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ABSTRACT For monomial nonlinearities

The search for universally applicable nonlinearities in blind signal o 5

separation has produced nonlinearities that are optimal for a given 9(u) = au ®)

distribution, as well as nonlinearities that are most robust agalnstthe stability condition (4) can be written in terms of the pgf
of the corresponding normalized random variablewhich is a

model mismatch. This paper shows yet another justification for the
score function, which is in some sense a very robust nonlinearity. It . o )
scaled version of the original random variable Thus, we have

also shows that among the class of parameterizable nonlinearities;
the threshold nonlinearity with the threshold as a parameter is able

to separate any non-Gaussian distribution, a fact that is also proven U=oulU. ©)
in this paper. Using (5) and (6) in (4) results in
1. INTRODUCTION po?HaE {(”JIH} — oPtgE {(“JP“} >0 @)

Blind separation of instantaneously mixed signals using an adap-\,nich is written in terms of the nonlinearities as

tive algorithm with a nonlinearity implicitly producing higher-

order moments has been described by many researchers. Many E {gf(fj)} _E {g(f])f]} > 0. @)
approaches have resulted in similar update equations for the sep-

ar%tiorr: ”.‘aft”x- _In partic_ular, _the rln?x:\;lnum Ii!<e|i_hood ('\SL_) Eq. (8) basically means that the scaling of monomial nonlineari-
and the information maximization (InfoMax) criterion used in tieq goeg not affect the stability region, which is entirely defined
a stochastic-gradient algorithm under the natural gradient bothy, w6 exnonent of the monomial and the normalized distribution.
yield [1] Note that such a conclusion is not generally true for polynomials.
_ _ T However, a similar simplification of the stability condition can be

Wen = Wetp (I g(u)u ) Wi @ carried out for thesign function. For continuous distributions we

whereW is the separation matrix used to unwind the mixing pro- know that the mode of a pdf is inversely proportional to its stan-

cess given by the mixing matriA, so that the recovered signals da_rt? deviatiorpy(0) ~ 1/ov, so the stability condition can be
written as
are

E{gU)U} ~ E{U|} _E{\m}

U= Wx = WAs. @) E{g(U)}ol 205pu(0)  2ps(0) > 1. ©)

In Eqg. (2), s andx denote the source and mixed signal vectors,
respectively. For both the ML and InfoMax approaches, the non-

linearity g(u) is given by the score function On the other hand, for general nonlinear functions, if we scale the

nonlinearity properly, such that

/
p'(u)
g(u) = — : ®3) .
p(w) E{g0)0} =1 (10)
2. OPTIMAL NONLINEARITIES wherel is a normalized random variable with the distribution of
- . . . one particular source signél but scaled to unit variance, then the
2.1. Stability regions of some nonlinearities stability condition (4) simplifies to

Global stability is difficult to investigate due to a complicated cost .

structure in the parameter manifold. Local stability analyses by E {g (U)} > 1. (11)

different authors [2], [3], [4] have resulted in the statement that for

local stability around an equilibrium point, the signal must satisfy Note that Eq. (11) is conditioned on the scaling constraint (10).
However, it has to be pointed out that the scaling condition is not

2
E {QI(U)} E {U } - E{g(U)U} > 0. 4 a necessary condition for stability. It merely ensures unit-variance



output signals and simplifies the stability condition equation, albeit side of the stability condition for a scaled nonlinearity according

not necessarily its satisfaction. to Eqg. (11). The scaling constraint

The stability condition (4) has been evaluated for frequently o
applied nonlinearities and the resulting stability regions are given / g(u)p(u)udu =1 (12)
in Table 1. For those nonlinear functions with two entries in the —oo

stability-condition column, the first one is an unconditional stabil- alone is not sufficient. Any even part gf.) would show up nei-

ity condition, whereas the second entry is conditioned on satisfy- ther in the constraint nor in the integral to maximize. But clearly,

ing the scaling constraint. Also note tHdt= oy U andoy = 1. due to symmetry we wish to restrig(.) to odd functions. The
optimization problem can be formulated as follows:

o0
[ Nonlinearity | Scaling condition | Stability condition | maximize/ g (w)p(u) du (13)
au® a= Ml+3 K4 <0 ) ,
- S B (e ()] subject to/ g (w)p(u)du = c (14)
atanh(u) @= BT} | 7V E{Utanh(0)) >1 _ o _
1 B{tann? (D)} wherec is a constant. Now an even part gf.) would increase
B{0 tann ()] >1 the constraint unnecessarily without contributing to the integral to
- maximize. We are attempting to find the optimal nonlinearity by
threshold NL | a = 57= 1@)&@1 foggm(fﬁu)du >1 calculus of variations. To this end we define
9 P 9 PU .
O N =g (wp(u) + Mg* (w)p(u)) (15)
T pyy (i)

where is a Lagrange multiplier. To find the optima(u), we
have to solve the Euler-Lagrange equation [6]
of o of o aof , 9 Of

== —=—7—9 —=—=-9 =0 16
2.2. The Form of the Nonlinearity 0g Oudg  0Og 6g’g a9’ 8g’g (16)

Table 1 Stability regions of some nonlinearities.

If the separation of signals of a certain class of distributions is Where we abridgeg £ p(u), p’ £ p'(u) = Zp(u), g = g(u),
the goall, the literature suggests to apply nonlinearities of the form andg’ £ ¢'(u) = %g(u), Working out the different terms of (16)

g(u) = au® for sub-Gaussian signals agdu) = atanh(bu) for (15) yields
for super-Gaussian signals, wherés a scalar used to adjust the of
output power. These nonlinearity choices can be refined according = =2\gp 17)
to the stability conditions given earlier, as summarized in Table 1. 99

An intuitive explanation of the appropriate form of the non- 0 of - (18)
linearity can be given as follows. If the nonlinearity is prop- ou 0g’
erly scaled, i.e. E{g(f])f]} = 1, the stability condition aﬁ%g, -0 (19)
E {g’(f])} > 1 determines if the separating points of the non- 6965‘)

"o__

linearity are locally stable. To ensure stability we aim at making ag 097 = 0. (20)
E {g’(U)} as large as possible. For peaky distributions (super-
Gaussian) where a large proportion of the pdf lies around zero, the
derivative ofg(.) should be large around this value, whereas with a g= LIL.
flatter distribution, the contrary is the case. This means that super- 2 p
Gaussian distributions need 'sigmoid’-looking nonlinearities for y can now be found by the constraint on the output power of the
their separation, which are concave functions for their argumentsnonlinearity. For that we would have to determine the constant
greater than zero, while sub-Gaussian distributions need nonlin-. - Ajternately, we know that a further constraint is the one given
earities of the formy(u) = [u|”u with p > 0, showing a convex originally. Inserting the solution (21) into (12) gives us
shape foru > 0. ()

Because sub- (super-) Gaussian signals have a negative (pos- /(x’ 1 p(u ) du = 1 /°° wp' (w) du = 1 22
itive) kurtosisk4, these expressions are often used interchange- oo 2A p(u) p(u) 2 J_ P (u) - @
ably, although the inverse direction of reasoning is not strictly ap- : : . :

- ; A o ; . Integrating by parts yields for the integral in (22

plicable. Since the nonlinearities for super-Gaussian signals, e.g. 9 9byp y 9 (22)
sign(.), atanh(.), do not exhibit stability for the entire positive o () du = (u)u“"’ [~
kurtosis plane, distributions might be constructed, for which both P p _
nonlinearitiesy(u) = au® andg(u) = a tanh(bu) fail [5].

Using (17)—(20) in (16) results in

(21)

p(u)du=-1. (23)

— oo

The desired solution is thus= —1, leading to
/
g(u) = - 2@ (24)
The fact that the stability of blind separation algorithms depend p(u)
on a nonlinear moment being greater than one implies that robust-which is exactly the score function. This is a further justification
ness of the algorithms can be obtained by making this nonlinear for the score function in addition to the ones already known, such
moment as large as possible. We wish to maximize the left-handas ML and InfoMax.

2.3. Optimization of the nonlinearity



3. STABILIZATION OF MIXED DISTRIBUTIONS

3.1. Difficult distributions

From Table 1 it becomes clear, that if a non-Gaussian distri-
bution exists that is neither separable bfu) 3 nor by

u
g(u) = atanh(u), it has to show a positive kurtosis, since
g(u) = u® covers all negative-kurtosis distributions, but the sta-
bility region of g(u) = a tanh(u) does not include all positive-
kurtosis distributions. One such peculiar distribution was given
by Douglas [5]. It is a symmetric, discrete, quaternary signaling
scheme with symbolg [+A;, +A,], whereA, = 3.84; and
Pr(z = A2) = 0.035. A, is adjusted for unit variance resulting in
A, = 0.718. The kurtosis of this distribution isy = 1.12. As can

be checked, this distribution does not satisfy the stability condition
for any of the two nonlinearities. More of those challenging dis-
tributions can be constructed using quaternary symmetric signals
and choosingd;, Az, p1 = Pr(z = A1), andps = Pr(z = As)
subject to the following constraints:

C1) distributional sum

1
p1+p2= 3 (25)
C2) unit variance
: 1
pAT +p2dl = 5 (26)
C3) unstable fog(u) = u?
3
PLA] +pads > 3 (27)
C4) unstable fog(u) = a tanh(u)
1-— 2p1 tanh2 (Al) — 2])2 tanhQ(Az)
> 2p1 Ay tanh(Al) + 2p2A2 tanh(Az). (28)

From (25) and (26) we can expressand A; as a function op-
andA,

1

=3P (29)
> 1—2p A3
Al = T2 (30)
with the additional constraints
p2 < %, Az > 1. (31)
From (27) and (31) we get a lower and an upper bounghfor
1
P2 AT 43 2
1
< .

Invoking (28) we get an additional inequality fps and A»

1—2py A2 .
1 — (1 — 2p2) tanh?(y | ——2222) _ 2p, tanh?(A2)
1—2ps
—9p A2 — 9p, A2
> (1= 2po)y | 22248 oy [ 1220243
1—2p2

1 — 2p2
=+ 2p2A2 tanh(A2).

(34)
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Fig. 1. Possible region oft; andp- for generating “challenging”
distributions.
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The possible range ofl, andp- is depicted in Fig. 1. One
example of a “difficult” distribution can be extracted from Fig. 1
asAs = 5, pa = 0.005 and thereforg; = 0.495 andA; = 0.87.

3.2. The threshold nonlinearity
The threshold nonlinearity [7]

o) = {

with ¥ = A; anda = 2 successfully separates the distribution
given above, which was verified both by inspection of the stabil-
ity condition as well as experimental simulation. Fig. 2 shows
the convergence performance of different nonlinearities for ten
sources with the “challenging” distribution; see [7] for a definition
of the fidelity criterion used. All but the threshold nonlinearity fail

to separate the signals. This leads to the question if the threshold

0,
asign(u),

lu| <9

lul > 9 (35)

10,

_ _ tanh(u)
_ _ sign(u)
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Fig. 2. Convergence of different nonlinearities for a mixture of
signals exhibiting a “challenging” distribution.

nonlinearity is capable of separating any non-Gaussian distribu-
tion for an appropriate threshold paramateiThe answer is given

by the following lemma. In contrast to (35) we omit scaling and
obtain a more general case.



Lemma: The threshold nonlinearity given by

_f o, lu| <9
00 ={ G, 150 36)
satisfies the local stability condition
o2px () — / px (2)zdz > 0 37)
9

for some appropriately choseéh> 0 and any continuous, differ-
entiable, non-Gaussian output distributipg (.). In addition we
have that

oxpn(9) — /OO py(z)zde =0, V9 eRS  (38)
29

if and only if pn (.) is Gaussian.

The proof is one of existence rather than of construction in that

it shows that there is a threshold parametéor which the update

equation (1) is stable, but it does not necessarily give an explicit

solution ford.

Proof: We consider real, symmetric, continuous, differen-
tiable distributions. The result for other distributions can be ob-
tained by approximating discrete distributions by low-variance

Gaussian kernels. We have to show that to satisfy the stability

condition (4), the inequality

oZpx(9) > / T px @z de (39)

has to be satisfied for at least one valuedofe RZ, given a
non-Gaussian distribution. We assume that no valu¢ cdn sat-
isfy (39), so
ox() < [T px@eds, VRS (40)
9
and lead the proof by contradiction.

First we show that for a normal distributiopy(.)
N(0,0%), we have

onpn(9) = / py(z)zde, VO eRY. (41)
9
To this end we assume that
U}z(px(ﬂ) — / px(z)zdr =c (42)
9

for some non-positive constaat Taking derivatives of both sides
of (42) with respect t@ gives the differential equation

2 dPX(ﬂ)
X

+Ipx(9) =0. (43)

(43) is a simple first-order differential equation whose parametric [5]

solution is

2

9
px(9) = K exp (—203(

), K >0. (44)

Becausex (.) is a pdf, the value o mustbeK = 1/(v2nox),
meaning that = 0. This proves the uniqueness of the Gaussian
distribution as the pdf that minimizes the LHS of the stability con-
dition inequality. All other continuously valued and differentiable

distributions must therefore satisfy the inequality. By takihgs

the last (right-most) crossing point of the distribution under con-

sideration and the normal distribution, we have either (39), which

is already in contradiction to (40), or
Tox(@) < [ px(@)zds (45)

9
for some region around that particutar By integrating both sides
of Eq. (40) oveR}, we get

oo 2 0o oo
U_%(/ px(9)dy = ZX </ / px(z)zdzdd  (46)
0 2 0 J9

where the strict inequality results from the region where (45) is
valid. The right-hand side of (46) can be solved by exchanging the
integrals

// px(x)md:cdﬁ:/ / d¥ px (z) zdx
o Jo o Jo
[e5] 2

/ px (x) 2” dz = Ix,

0

= (47)

Eq. (47) is a contradiction to (46). This means that if there are
values ofi satisfying (45), due to (47) there must also be values
satisfying (39) and vice versa, which is in contradiction to (40).

4. CONCLUSIONS

The score function is a robust choice for model mismatch as long
as the kurtosis sign does not change. There are special distributions
(with positive kurtosis), which are not separable by the “standard”
hyperbolic tangent function. A remedy is at hand in the form of the
threshold nonlinearity, which, by suitable choice of the threshold
parameter, blindly separates any non-Gaussian distributed signals.
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