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ABSTRACT

In this work, the convergence rates of direction of arrival (DOA)
estimates using Expectation-Maximization (EM) and Space Alter-
nating Generalized EM (SAGE) algorithms are investigated. EM
algorithm is a well known recursive method for locating modes of
a likelihood function which is characterized by simple implemen-
tation and stability. Unfortunately the slow convergence associated
with EM makes it less attractive. The recently proposed SAGE al-
gorithm, based on the same idea of data augmentation, preserves
the advantage of simple implementation and has the potential to
speed up convergence. Theoretical analysis shows that SAGE has
faster convergence rate than EM under certain conditions. This
conclusion is also supported by numerical experiments carried out
over a wide range of SNRs and different numbers of snapshots.

1. INTRODUCTION

The problem of estimating the direction of arrival (DOA) of plane
wavessampled by an array of sensors has been extensively inves-
tigated in last decades. Among all estimation methods Maximum
Likelihood (ML) has asymptotically best statistical performance
and is in some sense robust against small sample number and co-
herent source signals. Unfortunately the high computational com-
plexity associated with standard implementation of ML makes it
less attractive in practice. It is an important and challenging task
to find faster, more efficient implementations of ML.

One popular approach to overcome this computational diffi-
culty is the Expectation–Maximization (EM) algorithm [4]. EM
algorithm enjoys twofavorable properties: simple implementation
and stability. However, in many cases it suffers from slow conver-
gence. Based on the same idea of data augmentation, the Alternat-
ing Generalized EM (SAGE) algorithm developed by Fessler and
Hero [6] can improve the convergence rate significantly.

The EM algorithm was firstly applied to the array processing
problem in [5] for the deterministic signal model assuming known
signalwaveforms and noise covariance. The SAGE algorithm was
applied to estimate DOA of wideband signals in [1] using deter-
ministic signal models with known noise covariance structure. It
was observed in simulation results that SAGE algorithm requires
less iterations to reach a stationary point than EM algorithm.

In this work we study the convergence rates of EM and SAGE
algorithms for direction finding problem under deterministic sig-
nal models, Gaussian noise with known structure. The rate ma-
trices derived herein have similar structure as those derived for
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the problem of estimating linear superimposed signals in Gaussian
noise [6]. It has been demonstrated that SAGE algorithm con-
verges faster than EM algorithm without introducing additional
conditions. However, a more careful analysis shows that the faster
convergence of SAGE algorithm can be only guaranteed if certain
conditions on observed and augmented information matrices are
satisfied.

Furthermore, computer simulations are carried out to inves-
tigate convergence behavior of EM and SAGE algorithms under
different SNRs and numbers of snapshots. It is observed that the
SAGE has significantly faster convergence than EM but is less sta-
ble for low SNR and small number of snapshots.

This paper is organized as follows. The signal model is de-
scribed in section 2. In section 3 and 4 we develop EM and SAGE
algorithms for the direction finding problem under deterministic
signal model and Gaussian noise assumption. Convergence anal-
ysis is presented in section 5. Finally simulation results are dis-
cussed in section 6.

2. SIGNAL MODEL

Consider an array ofN sensors receiving signals generated byM
far field narrowband sources. The array outputX(t) 2 C

N�1 is
sampled at time instancest = 1; : : : ; T . For signals arriving from
� = (�1; : : : ; �M ) the array outputX(t) can be described as

X(t) = H(�) s(t) + U(t); (1)

whereH(�) = [d(�1); : : : ; d(�M)] 2 C
N�M containsM steering

vectorsd(�m) 2 C
N�1 (m=1; : : : ;M), s(t) = [s1(t) : : : sM(t)]T

2 C
M�1 , U(t) 2 C

N�1 denote signalwaveforms, noise vector,
respectively. We assume the signals(t) to be unknown, determin-
istic and the noiseU(t) to be complex normally distributed with
zero mean and covariance matrix�I, where� is the noise spectral
parameter andI is the identity matrix. Furthermore, the number
of sources,M , is known. The problem is to estimate� using the
observed dataX = fX(t) : 1 � t � Tg.

3. EM ALGORITHM

EM algorithm is a well known iterative method for locating modes
of likelihood function. The basic idea is: rather than maximizing
the likelihood function of observed dataX which may be compli-
cated and intractable, one specifies an augmented dataY so that
X = M(Y ) is a many–to–one mapping and performs a series of



simple maximizations [4] . More specifically, each iteration con-
sists of two steps: the E–step (expectation) which approximates the
augmented data by conditional expectation and the M–step (max-
imization) which maximizes the augmented data likelihood.

We construct augmented data by exploiting the superposition
property of array outputs [5]. DecomposingX(t) into its signal
plus noise components the augmented data

Y (t) = [Y 1(t)
T
: : : Y m(t)T : : : YM (t)T ]T (2)

where
Y m(t) = d(�m)sm(t) + Um(t): (3)

The noise processesUm(t) are independent from each other, com-
plex Gaussian distributed with zero mean and covariance matri-
ces�mI (m = 1; : : : ;M) under the constraint

PM

m=1
�m =

�; (0 < �m < �). A convenient choice is�m = (1=M)�. In
the following we considerf�mgMm=1 as known parameters so that
EM and SAGE algorithms have the same number of unknown pa-
rameters. The unknown parameter vector is now given by# =
(#1; : : : ; #m; : : : ; #M) with #m = (�m; sm(1);: : :; sm(T )).

Let (�)[i] and(�)[i+1] denote the estimates fromi–th and(i+1)–
th iteration respectively. Making use of the property of conditional
Gaussian distribution the E– and M– step of the (i+1)–th iteration
can be described as:

E–step: Calculate (m = 1; : : : ;M )

Ŷm(t; #[i]) = E

h
Ym(t) j X;#

[i]
i

= d(�[m]
m )s[i]m(t) +

�m

�
(X(t)�H(�[i])s[i](t));

bRYm(#
[i]) = E

h
YmY

H
m j X; #[i]

i

=
1

T

TX
t=1

Ŷ m(t; #[i])Ŷm(t; #[i])H +
�2m
�
I:

M–step: Update#m (m = 1; : : : ;M )

�[i+1]m = argmax
�m

d(�m)H bRY
m
(#[i]) d(�m); (4)

s
[i+1]
m (t) =

1

N
d(�[i+1]m )H Ŷ m(t; #[i]); (t = 1; : : : ; T ):

(5)

Note that#m(m = 1; : : : ;M) are updated in parallel. The
optimization of (4) requires only one dimensional search.

4. SAGE ALGORITHM

The space alternating generalized EM (SAGE) algorithm [6] gen-
eralizes the idea of data augmentation to simplify computations of
EM algorithm and can improve the convergence rate in some set-
tings. Instead of estimating all parameters at once, SAGE breaks
up the problem into several smaller ones and uses EM to update
the parameter subset associated with each reduced problem. More
specifically, each iteration consists of several cycles. The parame-
ter subset associated with them–th cycle#m is updated by max-
imizing the conditionally expected likelihood of augmented data
Zm corresponding to this cycle.

We divide the parameter vector# into M subsetsf#m =
(�m;sm)gMm=1 with sm = (sm(1); : : : ; sm(T )). Each of them

corresponds to one source signal. Accordingly the augmented data
associated with them–th cycle,fZm(t)gTt=1 is given by

Zm(t) = d(�m)sm(t) + U(t): (6)

The parameter subsetsf#m : 1 � m � Mg are updated sequen-
tially within one iteration. AfterM cycles all elements of# are
updated once. Let(�)[i;m] denote the estimate fromm–th cycle of
thei–th iteration. Thei–th iteration can be expressed as:

#
[i;0] = #

[i�1;M]
: (7)

Form = 1; : : : ;M

E–step Calculate

bZm(t; #[i;m�1]) = E

h
Zm(t) j X;#

[i;m�1]
i
=

d(�[i;m�1]m )s[i;m�1]m (t) + X(t)�H(#[i;m�1])S[i;m�1](t);

bRZm(#
[i;m�1]) = E

h
ZmZ

H
m j X;#

[i;m�1]
i
=

� I +
1

T

TX
t=1

Ẑm(t; #
[i;m�1])Ẑm(t; #

[i;m�1])H :

M–step Update#m

�[i;m]
m = argmax

�m
d(�m)H bRZ

m
(#[i;m�1]) d(�m);

s
[i;m]
m (t) =

1

N
d(�[i;m]

m )HẐm(t; #
[i;m�1]); (t = 1; : : : ; T );

#
[i;m] = (#

[i;m�1]
1 ;: : :;#

[i;m�1]
m�1 ;#

[i;m]
m ;#

[i;m�1]
m+1 ;: : :;#

[i;m�1]
M ):

Comparing the maximization steps of SAGE and EM algo-
rithm we note that both algorithms have the same computational
complexity at each iteration. However the faster convergence of
SAGE algorithm can reduce the number of necessary iterations
and then needs less computations than EM algorithm.

5. CONVERGENCE ANALYSIS

It is well known that under standard regularity conditions the se-
quence of estimates generated by EM algorithm converges to a
stationary point of the likelihood function and the likelihood never
decreases during the iterations [4],[2]. Analog results for SAGE
algorithm have been developed in [6],[10]. In this section we in-
vestigate the convergence properties of the algorithms derived be-
fore.

Based on the augmentation scheme introduced in section 3,
4, we derive the information matrices of augmented and observed
data and then compare the convergence rates associated with the
EM and SAGE algorithms. We assume that 1) the regularity con-
ditions are satisfied, 2) the maximum point of the likelihood#� is
an interior point of the parameter space.

Let fX(#), fY (#), fZm(#m) denote the density function of
X , Y , Zm respectively. From [4] we know that the rate matrix for
EM algorithm is given by:

DM
EM = I� I�1EM Iobs ; (8)

whereI denotes the identity matrix,



Iobs = �r#rT
# log fX(#)j#=#� (9)

is the observed information matrix and

IEM = E

h
�r#rT

# log fY (#)j X; #
i
j#=#� (10)

is the expected augmented information matrix.r# is a column
gradient operator with respect to the parameter vector#.

The rate matrix for the SAGE algorithm is given by [6]:

DM
SAGE = I� ~I�1SAGE Iobs ; (11)

with
~ISAGE = ISAGE + L : (12)

ISAGE is a block diagonal matrix with them–th block given by

I[m]

SAGE = E

h
�r#mrT

#m log fZm(#m)j X;#
i
j#=#� : (13)

The matrixL is defined by splittingIobs as following

Iobs = D + L+ LT ; (14)

whereD , L represent the block diagonal, strict lower triangular
block parts of Iobs, respectively. Them–th block ofD corre-
sponds to#m. Note thatIobs is positive semidefinite at the sta-
tionary point. To simplify our analysisIobs is assumed to be posi-
tive definite. The convergence rate of the algorithm is determined
by the spectral radius�(DM) of the rate matrixDM [9]. Larger
�(DM) leads to slower convergence speed [10] .

Since computations ofIEM, ISAGE, Iobs are tedious but
not difficult, we only present the most relevant results about their
structures. The elements ofIEM, ISAGE, Iobs are real and depend
on (X � H(�)S), d(�m), first and second derivatives ofd(�m).
Other details can be found in [3].

Result 1 IEM is a block diagonal matrix and

IEM = ISAGE +�; (15)

where� is positive semidefinite.

Result 2
ISAGE = D: (16)

By means ofResult 1 andResult 2 the rate matrices defined
in (8), (11) can be expressed as

DM
EM = I� (D +�)�1Iobs; (17)

DM
SAGE = I� (D + L)�1Iobs: (18)

Interestingly,DMSAGE has the same structure as the iteration
matrix of the block Gauss-Seidel method [8],[7]. The convergence
of SAGE algorithm follows directly from convergence of the block
Gauss-Seidel method. In the following theorem we show forT =1
that SAGE algorithm converges faster than EM algorithm under
certain conditions. A similar proof forT > 1 can be found in [3].

Theorem 1 For DOA estimation problem withT = 1, determin-
istic signals and the data augmentation schemes specified in (2),
(6), the SAGE algorithm converges faster than EM algorithm, i.e.

�(DMSAGE) < �(DMEM) (19)

if

(D +�) >
1

c
D where c = 1� 1p

5
(20)

and
�( D�1LD�1LH ) < 1=4: (21)

Proof: Let
 and� denote the smallest eigenvalues ofD�1Iobs
and(D +�)�1Iobs, respectively. Note that
 2 [0 1). Taking
inverse of both sides of (20) we obtain the following inequality

(D +�)�1 < c D�1: (22)

The above relation is preserved under congruence transformation
with I1=2obs

I1=2obs (D +�)�1 I1=2obs < c I1=2obs D
�1 I1=2obs : (23)

Because(D+�)�1Iobs andI1=2obs (D+�)�1 I1=2obs , as well

asD�1Iobs andI1=2obs D�1 I
1=2

obs are similar, we get

0 < � < c
 < 1 (24)

from (23). Therefore

�(DMEM) = 1� � > 1� c
: (25)

From (21) and [8] we have

kDMSAGEkI
obs

< (1 + 4
)�1=2; (26)

wherekDMSAGEkI
obs

= kIobs1=2DMSAGEIobs�1=2k2 with
k � k2 representing the induced matrix 2 norm. In addition, for
f(
) = (1 + 4
)�1=2, 
 2 [0 1), c = 1� 1p

5
,

f(
) < 1� c
: (27)

From (18),(25),(26) and (27),

�(DMSAGE) � kDMSAGEkI
obs

< �(DMEM): (28)

Thus we have proved that SAGE algorithm converges faster than
EM algorithm if conditions (20),(21) are satisfied. �

The problem of estimating linear superimposed signals in Gaus-
sian noise discussed in [6] has similar rate convergence matrices
for EM and SAGE algorithms as in this work. It has been shown
that SAGE algorithm converges faster than EM algorithm with-
out introducing additional conditions. This could be a little bit
misleading because the proof therein is based on the assumption
that the eigenvalue� of DMSAGE with the largest magnitude
j�j = �(DMSAGE) is positive. But the rate convergence matrix
DM

SAGE in (18) is not symmetric and must not have a positive
spectrum.

6. NUMERICAL EXPERIMENTS

In this section we investigate the convergence properties of EM
and SAGE algorithms under various SNRs and numbers of snap-
shots by numerical experiments. The narrow bandwavesignals
are generated by three sources of equal power located at�true =
[24Æ 27Æ 45Æ]. The SNR is defined as10 log[jsm(t)j2=�]. A uni-
formly linear array of 15 sensors with inter-element spacings of
half a wavelength is used. The arriving angles are measured from
broadside of the array. The initial estimate for DOA is chosen to
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Fig. 1. Convergence rates at different SNRs.

be �[0] = [20Æ 30Æ 41Æ]. The maximum number of iterations is
set to 30. Each experiment is run through 50 Monte Carlo simula-
tions. The mean squared error (MSE) ati–th iteration is defined as
the mean ofj�[i] � �truej2.

In the first experiment the number of snapshots isT = 100,
SNR varies from�5dB to 5dB at a5 dB step. Figure (1) shows
that SAGE converges faster than EM algorithm. Both algorithms
improves convergence speed slightly with increasing SNR. How-
ever, comparing of the upper and lower parts of figure (1), it can
be observed that larger SNR causes more change in convergence
rate for EM than for SAGE algorithm.

In the second experiment SNR is fixed at�5dB,T =50; 100.
Figure 2 shows that while EM algorithm converges at almost the
same rate, SAGE algorithm fails to converge to the true parameter
for T = 50. It implies that the initial estimate must be even closer
to the true parameter to get the correct final estimate. As discussed
in [6] the monotone convergence region is reduced through the use
of less informative augmented data. This is the price paid for the
faster convergence rate.

7. CONCLUSION

In this work we investigate the convergence properties of EM and
SAGE algorithms in the application to DOA estimation. The algo-
rithms are derived for deterministic signal models, Gaussian noise
with known noise structure. The rate matrices of EM and SAGE al-
gorithms are calculated and their spectral radii are compared with
each other. Our analysis shows that under certain conditions SAGE
algorithm converges faster than EM algorithm. Numerical experi-
ments demonstrate that SAGE algorithm can improve convergence
rates significantly. A main drawback of SAGE algorithm is that it
may become unstable for low SNR and small number of snap-
shots. However, the flexibility in choosing parameter sets and fast
convergence suggest that SAGE algorithm is an useful numerical
tool to find ML estimates.
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