \right)^2} \right] = \sqrt{a_i} e^{\pm j\zeta_i}. \quad (8)$$

2. ALL-PASS DIGITAL FILTERS

All-pass digital filters have unity magnitude response across the entire frequency band. This property introduces a nonlinear relationship between the filter parameters and the phase response, thereby limiting the filter design degrees of freedom.

The Z-transform transfer function of an N^{th} order all-pass digital filter can be expressed as

$$A(z) = \frac{a_N + a_{N-1} z^{-1} + \dots + a_1 z^{-(N-1)} + z^{-N}}{1 + a_1 z^{-1} + \dots + a_{N-1} z^{-(N-1)} + a_N z^{-N}}. \quad (1)$$

The transfer function of an all-pass filter of order $2N$ can be described as the product of the transfer function of N second-order all-pass filters that have been cascaded. If we designate the overall gain as M , the composite transfer function can be written as

$$H(e^{j\omega}) = \prod_{i=0}^N H_i(e^{j\omega}) = M e^{j\phi(\omega)}, \quad (2)$$

From Eq. (8), we see that a_i must be a real, positive value such that $0 < a_i < 1$. This restriction on a_i , combined with Eq. (6), implies that b_i must be bounded, that is,

$$-2\sqrt{a_i} \leq b_i \leq 2\sqrt{a_i}. \quad (9)$$

Adhering to these bounds on a_i and b_i will guarantee stable, second-order, all-pass digital filters that can be used to realize desired group delay characteristics.

3. ALL-PASS FILTER DELAY SIGNATURE AND THE FREQUENCY-DELAY DOMAIN

The form of $\tau_i(\omega)$ in Eq. (5) resembles the spectrum of a Double Side Band Suppressed Carrier Amplitude Modulated (DSB-SC AM) signal with carrier frequency ζ_i . We can define a frequency-delay domain in which the delay is a function of the amplitude parameter a_i and frequency ζ_i . The Fourier transform provides a link between the frequency-delay domain and a time-delay domain. The later domain serves our analysis, but has no physical interpretation. The pseudo-modulation present in the delay response of a second-order all-pass digital filter can be described in the time-delay domain using the inverse Fourier transform, that is,

$$\mathfrak{I}^{-1}\{\tau_i(\omega, a_i, \zeta_i)\} = 2f(t, a_i) \cos(\zeta_i t), \quad (10)$$

where

$$f(t, a_i) = \mathfrak{I}^{-1}\left\{\frac{(1-a_i)}{1+a_i-2\sqrt{a_i} \cos(\omega)}\right\}. \quad (11)$$

With this formulation, $f(t, a_i)$ takes the role of a “baseband” time-delay function.

A frequency-delay domain expression for the composite group delay is,

$$\begin{aligned} \tau_g(\omega) = \sum_{i=1}^N & \left[\frac{(1-a_i)}{1+a_i-2\sqrt{a_i} \cos(\omega-\zeta_i)} \right. \\ & \left. + \frac{(1-a_i)}{1+a_i-2\sqrt{a_i} \cos(\omega+\zeta_i)} \right]. \end{aligned} \quad (12)$$

In the time-delay domain, using linearity, we have

$$\mathfrak{I}^{-1}\{\tau_g(\omega)\} = g_g(t) = 2 \sum_{i=1}^N f(t, a_i) \cos(\zeta_i t), \quad (13)$$

where $f(t, a_i)$ is given by Eq. (11). The same equations also apply in the discrete-time and discrete-frequency domains. However, since the inverse Fourier transform in Eq. (13) cannot be found explicitly, an approximation is used. Dropping the subscript i for notational convenience, the simplest solution results with the following approximation,

$$\frac{(1-a)}{1+a-2\sqrt{a} \cos(\omega)} \approx \frac{2\sqrt{c}}{\omega^2+c}. \quad (14)$$

Now, $\hat{f}(t, a)$ is only one term, that is,

$$\hat{f}(t, a) = e^{-\sqrt{c}|t|}, \quad 0 < a < 1, \quad (15)$$

where c is positive and real. This corresponds to an estimate of the frequency-delay domain baseband spectrum,

$$\mathfrak{I}\{e^{-\sqrt{c}|t|}\} = \frac{2\sqrt{c}}{\omega^2+c}. \quad (16)$$

The temporal and spectral estimate of $f(t, a)$ is denoted the all-pass filter delay signature. With the approximation given in Eq. (14), that the parameter c depends on a as follows

$$c = -2 \sqrt[3]{Q} + \frac{10}{\sqrt[3]{Q}} - 10, \quad (17)$$

where Q is defined as

$$Q = -55 - 45 \left[\frac{1+a}{2\sqrt{a}} \right] + 15 \sqrt{14 + 22 \left[\frac{1+a}{2\sqrt{a}} \right] + 9 \left[\frac{1+a}{2a} \right]^2}. \quad (18)$$

4. MAXIMUM LIKELIHOOD ESTIMATION OF SECOND-ORDER ALL-PASS FUNCTIONS

An initial estimate for the N frequencies-shift values ζ_i , and the N amplitude values a_i , is found from the desired discrete-frequency delay function $\tau_d(k\Omega_0)$, where $\Omega_0 = 2\pi/L$, and L is chosen to satisfy the dimension of $\tau_g(\omega)$. By taking the Inverse Discrete Fourier Transform (IDFT) of this function, the L -point discrete time-delay domain function, $g_d(n)$, or vector \mathbf{g}_d is obtained, that is,

$$g_d(n) = \text{IDFT}\{\tau_d(k\Omega_0)\}. \quad (19)$$

The desired response, $\tau_d(k\Omega_0)$, is found as the difference between the maximum delay and the system delay response to be compensated, $\tau_{\text{sys}}(k\Omega_0)$, in the band of interest, that is,

$$\tau_d(k\Omega_0) = \max(\tau_{\text{sys}}(k\Omega_0)) - \tau_{\text{sys}}(k\Omega_0). \quad (20)$$

This design structure guarantees positive values for the desired delay function in the band of interest $[\omega_0, \omega_1]$. A well-known property of all-pass filters [5], is

$$\int_0^\pi \tau_g(\omega) d\omega = 2N\pi, \quad (21)$$

where N is the number of second-order all-pass digital filters used. Approximating $\tau_d(\omega)$ with $\tau_g(\omega)$, we can establish a lower bound for N , in the band of interest $[\omega_0, \omega_1]$, as

$$N \geq \frac{\omega_1 - \omega_0}{2\pi} \max[\tau_{sys}(\omega)] - \frac{1}{2\pi} \int_{\omega_0}^{\omega_1} \tau_{sys}(\omega) d\omega. \quad (22)$$

4.1 Filter Design Formulation

If we generate L samples of $g_g(t)$, denoted $g_g(n)$, the N amplitude values a_i should be chosen such that $g_g(n)$ closely approximates the L values of the desired discrete time-delay domain function $g_d(n)$. The sampled version of $g_g(t)$ in Eq. (13) can be rewritten in matrix form, using the approximation of Eq. (15), as

$$\mathbf{g}_g = \mathbf{A}(\gamma) \mathbf{s} + \mathbf{n}, \quad (23)$$

where \mathbf{g}_g is the vector with L observations in the time-delay domain, $\mathbf{A}(\gamma)$ is defined as a $L \times N$ Vandermonde matrix [6] when N second order all-pass filter are used in the design,

$$\mathbf{A}(\gamma) = [\mathbf{a}(\gamma_1) \ \mathbf{a}(\gamma_2) \ \dots \ \mathbf{a}(\gamma_N)]. \quad (24)$$

Here $\mathbf{A}(\gamma)$ is an array of column vectors \mathbf{a} , of length L , whose elements are defined at consecutive sample times and that satisfies

$$\mathbf{a}(\gamma_i) = \text{Re}\{[1 \ e^{\gamma_i} \ \dots \ e^{(L-1)\gamma_i}]^T\}, \quad (25)$$

where

$$\gamma_i = -\sqrt{c_i} + j\zeta_i \quad (26)$$

is a complex variable containing the parameters of interest. Vector \mathbf{s} holds the weighting coefficients used to improve the overall estimation of $\tau_d(k\Omega_0)$ and \mathbf{n} is a vector representing any approximation error. In this formulation, the vector \mathbf{s} , is given by,

$$\mathbf{s} = [s_1 \ s_2 \ \dots \ s_N]^T, \quad (27)$$

where s_i is forced to be a positive integer denoting a cascaded multiple of the i^{th} second-order all-pass filter time-delay response. When $s_i = 1$, there is only one second-order all-pass filter with parameters γ_i . When $s_i = 2$, two units with parameters γ_i are used in cascade. For simplicity, s_i is rounded down to the nearest integer.

4.2 Estimation by Maximum Likelihood

Considering a Gaussian distribution for the error \mathbf{n} , the maximum likelihood estimate of the signal parameters γ and vectors of weighting coefficient \mathbf{s} , is obtained by minimizing the expression $\|\mathbf{g}_g - \mathbf{A}(\gamma)\mathbf{s}\|^2$. The Iterative Quadratic Maximum Likelihood (IQML) algorithm [6] provides a mean to find γ by minimizing the squared error function ξ

$$\xi = \|\mathbf{g}_g - \mathbf{A}\hat{\mathbf{s}}\|^2 = \|\mathbf{g}_g - (\mathbf{I} - \mathbf{A}\mathbf{A}^\dagger)\mathbf{g}_g\|^2, \quad (28)$$

where the optimum weighting coefficient vector $\hat{\mathbf{s}}$, in the least squares sense, is found using the Moore-Penrose inverse of $\mathbf{A}(\gamma)$, denoted as \mathbf{A}^\dagger , such that

$$\hat{\mathbf{s}} = \mathbf{A}^\dagger \mathbf{g}_g = \frac{\mathbf{A}^H \mathbf{g}_g}{\mathbf{A}^H \mathbf{A}}, \quad (29)$$

where \mathbf{A}^H is the Hermitian of \mathbf{A} . The spectral factorization of Eq. (23) can be written as [7]

$$\mathbf{R} = \mathbf{g}_g \mathbf{g}_g^H = \mathbf{U}_s \Lambda_s \mathbf{U}_s + \mathbf{U}_n \Lambda_n \mathbf{U}_n, \quad (30)$$

where \mathbf{R} is the autocorrelation function of \mathbf{g}_g , Λ_s is a diagonal matrix with the eigenvalues of \mathbf{A} , and Λ_n is also a diagonal matrix with the eigenvalues for the error. The columns of \mathbf{U}_s span the range space of \mathbf{A} whereas those of \mathbf{U}_n span its orthogonal complement (or null-space). The projection operator onto the noise subspace is defined as

$$\Pi_A^\perp = \mathbf{U}_n \mathbf{U}_n^H = \mathbf{I} - \mathbf{A}\mathbf{A}^\dagger. \quad (31)$$

The metric to be minimized ξ in Eq. (28), can be rewritten in terms of Π_A^\perp and \mathbf{R} as:

$$\xi = \|\mathbf{g}_g - (\mathbf{I} - \mathbf{A}\mathbf{A}^\dagger)\mathbf{g}_g\|^2 = \|\Pi_A^\perp \mathbf{g}_g\|^2 = \mathbf{g}_g^H \Pi_A^\perp \mathbf{g}_g = \text{tr}(\Pi_A^\perp \mathbf{R}) \quad (32)$$

using the trace property, $\mathbf{y}^H \mathbf{x} = \text{tr}(\mathbf{y}\mathbf{x}^H)$. The basic idea behind IQML is to re-parameterize the projection matrix Π_A^\perp using a basis for the null-space of \mathbf{A} . This method derives an FIR filter that best suppresses the data, while making the filter's roots the estimated parameters γ_i . This is done by defining a polynomial $b(z)$ with roots at e^{γ_i} , $i = 1, \dots, N$ as

$$b(z) = z^N + b_1 z^{N-1} + \dots + b_N = \prod_{i=1}^N (z - e^{\gamma_i}), \quad (33)$$

a vector \mathbf{b} with the FIR filter coefficients

$$\mathbf{b} = [b_N \ \dots \ b_1 \ 1]^T, \quad (34)$$

and a matrix \mathbf{B}^H of rank $L-N$, with shifted versions of \mathbf{b} , such that \mathbf{B}^H and \mathbf{A} are orthogonal ($\mathbf{B}^H \mathbf{A} = 0$), that is,

$$\begin{bmatrix} b_N & b_{N-1} & \dots & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & b_N & b_{N-1} & \dots & 1 \end{bmatrix} \begin{bmatrix} 1 & \dots & 1 \\ e^{\gamma_1} & \dots & e^{\gamma_N} \\ \vdots & \vdots & \vdots \\ e^{(L-1)\gamma_1} & \dots & e^{(L-1)\gamma_N} \end{bmatrix} = 0. \quad (35)$$

It can be shown [6], that the mean square error metric ξ can be minimized by solving quadratic

$$\hat{\mathbf{b}} = \min \mathbf{b}^H \mathbf{C} \mathbf{b}, \quad (36)$$

where

$$\mathbf{C} = \mathbf{G}_g^H (\mathbf{B}^H \mathbf{B})^{-1} \mathbf{G}_g \quad (37)$$

and

$$\mathbf{G}_g = \begin{bmatrix} g_g(N+1) & g_g(N) & \dots & g_g(1) \\ g_g(N+2) & g_g(N+1) & \dots & g_g(2) \\ \vdots & \vdots & \dots & \vdots \\ g_g(L) & g_g(L-1) & \dots & g_g(L-N) \end{bmatrix}. \quad (38)$$

Successive iterations of the Rayleigh principle will provide the vector $\hat{\mathbf{b}}$ with the maximum likelihood estimated parameters γ_i .

5. OPTIMIZATION BY MEAN SQUARED MINIMIZATION

Once ξ has converged to a minimum, $\hat{\mathbf{b}}$ provides the initial estimates of the N frequencies-shift values, ζ_i , and the N amplitude values, a_i , of the second-order all-pass digital filters. To improve system compensation with $\tau_g(\omega)$, we seek better estimates for ζ_i and a_i via a minimum mean squared iterative gradient approach [8] adding a genetic algorithm that minimizes the chances of converging to a local minimum. Each all-pass filter is optimized individually for a better estimate of ζ_i and then a better estimate of a_i , iterating the process for smaller ξ . Figure 1 shows a desired delay and the composite effect of 8 second-order all-pass filters found by the IQML technique. Figure 2 shows the desired delay, initial and final optimized composite delays, as well as the 8 second-order all-pass filter delays.

6. CONCLUSION

An algorithm to design all-pass digital filters is presented. This method uses cascaded, second-order, all-pass digital filters whose parameters are bounded to produce physically realizable stable filters. Other methods provide a solution in the mean squared error sense, however such solutions do not always provide a stable filter.

8. REFERENCES

- [1] T. Laakso, V. Valimaki, M. Karjalainen and U. Laine, "Splitting the Unit Delay," *IEEE Signal Proc. Magazine*, vol. 13, no. 1, pp. 30-60, Jan. 1996.
- [2] J. Tapia, G. Atkin, J. LoCicero, "Digital All-Pass Filter Phase Compensation with an Enhanced Eigenfilter Algorithm," in *Proceedings IEEE 42nd Midwest Symposium on Circuits and Systems*, vol. 1, pp. 516-519, Aug. 1999.
- [3] T. Saramaki, "On the Design of Digital Filters as a Sum of Two All-Pass Filters," *IEEE Trans. Circuits and Systems*, vol. CAS-32, no. 11, pp. 1191-1193, Nov. 1985.
- [4] L. Presti and M. Visintin, "Design of IIR Group Delay Equalizers," *Electronic Letters*, vol. 26, no. 3, pp. 200-202, Feb. 1, 1990.
- [5] P. Regalia, S. Mitra, P. Vaidyanathan, "The Digital All-Pass Filter: A Versatile Signal Processing Block," *Proceeding of IEEE*, vol. 76, no. 1, pp. 19-37, Jan. 1988.
- [6] Y. Bresler, A. Macovski, "Exact Maximum Likelihood Parameter Estimation of Superimposed Exponential Signals in Noise," *IEEE Trans. Acoustics, Speech, Signal Proc.*, vol. ASSP-34, no. 5, pp. 1081-1089, Oct. 1986.
- [7] H. Krim, M. Viberg, "Two Decades of Array Signal Processing: The Parametric Approach," *IEEE Signal Proc. Magazine*, vol. 13, no. 4, pp. 67-94, July 1996.
- [8] J. Tapia, G. Atkin, J. LoCicero, "Frequency-Delay Domain Design of Stable All-Pass Digital Filters," in *Proceedings IEEE 43rd Midwest Symposium on Circuits and Systems*, Aug. 2000.

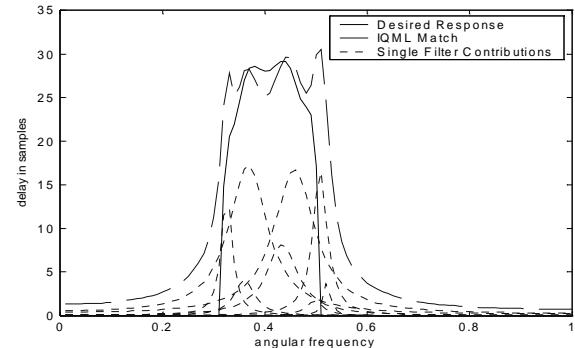


Fig. 1. Desired group delay compared to IQML match and individual filter contributions.

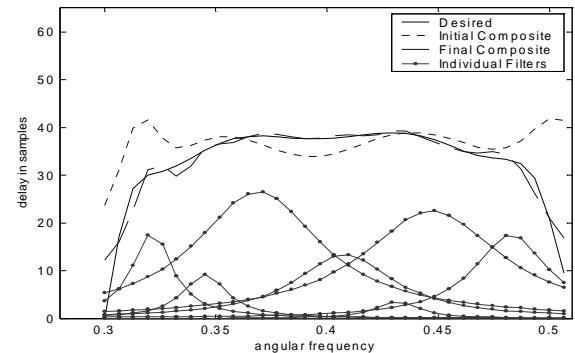


Fig. 2. Group delay comparison after optimization.