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ABSTRACT has been dropped in [5], where the computationally expen-

. L . sive CM approach has been used as well. Recent publica-
.Inth.'s paper, the problem o'f Direction of A”""f’" (D.OA) tions have been concentrated on the one-source problem.

e;tlmat|on of multiple sources |s.add.resfsed considering POSTEqr this special case fast algorithms have been developed.

sible coherence loss along the Impinging wavefronts. 'I_'he In [2] a decoupled estimation of both DOA and coherence

loss results from wave propagation through a fluctuating loss has been introduced successfully. This paper has been

medium and leads to a decreasing signal correlation fromfollowed by further studies of Maximum Likelihood (ML)
sensor to sensor. Two new algorithms are proposed that ar%] and Least Square (LS) methods [7]

ignifi ly | ionall lex th h Il- . . .

significantly ess comput'?mona y complex than the we In this paper, the original CM approach is reformulated
known Covariance Matching (CM) approach. Furthermore ; . .

. L as a mathematically equivalent weighted LS problem by
a polynomial approximation of the coherence loss parame- exploiting the Toeplitz structure of the covariance matrix
ters is introduced, which permits a decoupling of the DOA Th?an tw% al orith[r)ns are proposed for the multiple sourcé
estimation from the estimation of all other parameters. The case, The fi?st al orithm%st?mates both DOA gnd coher-
proposed algorithms and theoretical results are verified by ' . 9 .

ence loss simultaneously and the second one delivers a de-

numerical examples. coupled estimation. However, this approach is based on a

polynomial approximation of the coherence loss. Both al-
1. INTRODUCTION gorithm are significantly less computationally complex than

the CM approach.

Conventional DOA estimation methods exploit the assump-

tion that signals received by a sensor array are fully corre-

lated [1] from sensor to sensor. They rely on fully coher- 2. SIGNAL MODEL

ent wavefronts and point sources. In many situation this

assumption is not true, e.g. in the presence of local scat-Consider a uniform linear array (ULA) of sensors receiv-

terers around the source or long range propagation throughing g wavefronts of narrowband stationary zero-mean far-

a random medium. The first situation is typical for wire- field sources, which are mutually stochastically indepen-

less communication in urban environments, see [2] and thedent. Then the array output can be modeled as [3, 5, 6]

references therein, whereas the second situation occurs in

underwater acoustics [3, 4]. Although the underlying phys-

ical models are different the resulting parameter estimation

methods are based on similar covariance matrices.

One of the first studies taking into account coherence \yheregy(i) is then x 1 vector of thekth fluctuated wave-
loss along wavefronts has been conducted in [3]. There, front anda(wy) is the corresponding steering vector. The
the resolution capability of high-resolution DOA estimation |atter is defined as(w) = [1, e i@, ..., e ie™=DT
methods has been improved, but the unrealistic assumptionyith » = 2 A sing, the sensor spacing in wavelengths,
of known coherence loss has been exploited. An early CM ang the DOA9. Furthermoren(i) is then x 1 vector of
approach to estimate DOA and coherence loss simultane j 4. sensor noiseN is the number of independent snap-

ously has been proposed in [4], but there, the coherence losspots, ando is the elementwise matrix product:) T and
was assumed to be equal for all wavefronts. This restriction (.)H genote transposition and Hermitian transposition, re-
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q
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the originally emitted source signai(i). All random pro-

cesses are assumed to be zero-mean circularly symmetricl_
Gaussian processes. The covariance matrix of the complex

zero-mean Gaussian distributiéav'(0, R) can be written
as [5]

R =E{x(i)x"(i))
a ()

o B © [a(w)a ()] + of 1,
k=1

where the introduced symbols are the source variatfoef
the kth source, the so-called coherence loss maiix=
E{ok()gf! (1)}/02, which is normalized to formally sepa-

3.1. Exact Least-Squares Estimator

0 separate the linear parameters summarizeg b:y[alz,

..oz, 081" =[o". o§1" from the nonlinear parameters
summarized by = [ple i, ..., pye @l 517, where
3 is the Kronecker delta, (6) can be rewritten as

()

£ =arg rrginllf — H@. p)y -

whereH (@, p) = [ho, ..., hn_1]". For any fixedH, the
minimum of (7) is achieved if

ﬁ:(Re[HHWH})ilRe{HHWf}. @)

rate medium and source parameters, the variance of the sen-

sor noisea,f, and the identity matriX . Usually, the coher-

Inserting the valug into (7), the estimates @ andp are

ence loss matrix is parameterized by a real valued symmet-readily obtain as

ric Toeplitz matrix [3, 5, 2]

[l —m|*

[Bk]lm = Iok ) (3)

wherepy is the fluctuation strength amdvaries application

dependent between 1 and 2. The appropriate choice of the

latter is not topic of this paper and therefore wersegjual
to 1.

3. COVARIANCE MATCHING

Leté =[601,...,0q, p1, ..., Pgs 012, el Gcf, a,ﬁ]T be the
vector of all unknown parameters. Then, a CM estimation
of & is given by [5]

£ = arg minj R— R(®)|> (4)

where|| - || denotes the Frobenius norm aRds the sample
covariance matrix

L1
R = NZx(i)x“(i). (5)
i=1

Now let us exploit the Toeplitz structure of the covariance
matrix and rewrite (4) in an analytically equivalent form as

(6)

£ =arg mini|f — rE)3,

R(p+1, p),

r=(R@1,...,Rn, 1",
W =diagn, 2(n —1),..., 2}.

Here R(s, t) means the matrix entry of rowand column
t. In the following sections (6) is used to obtain fast algo-
rithms.

&, p=arg miny"Y 1y, )
,p
=Yty (10)
O=0,p=p
2 ! 2
68 =fo— > 6¢, (11)
k=1
where
n—1

y=Y (n—DRefig} 0 x,

=1
n—1
Y =) (n-hRefad" o xx',
=1

and finallyg = e}, ..., e 1«aT andx = [p], ...,

,og]T. Note,Y andy are ag x q matrix and &g x 1 vector,
respectively, i.e. that the computationally costly inversion of

Y does not depend on the number of sensors. The number
of floating point operations of the new algorithm is about
50 times less than of the original algorithm [5] providing all
the same estimates. This value was measured for 2 sources
and 15 sensors and increases for more sources or sensors.

3.2. Approximate L east-Squar es Estimator

An additional decoupling of DOA and coherence loss esti-
mation can be achieved if the latter together with the source
variances are approximated by a polynomial, thus

Lx—1

o Y B, (12)
v=0

where thegk(v) are real valued polynomial coefficients.

a = 1leads to general polynomials amd= 2 to even ones,
which should be chosen application dependent based on (3).
Lk determines the individual number of coefficients of the
respective source. Therefoeepriori knowledge about the



character or strength of the coherence loss can be incorpohand, the estimation @ is quite robust since the approxi-

rated source dependent, e.g. by choosiRg= 1 for nearly
undisturbed sources.

With Bk = [Bk(0), ..., B(Lk — DI anduk(l) = [1,
1o, ..., 19=D]T the polynomial can be formulated in vec-
tor notation. Then, theh component of is given by

q .
r = Z g jond uk(I)Tﬂk + an8|. (13)
k=1
Note, the conventional model is obtained if we chobge=
1forallk. Let us now defings = [B]..... 7. 031" =
[¢T, o{1T containing all linear parameters and additionally
hy = [e-letlu ()T, ..., e Jedlug)T, 817, Finally, by

denotingH (w) = [ho, ..., hn—1]T, which only depends on
the DOA, we get

ézamgwf—waﬁr (14)

A calculation similar to the one in the last subsection leads

to the second algorithm, which can be summarized as

@ =argminy' Y1y (15)
@
E=vty| (16)
W=w
g
6% =fo—Y_ A0 (17)
k=1

where
n—1 n—1
y=Y (n—DRefig}, Y=>) (n—HRelaq}
1=1 =1

andg = [e71“u ()T, ..., e7l@alug(HT]T.

Note,Y andy are aL x L matrix and aL x 1 vector,
respectively, wherd. = Zﬂzl Lk. The estimates of the
source variances and coherence lossgshave to be cal-
culated from the estimated polynomial coefficiefits . . .,
Bq. This is possible by additional LS fits:

62 = PO (18)
S 2 | i
ok = argmin ug (I -0 19
Pk gmi ; k DBk — Gy py (19)
fork = 1,...,q, i.e. furtherq successive 1-dimensional

mative model forB does not depend on a specific coherence
loss model.

4. STATISTICAL ANALYSIS

The covariance matrix (2) has Toeplitz structure. Therefore,
a necessary condition of identifiability is that the number of
unknown parameters is less tham-2 1. A prove of global
identifiability has not been conducted yet.

Generally, for any identifiable Toeplitz problem as for-
mulated in (6) the covariance matrix of the asymptotic nor-
mal distribution is given by

Jim NEE - (6 — )" =

1 5
SRl DWDH} IReD*WS(I'SWDT + TSwDM)}

x Re(DWDH}1,
(20)
where
D_ arT
08 le—gy
S=diag1/n,...,1},
n—k n—I
Tk =Y Y Rp+kag+hHR*p,q),
p=1qg=1
. n—k n—I
Lk.D=>"> R(p+k q)R*(p.q+1).
p=19g=1

where* denotes complex conjugation. The derivation of
(20) is based on [7]. Numerical results are depicted in the
figures of section 5. Furthermore, the CeRao bound
has been calculated and is shown in the figures as well,
while stating the exact expression is omitted due to lack of
space.

5. NUMERICAL EXAMPLES

The estimation performances of the proposed algorithms are
now demonstrated by means of 200 Monte-Carlo simula-
tions. They are compared with two CM algorithm. One

searches are necessary to estimate all unknown parametersf them does not take into account coherence loss, in the

A closed form expression ¢ is given by
n—1 .
<Z| In u{a)ﬂk) -
=1

if uI(I)ﬁk > 0 for alll. The polynomial approximation

B 6
T nn=1)@2n-1)

3Ing2
n—1’

In ok

figures indicated by (wrong) for wrong model. The com-
parison is focused on the estimation of the DOA because
the other parameters are mainly considered as nuisance pa-
rameters.

As the first example a ULA was modeled consisting of
n = 20 sensors, impinging wavefronts with DOAs = 0°

is expected to introduce a degradation of estimation perfor- andg, = 8°, and coherence loss parametetrs= 0.95 and
mance compared to the exact LS estimator. On the otherp, = 0.85. The Signal-to-Noise Ratio (SNR) was set to 10
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Fig. 1. RMSE versus the number of snapshots Fig. 2. RMSE versus the number of sensors

dB and the number of snapshots varied between 25 and 800€nce loss is critical even for weakly fluctuated wavefronts.
The number of polynomial coefficients wag = 3 for ev-
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