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ABSTRACT the problem of estimating linear superimposed signals in Gaussian
) . ) ) noise [6]. It has been demonstrated that SAGE algorithm con-
In this work, the convergence rates of direction of arrival (DOA) yerges faster than EM algorithm without introducing additional
estimates using Expectation-Maximization (EM) and Space Alter- ¢,ngitions. However, a more careful analysis shows that the faster
nating Generalized EM (SAGE) algorithms are investigated. EM ¢onyergence of SAGE algorithm can be only guaranteed if certain
algorithm is a well known recursive method for locating modes of ¢ongitions on observed and augmented information matrices are
a likelihood function which is characterized by simple implemen- gaiisfied.
tation and stability. Unfortunately the slow convergence associated Furthermore, computer simulations are carried out to inves-
with EM makes it less attractive. The recently proposed SAGE al- (igate convergence behavior of EM and SAGE algorithms under
gorithm, based on the same idea of data augmentation, preservegigerent SNRs and numbers of snapshots. It is observed that the

the advantage of simple implementation and has the potential togAGE has significantly faster convergence than EM but is less sta-
speed up convergence. Theoretical analysis shows that SAGE hagja tor low SNR and small number of shapshots.

faster convergence rate than EM under certain conditions. This
conclusion is also supported by numerical experiments carried outy i
over a wide range of SNRs and different numbers of snapshots.

This paper is organized as follows. The signal model is de-
bed in section 2. In section 3 and 4 we develop EM and SAGE
algorithms for the direction finding problem under deterministic
signal model and Gaussian noise assumption. Convergence anal-
1. INTRODUCTION ysis is presented in section 5. Finally simulation results are dis-
cussed in section 6.
The problem of estimating the direction of arrival (DOA) of plane
wavessampled by an array of sensors has been extensively inves-
tigated in last decades. Among all estimation methods Maximum
Likelhoad (L) s Ssyolcaly et alslea perlormance Consideran aray o sensors ecehing s enersteay
- 9 ' samp : %ar field narrowband sources. The array outdi(t) € CV*7 is
herent source signals. Unfortunately the high computational com- o X -
plexity associated with standard implementation of ML makes it sampled attime instanceés= 1, ..., T'. For signals arriving from
e : . . . 8 = (01,...,0n) the array outpufX (¢) can be described as
less attractive in practice. It is an important and challenging task
to find faster, more efficient implementations of ML.

One popular approach to overcome this computational diffi-
culty is the Expectation—Maximization (EM) algorithm [4]. EM whereH(9) = [d(61),...,d(0xm)] € CN*M containsM steering
algorithm enjoys twdavorable properties: simple implementation vectorsd(6,,) € C¥** (m=1,...,M),s(t) = [s1(t)... sM(t)]T
and stability. However, in many cases it suffers from slow conver- ¢ ¢¥*?  y(¢) € C¥*? denote signawaveforms, noise vector,
gence. Based on the same idea of data augmentation, the Alternatespectively. We assume the sigmél) to be unknown, determin-
ing Generalized EM (SAGE) algorithm developed by Fessler and istic and the noisé/(t) to be complex normally distributed with
Hero [6] can improve the convergence rate significantly. zero mean and covariance matik wherev is the noise spectral

The EM algorithm was firstly applied to the array processing parameter and is the identity matrix. Furthermore, the number
problem in [5] for the deterministic signal model assuming known of sources M, is known. The problem is to estimafeusing the
signalwaveforms and noise covariance. The SAGE algorithm was observed datX = {X(t): 1 <t < T}.
applied to estimate DOA of wideband signals in [1] using deter-
ministic signal models with known noise covariance structure. It
was observed in simulation results that SAGE algorithm requires
less iterations to reach a stationary point than EM algorithm. 3. EM ALGORITHM

In this work we study the convergence rates of EM and SAGE
algorithms for direction finding problem under deterministic sig-
nal models, Gaussian noise with known structure. The rate ma-
trices derived herein have similar structure as those derived for

2. SIGNAL MODEL

X(t)=H(0) s(t) + U(®), @)

EM algorithm is a well known iterative method for locating modes
of likelihood function. The basic idea is: rather than maximizing
the likelihood function of observed dafé which may be compli-
cated and intractable, one specifies an augmentedYdaia that
This work has been supported by German Science Foundation. X = M(Y) is a many—to—one mapping and performs a series of




simple maximizations [4] . More specifically, each iteration con- corresponds to one source signal. Accordingly the augmented data
sists of two steps: the E—step (expectation) which approximates theassociated with thex—th cycle,{Z (t)}i, is given by
augmented data by conditional expectation and the M—step (max-
imization) which maximizes the augmented data likelihood. Zm(t) = d(0m)sm (t) + U(t). (6)

We construct augmented data by exploiting the superposition
property of array outputs [5]. Decomposidg(t) into its signal
plus noise components the augmented data

The parameter subsefg,, : 1 < m < M} are updated sequen-
tially within one iteration. AfterM cycles all elements of are
updated once. Let)™! denote the estimate from—th cycle of
thei—th iteration. The—th iteration can be expressed as:
Y(t) = Y1) .. Y (&) ... Yar()"]” ) ’ P
where 90l — li-1,M] @)
Yo (t) = d(0m)sm(t) + Um(t). (3)

Form=1,...,.M
The noise processés., (t) are independent from each other, com-
plex Gaussian distributed with zero mean and covariance matri-  E-step Calculate

cesvpI (m = 1,..., M) under the constrainp_, vm =
v,(0 <vm <v). Aconvenient choice i#,, = (1/M)v. In N ] ]
the following we conside{vm, }M_, as known parameters so that Z, (t,9% )y = E [Zm(t) | X,Q["m’l]] =
EM and SAGE algorithms have the same number of unknown pa- fne 1} [me1] e 1} ofim—1]
rameters. The unknown parameter vector is now giveby 405" Dsi™ )+ X(1)—H@M™ Sy,
(191’"'719@7"'71_91.\4) Wlthgm:(emvsm(l)vvsm(T)) ﬁgm(ﬁ[i’m_l]) = E[ZmZnHl|X,1_9[i’m_1]j| =

Let () and(-)l+!] denote the estimates fraimth and(i+1)—
th iteration respectively. Making use of the property of conditional 1. . N .

) . ) ) ) ) [i,m—1] [i,m—1\H

Gaussian distribution the E— and M— step of theX)—th iteration vl + TZZm(t71—9 )Z oty 8 hH.
can be described as: t=1

M—step Updated,,
E-step: Calculate fn =1,..., M) P Lpaater

Vo) = E[vn()|x,0"] o5 = argmax d(6n)" Rz, (87" 1) d(6n),
_ [m]y [i] Ym _ lily [l . 1 m . .
= d(Bm)sm(t) + —= (X () — H(@")s (1)), sbml(g) = Nd(ag;;mbHZm(t,ﬁ[,,m_l])’ t=1,....T)
Ry, (@) = E[y.Y@|X, o] gl = (gt | gl gl gl gl
T 2
- 1 sz(t,ﬁ[i])gm(t,ﬁ[i])fl +Ymg Comparing the maximization steps of SAGE and EM algo-
T~ v rithm we note that both algorithms have the same computational
complexity at each iteration. However the faster convergence of
M-step: Updatedn, (m=1,..., M) SAGE algorithm can reduce the number of necessary iterations

and then needs less computations than EM algorithm.

o = argmax d(#m)" Ry, @) d(Om),  (4)
) ; . : 5. CONVERGENCE ANALYSIS
S0 = N dEETY (60, (=1, T),
(5) It is well known that under standard regularity conditions the se-
quence of estimates generated by EM algorithm converges to a
Note thatd,,(m = 1,..., M) are updated in parallel. The stationary point of the likelihood function and the likelihood never
optimization of (4) requires only one dimensional search. decreases during the iterations [4],[2]. Analog results for SAGE

algorithm have been developed in [6],[10]. In this section we in-
vestigate the convergence properties of the algorithms derived be-
fore.

. . . Based on the augmentation scheme introduced in section 3,
Thel_ Spa(t:s ql(;erna?r;gtgenerallzetd tI.EM t(SA_GE?_aIgorlthmt [?.] gen-f4, we derive the information matrices of augmented and observed
eralizes the idea of data augmentation to simplify computations o data and then compare the convergence rates associated with the

Fr':/l alglgn;[hn:jar;d C?;'Tﬁrovﬁ th? (iTc]Jn;/errge?ci rates'zéggf Sel‘(t'EM and SAGE algorithms. We assume that 1) the regularity con-
Ings. Instead of estimating all parameters at once, €aKSyitions are satisfied, 2) the maximum point of the likelihaBidis

e s et o o e pOnL of e parameter space
specifically, each iteration consists of several cycles. The parame-., —€t/x (), fx(¥), fz,(¥m) denote the density function of
P Y, . . fal cycles. P X.,Y, Z, respectively. From [4] we know that the rate matrix for
ter subset associated with the-th cycled,, is updated by max- EM algorithm is given by:
imizing the conditionally expected likelihood of augmented data ’
Zm corresponding to this cycle. EM 1
We divide the parameter vectd into M subsets{¢d,, = DM™ =TI — T Zobs » ®)

(B ,sm) 122y With 8, = (8m(1),...,5m(T)). Each of them wherel denotes the identity matrix,

4. SAGE ALGORITHM



T
Lovs = =V Vy log fx (@)=~ ) (D+A) > 1'D where c=1— L (20)
is the observed information matrix and q ¢ V5
an
-1 —1pH
Tom =E [-V,V] log fr 0)| X, 0 | lg=g-  (10) p(DT LD L) <1/4. (21)
is the expected augmented information matry is a column Proof: Lety andI" denote the smallest eigenvaluegof! 7,
gradient operator with respect to the parameter vagtor and (D + A)™'Z,s, respectively. Note thag € [0 1). Taking
The rate matrix for the SAGE algorithm is given by [6]: inverse of both sides of (20) we obtain the following inequality
DMSACE _ 1 _Fol. T, 11) D+A) <DL (22)
with ~ The above relation is preserved under congruence transformation
Isage = Isage + L . (12) with I;éf
T is a block diagonal matrix with thex—th block given b
’ e LE O+ L <2 D (@)
T = € [V0, 5, 108 frn @00 X0 g 13 BeCAUSAD+ &) Lo andZ} (D )12 as el
asD Ty, andZl/? D' I)/? are similar, we get
The matrixL is defined by splittindZ,s as followin
y splitingon g 0<T<ey<1 (24)
T
Loos=D+L+L, (14) from (23). Therefore
whereD , L represent the block diagonal, strict lower triangular -
block parts of Z,s, respectively. Then—th block of D corre- p(DM™™)=1-T>1—cy. (25)
sponds tad,,,. Note thatZ is positive semidefinite at the sta-  From (21) and [8] we have
tionary point. To simplify our analysi®,s is assumed to be posi-
tive definite. The convergence rate of the algorithm is determined IDMSACE ||z < (14 44)7 Y2, (26)
by the spectral radiug(DM) of the rate matrixXdDM [9]. Larger N N _
p(DM) leads to slower convergence speed [10] . where |[DMSACE||z, - = || Zons /2 DM A L0072 |2 with
Since computations dfgm, Zsacr, Zobs are tedious but || - ||]2 representing the induced matrix 2 norm. In addition, for
not difficult, we only present the most relevant results about their f(y) = (1 +4y) Y2,y €[01), c=1— 2
structures. The elementsBwm, Zsace, Zobs are real and depend
on (X — H(#)S), d(.,), first and second derivatives dfé,. ). f(y) <1l-—ecy. 27)

Other details can be found in [3]. From (18),(25),(26) and (27)

Result 1 Zgy is a block diagonal matrix and
p(DMPACF) < IDMPAP||7, < p(DM™).  (28)

Zem = Isace + A, (15)
Thus we have proved that SAGE algorithm converges faster than
whereA is positive semidefinite. EM algorithm if conditions (20),(21) are satisfied. |
The problem of estimating linear superimposed signals in Gaus-
Result 2 sian noise discussed in [6] has similar rate convergence matrices
Isace = D. (16) for EM and SAGE algorithms as in this work. It has been shown

that SAGE algorithm converges faster than EM algorithm with-
out introducing additional conditions. This could be a little bit
misleading because the proof therein is based on the assumption

By means ofResult 1 andResult 2 the rate matrices defined
in (8), (11) can be expressed as

H SAGE H H
DMEM —1_ (D + A) o, a7 that the e|geSnXgIéJé§ of DM with the largest magnltude_
A |A] = p(DM ) is positive. But the rate convergence matrix
DMSSF — 1 — (D + L) Typs. (18) DMSAGE jn (18) is not symmetric and must not have a positive

InterestinglyDMSASF has the same structure as the iteration SPECtrUM.

matrix of the block Gauss-Seidel method [8],[7]. The convergence

of SAGE algorithm follows directly from convergence of the block 6. NUMERICAL EXPERIMENTS

Gauss-Seidel method. In the following theorem we showlfer1

that SAGE algorithm converges faster than EM algorithm under In this section we investigate the convergence properties of EM

certain conditions. A similar proof fd&F > 1 can be found in [3]. and SAGE algorithms under various SNRs and numbers of snap-
shots by numerical experiments. The narrow barae signals
Theorem 1 For DOA estimation problem witf” = 1, determin-  are generated by three sources of equal power locatégd.at=

istic signals and the data augmentation schemes specified in (2)]24° 27° 45°]. The SNR is defined a0 log||sm (t)|?/v]. A uni-
(6), the SAGE algorithm converges faster than EM algorithm, i.e. formly linear array of 15 sensors with inter-element spacings of
half a wavelength is used. The arriving angles are measured from

p(DM4CE) < p(DM™M) (19) broadside of the array. The initial estimate for DOA is chosen to



EM & SAGE algorithms at various SNRs , Btme:[24°27°45" ], SNR=[-5 0 5] dB, T = 100
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Fig. 2. Convergence rates f@ = 50 andT = 100 at SNR=-5
dB.

Fig. 1. Convergence rates at different SNRs.

be 9! = [20° 30° 41°]. The maximum number of iterations is
set to 30. Each experiment is run through 50 Monte Carlo simula-
tions. The mean squared error (MSE}-ah iteration is defined as
the mean o — e |?.
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7. CONCLUSION

In this work we investigate the convergence properties of EM and
SAGE algorithms in the application to DOA estimation. The algo-
rithms are derived for deterministic signal models, Gaussian noise 7]
with known noise structure. The rate matrices of EM and SAGE al-
gorithms are calculated and their spectral radii are compared with
each other. Our analysis shows that under certain conditions SAGE
algorithm converges faster than EM algorithm. Numerical experi-
ments demonstrate that SAGE algorithm can improve convergence [9]
rates significantly. A main drawback of SAGE algorithm is that it

may become unstable for low SNR and small number of snap- [10]
shots. However, the flexibility in choosing parameter sets and fast
convergence suggest that SAGE algorithm is an useful numerical
tool to find ML estimates.



