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ABSTRACT

A reduced complexity realisation for the normalised constant mod-
ulus algorithm (NCMA) and its soft criterion satisfaction (SCS)
version is proposed based on selective partial updating. The com-
putational complexity of NCMA and SCS is reduced by updat-
ing a block of equaliser parameters at every iteration rather than
the entire equaliser. This results in a smaller number of multi-
plications for updating the equaliser parameters. A simple block
selection criterion is derived from the solution of a constrained
minimisation problem that underpins the development of NCMA.
In fractionally-spaced equalisation, the proposed selective partial
updating is shown to be capable of maintaining comparable con-
vergence speed to its full-update counterpart. This implies a sig-
nificant reduction in implementation cost without necessarily pe-
nalising the convergence speed.

1. INTRODUCTION

Normalised constant modulus algorithm (NCMA) is an adaptive
blind equalisation algorithm that can be derived from the solu-
tion of a constrained optimisation problem [1]. The computational
complexity of NCMA is proportional to the number of equaliser
parameters. If the number of equaliser parameters is large, as is
often the case in practical channel equalisation applications, the
computational complexity can become prohibitively large. Indeed,
one of the problems with the use of blind equalisers in modern
communication systems is the large computational complexity.

This paper proposes a reduced complexity realisation for NCMA
and its soft criterion satisfaction (SCS) variant [2] based on selec-
tive partial updating [3]. The computational complexity of NCMA
and SCS is reduced by updating a block of equaliser parameters at
every iteration rather than the entire equaliser, thereby decreasing
the number of multiplications required for updating the equaliser
parameters. A simple block selection criterion is also derived, re-
quiring the channel outputs to be ranked according to their Eu-
clidean norm. The only additional overhead is due to the ranking
of regressor vector elements. This can be done using the heap-
sort [4] or the sortline algorithm [5] with minimal additional com-
plexity, which is often far less than the complexity reduction achieved
by selective partial updating. The block selection criterion does
not result in undue decrease in convergence speed. This is thanks
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to the use of a well-defined optimisation problem as the basis for
the selection criterion.

2. BLIND EQUALISATION USING CONSTANT
MODULUS CRITERION

In communication systems, transmitted symbols u(k) undergo dis-
tortion due to intersymbol interference (ISI). The task of an equaliser
is to remove ISI from the received signal. The baud-rate (T -spaced)
equalisation problem consists of estimating the equaliser parame-
ter vector �(k) = [�0(k); �1(k); � � � ; �N�1(k)]

T such that, for
a given regressor (equaliser input) vector x(k) = [x(k); x(k �
1); � � � ; x(k � N + 1)]T , the equaliser output signal y(k) =
�
T (k)x(k) obeys the relation

y(k) = u(k ��) 8k (1)

where � � 0 is a constant equalisation delay. In most blind equal-
isation problems, the equaliser is allowed to be insensitive to phase
rotations to facilitate separation of equalisation from carrier re-
covery [6]. This is achieved by employing the following constant
modulus criterion in lieu of (1)

jy(k)j = R 8k (2)

where R is a constellation-dependent dispersion factor. For con-
stant modulus constellations such as BPSK, M-PSK, R is simply
equal to the magnitude of transmitted symbols [7]. For other con-
stellations, R can be obtained from higher-order moments of trans-
mitted symbols [6].

3. THE FULL-UPDATE NCMA AND SCS-1

The full update NCMA can be derived from the solution of a con-
strained optimisation problem much in the same as in the nor-
malised least-mean-square (NLMS) algorithm [8]. For blind equal-
isation employing the constant modulus criterion (2) the constrained
optimisation problem takes the form [1]:

min
�(k+1)

k�(k + 1)� �(k)k22 (3a)

subject to j�T (k + 1)x(k)j = R: (3b)

The solution of the above optimisation problem gives the full-
update NCMA:

�(k + 1) = �(k) +
�

kx(k)k22

�
sgn(y(k))R� y(k)

�
x(k) (4)



where � is a stepsize.
A soft criterion satisfaction (SCS) version of NCMA can be

obtained by replacing the hard constraint in (3b) with a “soft” con-
straint [2]. The resulting SCS-1 algorithm is given by

�(k + 1) = �(k) +
�

kx(k)k22

�
1�

jy(k)j

R

�
y(k)x(k):

4. NCMA AND SCS-1 WITH SELECTIVE PARTIAL
UPDATES

Partition the regressor vector and the equaliser parameter vector
into M blocks of length L = N=M :

x(k) =

2
6664
x1(k)
x2(k)

...
xM(k)

3
7775 �(k) =

2
6664
�1(k)
�2(k)

...
�M(k)

3
7775

For the selective-partial-update version of NCMA, the constrained
minimisation problem (3) can be reformulated as

min
1�i�M

min
�i(k+1)

k�i(k + 1)� �i(k)k
2
2 (5a)

subject to j�T (k + 1)x(k)j = R: (5b)

We will first consider the minimisation problem for a given block.
If i is fixed, then (5) becomes a constrained minimisation problem
over �i(k + 1):

min
�i(k+1)

k�i(k + 1)� �i(k)k
2
2 (6a)

subject to j�T (k + 1)x(k)j = R (6b)

which can be solved in a similar way to NCMA by using the
method of Lagrange multipliers. The cost function to be min-
imised is given by

Ji(k) = k�i(k + 1)� �i(k)k
2
2 + �

�
R� j�T (k + 1)x(k)j

�
where � is a Lagrange multiplier. Setting @Ji(k)=@�i(k+1) = 0

and @Ji(k)=@� = 0, we get

�i(k + 1)� �i(k)�
�

2
sgn

�
�
T (k + 1)x(k)

�
xi(k) = 0 (7a)

R� j�T (k + 1)x(k)j = 0: (7b)

Substituting (7a) into (7b) yields

�

2
=

R� sgn
�
�
T (k + 1)x(k)

�
y(k)

kxi(k)k22
:

Plugging this into (7a) and introducing a positive stepsize �, we
get

�i(k + 1) = �i(k) +
�

kxi(k)k22

�
R sgn(y(k))� y(k)

�
xi(k)

(8)

where we have replaced sgn
�
�
T (k+1)x(k)

�
with sgn(y(k)), as-

suming that the update term is sufficiently small such that it does
not flip the sign of the resulting equaliser output for the regres-
sor vector at time k. Equation (8) solves the fixed-block-update
constrained minimisation problem in (6).

According to (5), the selection of the block to be updated is
performed by finding the block with the smallest squared-Euclidean-
norm update, i.e.,

i = argmin
1�j�M

k�j(k + 1)� �j(k)k
2
2

= argmin
1�j�M







�
R sgn(y(k))� y(k)

�
xj(k)

kxj(k)k22







2

2

= argmax
1�j�M

kxj(k)k
2
2:

After determining the block that satisfies the above criterion, (8) is
used to update the selected block, resulting in the recursion

�i(k + 1) = �i(k) +
�

kxi(k)k22

�
R sgn(y(k))� y(k)

�
xi(k);

where i = argmax
1�j�M

kxj(k)k
2
2: (9)

Equation (9) assumes that only one block is updated at every
iteration. A natural extension of (9) would be to consider adapta-
tion of B blocks out of M per iteration. In this vein, we have the
following constrained optimisation problem

min
IB

min
wi(k+1)
i2IB

X
i2IB

kwi(k + 1)�wi(k)k
2
2 (10a)

subject to j�T (k + 1)x(k)j = R (10b)

where IB = fi1; i2; : : : ; iBg is a B-subset (subset with B mem-
bers) of f1; 2; : : : ;Mg.

If IB is given and fixed, (10) can be solved by minimising the
cost function:

JIB (k) = k�IB (k + 1)� �IB (k)k
2
2

+ �
�
R� j�T (k + 1)x(k)j

�
where the LB � 1 vector �IB (k) is defined by

�IB (k) =
�
�
T
i1
(k) �

T
i2
(k) � � � �

T
iB
(k)

�T
:

Minimisation of JIB (k) with respect to �(k + 1) and � results in
the recursion

�IB (k + 1) = �IB (k) +
�
�
R sgn(y(k))� y(k)

�
xIB (k)

kxIB (k)k
2
2

(11)

where xIB (k) is defined as

xIB (k) =
�
x
T
i1
(k) x

T
i2
(k) � � � x

T
iB
(k)

�T
:

There are M!
B!(M�B)!

unique B-subsets of f1; 2; : : : ;Mg. Let
us denote the collection of allB-subsets by S . To determine which
subset to use, we need to find B parameter blocks with a minimum
squared-Euclidean-norm update:

IB = argmin
JB2S

k�JB (k + 1)� �JB (k)k
2
2

= argmin
JB2S







�
R sgn(y(k))� y(k)

�
xJB (k)

kxJB (k)k
2
2







2

2

= argmax
JB2S

X
j2JB

kxj(k)k
2
2:



Thus, if the regressor vector blocks are ranked according to their
squared Euclidean norms, IB must contain the B largest blocks:

kxi1 (k)k
2
2 � kxi2(k)k

2
2 � � � � � kxiB (k)k

2
2 � kxi(k)k

2
2;

8i 2 f1; 2; : : : ;Mg n IB :

The selective-partial-update NCMA (SPU-NCMA), which is
the most general form of NCMA with selective partial updates, is
given by

�IB (k + 1) = �IB (k) +
�
�
R sgn(y(k))� y(k)

�
xIB (k)

kxIB (k)k
2
2

where IB = fi : kxi(k)k
2
2 is one of the B largest among

kxj(k)k
2
2, j 2 f1; 2; : : : ;Mgg.

(12)

Note that setting M = N and B = M corresponds to the full-
update NCMA (4).

Following the same line of development as above, the selective-
partial-update SCS-1 (SPU-SCS-1) algorithm can be obtained as

�IB (k + 1) = �IB (k) +
�
�
1� jy(k)j

R

�
y(k)xIB (k)

kxIB (k)k
2
2

where IB = fi : kxi(k)k
2
2 is one of the B largest among

kxj(k)k
2
2, j 2 f1; 2; : : : ;Mgg.

(13)

5. FRACTIONALLY-SPACED IMPLEMENTATION

In T=2-spaced equalisation, which is the most common form of
fractionally spaced equalisation, the communication channel is mod-
elled as two subchannels with outputs x1(k) and x2(k). The sub-
channel outputs are applied to subequalisers with N=2 � 1 pa-
rameter vectors �1(k) and �2(k). Rewriting the regressor vector
as xT (k) = [xT1 (k);x

T
2 (k)] and the equaliser parameter vector

as �T (k) = [�T1 (k); �
T
2 (k)], which are both 1 � N vectors, the

algorithms described so far can be used with no modification as
fractionally-spaced equalisers.

6. SIMULATION STUDIES

This section includes computer simulations for the proposed al-
gorithms. For purposes of performance comparison, we use the
open-eye measure (OEM), which, for BPSK signals, is defined by

OEM(k) =
kc(k)k1 � kc(k)k1

kc(k)k1

where c(k) is the combined channel and equaliser impulse re-
sponse. If OEM(k) < 1, the eye is open. Otherwise, the eye
is closed.

6.1. T -Spaced NCMA and SCS-1

The channel is assumed to have the transfer function

H(z) =
1

1 � 0:6z�1 + 0:3z�2 + 0:2z�3 + 0:01z�4
:
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Figure 1: OEM plots for T -spaced NCMA and SPU-NCMA.
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Figure 2: OEM plots for T -spaced SCS-1 and SPU-SCS-1.

The T -spaced implementations of NCMA and SCS-1 and their
selective-partial-update versions have been simulated on this chan-
nel for N = M = 4 and B = 1. Note that perfect equalisation
can be achieved only if N � 5. All algorithms were initialised
to [1; 0; 0; 0]T . The algorithm stepsizes were chosen to get simi-
lar OEM values at steady-state (� = 0:2 for NCMA and SCS-1,
and � = 0:125 for SPU-NCMA and SPU-SCS-1). The OEM
plots for NCMA and SPU-NCMA, averaged over ten realisations,
are shown in Fig. 1. The OEM plots for SCS-1 and SPU-SCS-1
are depicted in Fig. 2. Evidently, selective-partial-update algo-
rithms converge more slowly than their full-update counterpart.
However, in the case of SPU-NCMA and SPU-SCS-1, only one
quarter of the equaliser parameters are updated at every iteration
(B=M = 1=4).

6.2. T=2-Spaced NCMA and SCS-1

The T=2-spaced channel impulse response is given by

h = [�0:2;�0:3; 0:4; 0:1;�0:35;�0:15;�0:005;�0:002]:
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Figure 3: OEM plots for T=2-spaced NCMA and SPU-NCMA.
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Figure 4: OEM plots for T=2-spaced SCS-1 and SPU-SCS-1.

Fractionally spaced implementations of the algorithms have been
simulated for N = 4, M = N and B = 1. The chosen equaliser
length N is an underestimate of the channel length so as to impose
a finite lower bound on OEM. The algorithms were initialised
to [�0:1; 0; 5;�3]T and the stepsizes were selected to produce
approximately the same OEM on convergence (� = 0:5 for FS-
NCMA and FS-SCS-1, and � = 0:25 for SPU-FS-NCMA and
SPU-FS-SCS-1). The OEM values, averaged over twenty real-
isations, are shown in Figs. 3 and 4. We note that FS-SCS-1
and SPU-FS-SCS-1 appear to have almost identical convergence
speeds. Fig. 5 depicts the OEM curves for these algorithms with
their stepsizes set to maximum stable values. In this case, SPU-
FS-SCS-1 attains a lower OEM value (better ISI mitigation) than
FS-SCS-1 by not escaping to other minima with different � and
larger MSE.

7. CONCLUSION

We have developed selective-partial-update NCMA and SCS algo-
rithms by drawing on the principle of minimum disturbance that
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Figure 5: Comparison of OEM plots for fastest convergence.

underpins the derivation of the NLMS algorithm. The simula-
tion results show that complexity reduction by selective-partial-
updating does not necessarily slow down the convergence speed
for fractionally-spaced implementations. This means that the full-
update algorithm performance can be achieved at reduced compu-
tational complexity. Selective partial updating can also be applied
to the affine projection realisation of NCMA and SCS by introduc-
ing multiple constraints. This extension follows the same line of
development as in [3], and is not included here for space reasons.
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