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ABSTRACT

The search for universally applicable nonlinearities in blind signal
separation has produced nonlinearities that are optimal for a given
distribution, as well as nonlinearities that are most robust against
model mismatch. This paper shows yet another justification for the
score function, which is in some sense a very robust nonlinearity. It
also shows that among the class of parameterizable nonlinearities,
the threshold nonlinearity with the threshold as a parameter is able
to separate any non-Gaussian distribution, a fact that is also proven
in this paper.

1. INTRODUCTION

Blind separation of instantaneously mixed signals using an adap-
tive algorithm with a nonlinearity implicitly producing higher-
order moments has been described by many researchers. Many
approaches have resulted in similar update equations for the sep-
aration matrix. In particular, the maximum likelihood (ML)
and the information maximization (InfoMax) criterion used in
a stochastic-gradient algorithm under the natural gradient both
yield [1]

Wt+1 =Wt + �
�
I� g(u)uT

�
Wt (1)

whereW is the separation matrix used to unwind the mixing pro-
cess given by the mixing matrixA, so that the recovered signals
are

u =Wx =WAs: (2)

In Eq. (2), s andx denote the source and mixed signal vectors,
respectively. For both the ML and InfoMax approaches, the non-
linearityg(u) is given by the score function

g(u) = �p0(u)

p(u)
: (3)

2. OPTIMAL NONLINEARITIES

2.1. Stability regions of some nonlinearities

Global stability is difficult to investigate due to a complicated cost
structure in the parameter manifold. Local stability analyses by
different authors [2], [3], [4] have resulted in the statement that for
local stability around an equilibrium point, the signal must satisfy
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	�E fg(U)Ug > 0: (4)

For monomial nonlinearities

g(u) = aup (5)

the stability condition (4) can be written in terms of the pdfp �U
of the corresponding normalized random variable�U , which is a
scaled version of the original random variableU . Thus, we have

U = �U �U: (6)

Using (5) and (6) in (4) results in
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which is written in terms of the nonlinearities as
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g( �U) �U

o
> 0: (8)

Eq. (8) basically means that the scaling of monomial nonlineari-
ties does not affect the stability region, which is entirely defined
by the exponent of the monomial and the normalized distribution.
Note that such a conclusion is not generally true for polynomials.
However, a similar simplification of the stability condition can be
carried out for thesign function. For continuous distributions we
know that the mode of a pdf is inversely proportional to its stan-
dard deviationpU(0) � 1=�U , so the stability condition can be
written as

E fg0(U)g�2U
E fg(U)Ug =

2�2UpU(0)

E fjU jg =
2p �U(0)

E
n
j �U j

o > 1: (9)

On the other hand, for general nonlinear functions, if we scale the
nonlinearity properly, such that

E
n
g( �U) �U

o
= 1 (10)

where �U is a normalized random variable with the distribution of
one particular source signalU but scaled to unit variance, then the
stability condition (4) simplifies to

E
n
g0( �U)

o
> 1: (11)

Note that Eq. (11) is conditioned on the scaling constraint (10).
However, it has to be pointed out that the scaling condition is not
a necessary condition for stability. It merely ensures unit-variance



output signals and simplifies the stability condition equation, albeit
not necessarily its satisfaction.

The stability condition (4) has been evaluated for frequently
applied nonlinearities and the resulting stability regions are given
in Table 1. For those nonlinear functions with two entries in the
stability-condition column, the first one is an unconditional stabil-
ity condition, whereas the second entry is conditioned on satisfy-
ing the scaling constraint. Also note thatU = �U �U and� �U = 1.

Nonlinearity Scaling condition Stability condition

au3 a = 1
�4+3

�4 < 0

a tanh(u) a = 1

Ef �U tanh( �U)g �2U
1�Eftanh2(U)g
EfU tanh(U)g

> 1
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Table 1. Stability regions of some nonlinearities.

2.2. The Form of the Nonlinearity

If the separation of signals of a certain class of distributions is
the goal, the literature suggests to apply nonlinearities of the form
g(u) = au3 for sub-Gaussian signals andg(u) = a tanh(bu)
for super-Gaussian signals, wherea is a scalar used to adjust the
output power. These nonlinearity choices can be refined according
to the stability conditions given earlier, as summarized in Table 1.

An intuitive explanation of the appropriate form of the non-
linearity can be given as follows. If the nonlinearity is prop-

erly scaled, i.e. E
n
g( �U) �U

o
= 1, the stability condition

E
n
g0( �U)

o
> 1 determines if the separating points of the non-

linearity are locally stable. To ensure stability we aim at making

E
n
g0( �U)

o
as large as possible. For peaky distributions (super-

Gaussian) where a large proportion of the pdf lies around zero, the
derivative ofg(:) should be large around this value, whereas with a
flatter distribution, the contrary is the case. This means that super-
Gaussian distributions need ’sigmoid’-looking nonlinearities for
their separation, which are concave functions for their arguments
greater than zero, while sub-Gaussian distributions need nonlin-
earities of the formg(u) = jujpu with p > 0, showing a convex
shape foru > 0.

Because sub- (super-) Gaussian signals have a negative (pos-
itive) kurtosis�4, these expressions are often used interchange-
ably, although the inverse direction of reasoning is not strictly ap-
plicable. Since the nonlinearities for super-Gaussian signals, e.g.
sign(:), a tanh(:), do not exhibit stability for the entire positive
kurtosis plane, distributions might be constructed, for which both
nonlinearitiesg(u) = au3 andg(u) = a tanh(bu) fail [5].

2.3. Optimization of the nonlinearity

The fact that the stability of blind separation algorithms depend
on a nonlinear moment being greater than one implies that robust-
ness of the algorithms can be obtained by making this nonlinear
moment as large as possible. We wish to maximize the left-hand

side of the stability condition for a scaled nonlinearity according
to Eq. (11). The scaling constraintZ 1

�1

g(u)p(u)udu = 1 (12)

alone is not sufficient. Any even part ofg(:) would show up nei-
ther in the constraint nor in the integral to maximize. But clearly,
due to symmetry we wish to restrictg(:) to odd functions. The
optimization problem can be formulated as follows:

maximize
Z 1

�1

g0(u)p(u) du (13)

subject to
Z 1

�1

g2(u)p(u) du = c (14)

wherec is a constant. Now an even part ofg(:) would increase
the constraint unnecessarily without contributing to the integral to
maximize. We are attempting to find the optimal nonlinearity by
calculus of variations. To this end we define

f = g0(u)p(u) + �(g2(u)p(u)) (15)

where� is a Lagrange multiplier. To find the optimalg(u), we
have to solve the Euler-Lagrange equation [6]
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where we abridgedp , p(u), p0 , p0(u) = @
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andg0 , g0(u) = @
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Using (17)–(20) in (16) results in

g =
1

2�

p0

p
: (21)

� can now be found by the constraint on the output power of the
nonlinearity. For that we would have to determine the constant
c. Alternately, we know that a further constraint is the one given
originally. Inserting the solution (21) into (12) gives usZ 1

�1

1

2�

p0(u)

p(u)
up(u) du =

1

2�
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up0(u) du = 1: (22)

Integrating by parts yields for the integral in (22)Z 1

�1

up0(u) du = p(u)u
���1
�1

�
Z 1

�1

p(u)du = �1: (23)

The desired solution is thus� = � 1
2
, leading to

g(u) = �p0(u)

p(u)
(24)

which is exactly the score function. This is a further justification
for the score function in addition to the ones already known, such
as ML and InfoMax.



3. STABILIZATION OF MIXED DISTRIBUTIONS

3.1. Difficult distributions

From Table 1 it becomes clear, that if a non-Gaussian distri-
bution exists that is neither separable byg(u) = u3 nor by
g(u) = a tanh(u), it has to show a positive kurtosis, since
g(u) = u3 covers all negative-kurtosis distributions, but the sta-
bility region of g(u) = a tanh(u) does not include all positive-
kurtosis distributions. One such peculiar distribution was given
by Douglas [5]. It is a symmetric, discrete, quaternary signaling
scheme with symbols2 [�A1;�A2], whereA2 = 3:8A1 and
Pr(x = A2) = 0:035. A1 is adjusted for unit variance resulting in
A1 = 0:718. The kurtosis of this distribution is�4 = 1:12. As can
be checked, this distribution does not satisfy the stability condition
for any of the two nonlinearities. More of those challenging dis-
tributions can be constructed using quaternary symmetric signals
and choosingA1, A2, p1 = Pr(x = A1), andp2 = Pr(x = A2)
subject to the following constraints:
C1) distributional sum

p1 + p2 =
1

2
(25)

C2) unit variance

p1A
2
1 + p2A

2
2 =

1

2
(26)

C3) unstable forg(u) = u3

p1A
4
1 + p2A

4
2 � 3

2
(27)

C4) unstable forg(u) = a tanh(u)

1 � 2p1 tanh
2(A1)� 2p2 tanh

2(A2)

> 2p1A1 tanh(A1) + 2p2A2 tanh(A2): (28)

From (25) and (26) we can expressp1 andA1 as a function ofp2
andA2

p1 =
1

2
� p2 (29)

A2
1 =

1� 2p2A
2
2

1� 2p2
(30)

with the additional constraints

p2 � 1

2
; A2 � 1: (31)

From (27) and (31) we get a lower and an upper bound forp2

p2 � 1

A4
2 � 4A2

2 + 3
(32)

p2 � 1

2A2
2

: (33)

Invoking (28) we get an additional inequality forp2 andA2

1 � (1� 2p2) tanh
2(
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1� 2p2A2
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)� 2p2 tanh

2(A2)

> (1� 2p2)
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2

1� 2p2
)

+ 2p2A2 tanh(A2): (34)
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Fig. 1. Possible region ofA2 andp2 for generating “challenging”
distributions.

The possible range ofA2 andp2 is depicted in Fig. 1. One
example of a “difficult” distribution can be extracted from Fig. 1
asA2 = 5, p2 = 0:005 and thereforep1 = 0:495 andA1 = 0:87.

3.2. The threshold nonlinearity

The threshold nonlinearity [7]

g(u) =

�
0; juj < #
a sign(u); juj � #

(35)

with # = A1 anda = 2 successfully separates the distribution
given above, which was verified both by inspection of the stabil-
ity condition as well as experimental simulation. Fig. 2 shows
the convergence performance of different nonlinearities for ten
sources with the “challenging” distribution; see [7] for a definition
of the fidelity criterion used. All but the threshold nonlinearity fail
to separate the signals. This leads to the question if the threshold
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Fig. 2. Convergence of different nonlinearities for a mixture of
signals exhibiting a “challenging” distribution.

nonlinearity is capable of separating any non-Gaussian distribu-
tion for an appropriate threshold parameter#. The answer is given
by the following lemma. In contrast to (35) we omit scaling and
obtain a more general case.



Lemma: The threshold nonlinearity given by

g(u) =

�
0; juj < #
sign(u); juj � #

(36)

satisfies the local stability condition

�2XpX(#)�
Z 1

#

pX(x)xdx > 0 (37)

for some appropriately chosen# � 0 and any continuous, differ-
entiable, non-Gaussian output distributionpX(:). In addition we
have that

�2NpN(#)�
Z 1

#

pN (x)xdx � 0; 8# 2 R+
0 (38)

if and only if pN(:) is Gaussian.
The proof is one of existence rather than of construction in that

it shows that there is a threshold parameter# for which the update
equation (1) is stable, but it does not necessarily give an explicit
solution for#.

Proof: We consider real, symmetric, continuous, differen-
tiable distributions. The result for other distributions can be ob-
tained by approximating discrete distributions by low-variance
Gaussian kernels. We have to show that to satisfy the stability
condition (4), the inequality

�2XpX(#) >

Z 1

#

pX(x)xdx (39)

has to be satisfied for at least one value of# 2 R
+
0 , given a

non-Gaussian distribution. We assume that no value of# can sat-
isfy (39), so

�2XpX(#) �
Z 1

#

pX(x)xdx; 8# 2 R+
0 (40)

and lead the proof by contradiction.
First we show that for a normal distributionpN(:) =

N (0; �2N ), we have

�2NpN(#) �
Z 1

#

pN(x)xdx; 8# 2 R+
0 : (41)

To this end we assume that

�2XpX(#)�
Z 1

#

pX(x)xdx = c (42)

for some non-positive constantc. Taking derivatives of both sides
of (42) with respect to# gives the differential equation

�2X
dpX(#)

d#
+ #pX(#) = 0: (43)

(43) is a simple first-order differential equation whose parametric
solution is

pX(#) = K exp

�
� #2

2�2X

�
; K � 0: (44)

BecausepX(:) is a pdf, the value ofK must beK = 1=(
p
2��X),

meaning thatc = 0. This proves the uniqueness of the Gaussian
distribution as the pdf that minimizes the LHS of the stability con-
dition inequality. All other continuously valued and differentiable

distributions must therefore satisfy the inequality. By taking# as
the last (right-most) crossing point of the distribution under con-
sideration and the normal distribution, we have either (39), which
is already in contradiction to (40), or

�2XpX(#) <

Z 1

#

pX(x)x dx (45)

for some region around that particular#. By integrating both sides
of Eq. (40) overR+

0 , we get

�2X

Z 1

0

pX(#)d# =
�2X
2

<

Z 1

0

Z 1

#

pX(x)xdxd# (46)

where the strict inequality results from the region where (45) is
valid. The right-hand side of (46) can be solved by exchanging the
integralsZ 1

0

Z 1

#

pX(x)xdxd# =

Z 1

0

Z x

0

d# pX(x)x dx

=

Z 1

0

pX(x)x2 dx =
�2X
2
: (47)

Eq. (47) is a contradiction to (46). This means that if there are
values of# satisfying (45), due to (47) there must also be values
satisfying (39) and vice versa, which is in contradiction to (40).�

4. CONCLUSIONS

The score function is a robust choice for model mismatch as long
as the kurtosis sign does not change. There are special distributions
(with positive kurtosis), which are not separable by the “standard”
hyperbolic tangent function. A remedy is at hand in the form of the
threshold nonlinearity, which, by suitable choice of the threshold
parameter, blindly separates any non-Gaussian distributed signals.
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