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ABSTRACT

In this paper, the problem of Direction of Arrival (DOA)
estimation of multiple sources is addressed considering pos-
sible coherence loss along the impinging wavefronts. The
loss results from wave propagation through a fluctuating
medium and leads to a decreasing signal correlation from
sensor to sensor. Two new algorithms are proposed that are
significantly less computationally complex than the well-
known Covariance Matching (CM) approach. Furthermore
a polynomial approximation of the coherence loss parame-
ters is introduced, which permits a decoupling of the DOA
estimation from the estimation of all other parameters. The
proposed algorithms and theoretical results are verified by
numerical examples.

1. INTRODUCTION

Conventional DOA estimation methods exploit the assump-
tion that signals received by a sensor array are fully corre-
lated [1] from sensor to sensor. They rely on fully coher-
ent wavefronts and point sources. In many situation this
assumption is not true, e.g. in the presence of local scat-
terers around the source or long range propagation through
a random medium. The first situation is typical for wire-
less communication in urban environments, see [2] and the
references therein, whereas the second situation occurs in
underwater acoustics [3, 4]. Although the underlying phys-
ical models are different the resulting parameter estimation
methods are based on similar covariance matrices.

One of the first studies taking into account coherence
loss along wavefronts has been conducted in [3]. There,
the resolution capability of high-resolution DOA estimation
methods has been improved, but the unrealistic assumption
of known coherence loss has been exploited. An early CM
approach to estimate DOA and coherence loss simultane-
ously has been proposed in [4], but there, the coherence loss
was assumed to be equal for all wavefronts. This restriction
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has been dropped in [5], where the computationally expen-
sive CM approach has been used as well. Recent publica-
tions have been concentrated on the one-source problem.
For this special case fast algorithms have been developed.
In [2] a decoupled estimation of both DOA and coherence
loss has been introduced successfully. This paper has been
followed by further studies of Maximum Likelihood (ML)
[6] and Least Square (LS) methods [7].

In this paper, the original CM approach is reformulated
as a mathematically equivalent weighted LS problem by
exploiting the Toeplitz structure of the covariance matrix.
Then, two algorithms are proposed for the multiple source
case. The first algorithm estimates both DOA and coher-
ence loss simultaneously and the second one delivers a de-
coupled estimation. However, this approach is based on a
polynomial approximation of the coherence loss. Both al-
gorithm are significantly less computationally complex than
the CM approach.

2. SIGNAL MODEL

Consider a uniform linear array (ULA) ofn sensors receiv-
ing q wavefronts of narrowband stationary zero-mean far-
field sources, which are mutually stochastically indepen-
dent. Then the array output can be modeled as [3, 5, 6]

x(i) =
q∑

k=1

gk(i) � a(ωk) + n(i), i = 1, . . . , N (1)

wheregk(i) is then × 1 vector of thekth fluctuated wave-
front anda(ωk) is the corresponding steering vector. The
latter is defined asa(ω) = [1, e− jω, . . . , e− jω(n−1)]T ,
with ω = 2π� sinθ , the sensor spacing� in wavelengths,
and the DOAθ . Furthermore,n(i) is then × 1 vector of
i.i.d. sensor noise,N is the number of independent snap-
shots, and� is the elementwise matrix product.(·)T and
(·)H denote transposition and Hermitian transposition, re-
spectively. The conventional model [1] of the array output
is a special case of (1), where all entries ofgk(i) are equal to



the originally emitted source signalsk(i). All random pro-
cesses are assumed to be zero-mean circularly symmetric
Gaussian processes. The covariance matrix of the complex
zero-mean Gaussian distributionCN (0, R) can be written
as [5]

R = E{x(i)x H(i)}

=
q∑

k=1

σ 2
k Bk � [a(ωk)aH (ωk)] + σ 2

N I,
(2)

where the introduced symbols are the source varianceσ 2
k of

the kth source, the so-called coherence loss matrixBk =
E{gk(i)gH

k (i)}/σ 2
k , which is normalized to formally sepa-

rate medium and source parameters, the variance of the sen-
sor noiseσ 2

N and the identity matrixI . Usually, the coher-
ence loss matrix is parameterized by a real valued symmet-
ric Toeplitz matrix [3, 5, 2]

[Bk]lm = ρ
|l−m|r
k , (3)

whereρk is the fluctuation strength andr varies application
dependent between 1 and 2. The appropriate choice of the
latter is not topic of this paper and therefore we setr equal
to 1.

3. COVARIANCE MATCHING

Let ξ = [θ1, . . . , θq, ρ1, . . . , ρq , σ 2
1 , . . . , σ 2

q , σ 2
N ]T be the

vector of all unknown parameters. Then, a CM estimation
of ξ is given by [5]

ξ̂ = arg min
ξ

‖R̂ − R(ξ )‖2, (4)

where‖ · ‖ denotes the Frobenius norm andR̂ is the sample
covariance matrix

R̂ = 1

N

N∑
i=1

x(i)x H(i). (5)

Now let us exploit the Toeplitz structure of the covariance
matrix and rewrite (4) in an analytically equivalent form as

ξ̂ = arg min
ξ

‖r̂ − r(ξ )‖2
W , (6)

where

r̂ = (r̂0, . . . , r̂n−1)
T , r̂l = 1

n − l

n−l∑
p=1

R̂(p + l, p),

r = (R(1, 1), . . . , R(n, 1))T ,

W = diag{n, 2(n − 1), . . . , 2}.
Here R(s, t) means the matrix entry of rows and column
t . In the following sections (6) is used to obtain fast algo-
rithms.

3.1. Exact Least-Squares Estimator

To separate the linear parameters summarized byγ = [σ 2
1 ,

. . . , σ 2
q , σ 2

N ]T = [σ T , σ 2
N ]T from the nonlinear parameters

summarized byhl = [ρl
1e− jω1l , . . . , ρl

qe− jωql , δl]T , where
δl is the Kronecker delta, (6) can be rewritten as

ξ̂ = arg min
ξ

‖r̂ − H(ω,ρ)γ ‖2
W , (7)

whereH(ω,ρ) = [h0, . . . , hn−1]T . For any fixedH, the
minimum of (7) is achieved if

γ̂ =
(
Re
{

H H W H
})−1

Re
{

H H W r̂
}

. (8)

Inserting the valuêγ into (7), the estimates of̂ω andρ̂ are
readily obtain as

ω̂, ρ̂ = arg min
ω,ρ

yT Y−1 y, (9)

σ̂ = Y−1 y
∣∣∣
ω=ω̂,ρ=ρ̂

, (10)

σ̂ 2
N = r̂0 −

q∑
k=1

σ̂ 2
k , (11)

where

y =
n−1∑
l=1

(n − l)Re{r̂l cl} � xl,

Y =
n−1∑
l=1

(n − l)Re{cl cH
l } � xl xT

l ,

and finallycl = [e− jω1l , . . . , e− jωql ]T , andxl = [ρl
1, . . . ,

ρl
q ]T . Note,Y and y are aq × q matrix and aq × 1 vector,

respectively, i.e. that the computationally costly inversion of
Y does not depend on the number of sensors. The number
of floating point operations of the new algorithm is about
50 times less than of the original algorithm [5] providing all
the same estimates. This value was measured for 2 sources
and 15 sensors and increases for more sources or sensors.

3.2. Approximate Least-Squares Estimator

An additional decoupling of DOA and coherence loss esti-
mation can be achieved if the latter together with the source
variances are approximated by a polynomial, thus

σ 2
k ρl

k ≈
Lk−1∑
ν=0

βk(ν)lαν, (12)

where theβk(ν) are real valued polynomial coefficients.
α = 1 leads to general polynomials andα = 2 to even ones,
which should be chosen application dependent based on (3).
Lk determines the individual number of coefficients of the
respective source. Therefore,a priori knowledge about the



character or strength of the coherence loss can be incorpo-
rated source dependent, e.g. by choosingL k = 1 for nearly
undisturbed sources.

With βk = [βk(0), . . . , βk(Lk − 1)]T anduk(l) = [1,

lα, . . . , lα(Lk−1)]T the polynomial can be formulated in vec-
tor notation. Then, thelth component ofr is given by

rl =
q∑

k=1

e− jωkl uk(l)
T βk + σ 2

n δl . (13)

Note, the conventional model is obtained if we chooseL k =
1 for all k. Let us now defineγ = [β T

1 , . . . , βT
q , σ 2

N ]T =
[ζ T , σ 2

N ]T containing all linear parameters and additionally
hl = [e− jω1l u1(l)T , . . . , e− jωql uq(l)T , δl]T . Finally, by
denotingH(ω) = [h0, . . . , hn−1]T , which only depends on
the DOA, we get

ξ̂ = arg min
ξ

‖r̂ − H(ω)γ ‖2
W . (14)

A calculation similar to the one in the last subsection leads
to the second algorithm, which can be summarized as

ω̂ = arg min
ω

yT Y−1 y (15)

ζ̂ = Y−1 y
∣∣∣
ω=ω̂

(16)

σ̂ 2
N = r̂0 −

q∑
k=1

β̂k(0) (17)

where

y =
n−1∑
l=1

(n − l)Re{r̂l cl}, Y =
n−1∑
l=1

(n − l)Re{cl cH
l }

andcl = [e− jω1l u1(l)T , . . . , e− jωql uq(l)T ]T .
Note,Y and y are aL × L matrix and aL × 1 vector,

respectively, whereL = ∑q
k=1 Lk . The estimates of the

source variancesσ and coherence lossesρ have to be cal-
culated from the estimated polynomial coefficientsβ1, . . . ,

βq . This is possible by additional LS fits:

σ̂ 2
k = β̂k(0) (18)

ρ̂k = arg min
ρk

∣∣∣∣∣
n−1∑
l=1

uT
k (l)β̂k − σ̂ 2

k ρl
k

∣∣∣∣∣
2

(19)

for k = 1, . . . , q, i.e. furtherq successive 1-dimensional
searches are necessary to estimate all unknown parameters.
A closed form expression of̂ρk is given by

lnρ̂k = 6

n(n − 1)(2n − 1)

(
n−1∑
l=1

l ln uT
k (l)β̂k

)
− 3 ln σ̂ 2

k

2n − 1
,

if uT
k (l)β̂k > 0 for all l. The polynomial approximation

is expected to introduce a degradation of estimation perfor-
mance compared to the exact LS estimator. On the other

hand, the estimation ofω is quite robust since the approxi-
mative model forB does not depend on a specific coherence
loss model.

4. STATISTICAL ANALYSIS

The covariance matrix (2) has Toeplitz structure. Therefore,
a necessary condition of identifiability is that the number of
unknown parameters is less than 2n − 1. A prove of global
identifiability has not been conducted yet.

Generally, for any identifiable Toeplitz problem as for-
mulated in (6) the covariance matrix of the asymptotic nor-
mal distribution is given by

lim
N→∞ NE(ξ̂ − ξ0)(ξ̂ − ξ0)

T =
1

2
Re{DW DH }−1Re{D∗W S(�SW DT + �̃SW DH )}

× Re{DW DH }−1,

(20)

where

D = ∂ rT

∂ξ

∣∣∣∣
ξ=ξ0

,

S = diag{1/n, . . . , 1},

�(k, l) =
n−k∑
p=1

n−l∑
q=1

R(p + k, q + l)R∗(p, q),

�̃(k, l) =
n−k∑
p=1

n−l∑
q=1

R(p + k, q)R∗(p, q + l),

where∗ denotes complex conjugation. The derivation of
(20) is based on [7]. Numerical results are depicted in the
figures of section 5. Furthermore, the Cram´er-Rao bound
has been calculated and is shown in the figures as well,
while stating the exact expression is omitted due to lack of
space.

5. NUMERICAL EXAMPLES

The estimation performances of the proposed algorithms are
now demonstrated by means of 200 Monte-Carlo simula-
tions. They are compared with two CM algorithm. One
of them does not take into account coherence loss, in the
figures indicated by (wrong) for wrong model. The com-
parison is focused on the estimation of the DOA because
the other parameters are mainly considered as nuisance pa-
rameters.

As the first example a ULA was modeled consisting of
n = 20 sensors, impinging wavefronts with DOAsθ1 = 0◦
andθ2 = 8◦, and coherence loss parametersρ1 = 0.95 and
ρ2 = 0.85. The Signal-to-Noise Ratio (SNR) was set to 10
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Fig. 1. RMSE versus the number of snapshots

dB and the number of snapshots varied between 25 and 800.
The number of polynomial coefficients wasL k = 3 for ev-
ery single source and general polynomials were used. The
experiments were conducted in the following way: A global
and local optimization of the CM was performed ignoring
coherence loss. Then, the estimated DOA were taken as ini-
tial values for the other three algorithms and the coherence
loss parameters were set to 1, i.e. no coherence loss was as-
sumed initially. In Fig. 1 the results are displayed. The
estimation performances of the exact LS and the conven-
tional CM considering coherence loss are exactly the same,
even for every single snapshot. This two algorithms and the
approximate LS outperform the CM exploiting the wrong
model.

As the second example a ULA was modeled with vary-
ing number of sensors between 8 and 20. The DOA and the
SNR were not changed, whereas both coherence loss pa-
rameters were set to 0.9 and the number of snapshots was
1000. The simulation results are displayed in Fig. 2. There,
a drawback of the approximate LS becomes visible. It suf-
fers from low number of degrees of freedom when the array
consists only of a small number of sensors. The estima-
tion performances of the proposed algorithms are similar for
larger arrays. The CM exploiting the wrong model behaves
unpredictable.

6. CONCLUSION

Two new algorithms have been proposed. It has been shown
that the estimation of the DOA can be decoupled from the
estimation of all other parameters. Additionally, the com-
putationally complexity of the new algorithms is low and
depends on the number of sensors only linearly. Therefore,
the areas of application are large sensor arrays, where coher-
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Fig. 2. RMSE versus the number of sensors

ence loss is critical even for weakly fluctuated wavefronts.
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