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ABSTRACT 2. MMIE OBJECTIVE FUNCTION
This paper investigates the use of discriminative training techniques o ) )
for large vocabulary speech recogntion with training datasets up toMMIE training was proposed in [1] as an alternative to MLE and
265 hours. Techniques for improving lattice-based Maximum Mu- mMaximises the mutual information between the training word se-
tual Information Estimation (MMIE) training are described and guences and the observation sequences. When the language model
compared to Frame Discrimination (FD). An objective function (LM) parameters are fixed during training, as they are in this paper
which is an interpolation of MMIE and standard Maximum Likeli- @nd in almost all MMIE work in the literature, the MMIE crite-
hood Estimation (MLE) is also discussed. Experimental results on ron increases the posteriori probability of the word sequence
both the Switchboard and North American Business News taskscorresponding to the training data.

show that MMIE training can yield significant performance im-  For R training observation sequencg®, ..., Oy, ... Or}
provements over standard MLE even for the most complex speechWith corresponding transcriptiodsu }, the MMIE objective func-
recognition problems with very large training sets. tion is given by

1. INTRODUCTION P (Or| My, ) P(w;)
The model parameters in HMM based speech recognition sys- L PA(Or[ M) P()
tems are normally estimated using Maximum Likelihood Estima- where M., is the composite model corresponding to the word se-
tion (MLE). If certain conditions hold, including model correct- quencew and P(w) is the probability of this sequence as deter-
ness, then MLE can be shown to be optimal. However, when esti- mined by the language model. The summation in the denominator
mating the parameters of HMM-based speech recognisers, the truef (1) is taken over all possible word sequendeallowed in the
data source is hot an HMM and therefore other training objective task and it can be replaced by
functions, in particular those that involve discriminative training,
are of interest. PA(Or|Maden) = ZZD\ (Or|My) P(w) 3
During MLE training, model parameters are adjusted to in- w
crease the likelihood of the word strings corresponding to the train- where M., encodes the full acoustic and language model used
ing utterances without taking account of the probability of other in recognition.
possible word strings. In contrast to MLE, discriminative train- It should be noted that optimisation of (1) requires the max-
ing schemes, such as Maximum Mutual Information Estimation imisation of the numerator terpy (O,-| M.,,.), which is identical
(MMIE) [1, 5, 9] which is the main focus of this paper, take ac- to the MLE objective function, while simultaneously minimising
count of possible competing word hypotheses and try and reducethe denominator term (O, | Maen ).
the probability of incorrect hypotheses.
Discriminative schemes have been widely used in small vo- 3. MMI OPTIMISATION
cabulary recognition tasks, where the relatively small number of

competing hypotheses makes training computationally tractable.The most effective method to optimise the MMIE objective func-
For large vocabulary tasks, especially on large datasets, there ar@on for large data and model sets is the Extended Baum-Welch
two main problems: generalisation to unseen data in order to in- (EBW) algorithm [2] as applied to Gaussian mixture HMMs [5].
crease test-set performance over MLE; and providing a viable com- The update equations for the mean of a particular dimension
putation framework to estimate confusable hypotheses and per-f the Gaussian for stag mixture componentn, f1im, and the

form parameter _estimation. ) ) corresponding variances;,,, (assuming diagonal covariance ma-
This paper is arranged as follows. First the details of the ices), are as follows:

MMIE objective function are introduced, followed by a descrip-

R
Fumie(A) = Z log 1)
r=1

tion of the training scheme used for optimisation and methods - Ao (0) = 05(0)} + Dpjm 3)
to enhance generalisation performance of MMIE trained systems. Hym = {7;.‘;;1“‘ - yjf,;‘} + D

MMIE systems are compared both to systems trained with the

frame discrimination (FD) technique [6] and to training using an {9‘?“‘“(02) _ edC‘l((’)z)} + D(02, + 12) X
interpolation of the MLE and MMIE criteria. The training schemes &?m e ni:f o 5 - Bim
are evaluated using both the Switchboard/ Call Home English (CHE) hjm = Tim }+D

corpus and North American Business News (NAB) data. “4)



In these equation®,; ., (O) andd; ., (O?) are weighted sums of  ferent sequences are added, such as in the forward-backward algo-
data and squared data respectively, for mixture compomeaot rithm or for the denominator of (1), the effects of LM and acoustic
statej, where the weighting is by posterior probability of Gaussian model scaling are very different. Acoustic model scaling tends to
occupation at each time. The summed Gaussian posterior probaincrease the confusable data set in training by broadening the pos-
bilities are~y;,,. The superscriptsum andden refer to the model terior distribution of state occupatiogj‘fnn that is used in the EBW
corresponding to the correct word sequence, and the recognitionupdate equations. This increase in confusable data also leads to
model for all word sequences, respectively. improved generalisation performance.

Itis important to have an appropriate value foin the update
equations, (3) and (4). If the value is too large, training is very slow
(but stable), but if it is too small the updates may not increase the

objective function at each iteration. A useful lower boundiors o ) ]
the value which ensures that all variances remain positive. Using e parameter re-estimation formulae presented in Section 3 re-

a single global value ab can lead to very slow convergence, and quire the generation of occup_ation and weighted data counts for
therefore in [9] a phone-specific value Bf was used. We have both the numerator terms whl_ch rely on using the correct Word_
found that the convergence speed can be further improvBdsf sequence, and for the denominator terms which use the recogni-
set on a per-Gaussian level, i.e. a Gaussian spebific used. tion model. The calculation of the denominator terms directly is
In this work, D;,,, was set at the maximum of i) twice the value Ccomputationally very expensive and so, in this work and as sug-
necessary to ensure positive variance updates for all dimensions of€sted in [9], word lattices are used to approximate the denomina-
the Gaussian; and ii) a further constant E times the denominatort®r model. _ _ _
occupancyy{<t for that Gaussian. For experiments reported here, ~ Thefirststep is to generate word-level lattices, normally using
E=2 was used. an MLE-trained HMM system and a bigram LM appropriate for
The mixture weight values were set using a novel approach the training set. This step is normally performed just once and
described in [7], and informal experiments have shown that nor- for the experiments in Section 9 the word lattices were generated
mally it results in a faster increase in the overall MMIE objective N about 5x Real-Time (RT) for the Switchboard experiments and
function than the use of the standard updating formula used in e.g.1-5XRT for the NAB experiments
[9]. However, the update rule for the mixture weights is less im- The second step is to genergieone-markedattices which
portant for the decision-tree tied-state mixture Gaussian HMMs abel each word lattice arc with a phone/model sequence and the

used in the experiments reported here, since the Gaussian meanéterbi segmentation points. These are are found from the word
and variances play a much larger role in discrimination. lattices and a particular HMM set, which may be different to the

one used to generate the original word-level lattices. In our imple-
mentation, these phone marked lattices also encode the LM proba-
4. IMPROVING MMIE GENERALISATION bilities used in MMIE training which again may be different to the
. . e . o LM used to generate the original word-level lattices. This stage
An important issue in dlscrlmlnatl\_/e training |s_the ability to gen- typically took about 2xRT to generate triphone-marked lattices for
eralise to unseen test data. While MMIE tralnlng often grgatly the Switchboard experiments and 0.5xRT for the NAB lattices, al-
reduces training set error from an MLE baseline, the reduction in , i the speed of this process could be considerably increased.
eror raie on an independent test set is normally much less, i.e., Given the phone-marked lattices for the numerator and de-
compared to MLE, the ge_ne_rallsatlon p_erformance IS poorer. FUr-; inator of each training audio segment, the lattice search used
thermore, as with all statistical modelling approaches, the more here performs a full forward-backward pass at the state-level con-
complex the model, the poorer the gener_alisation. Since fair_ly strained by the lattice start and end times for each phone. The
(Ii/lolTEpli?c(:aT\%ie(ljsiﬁ?éﬁl tntg?g]e?ot\?eczﬁgg v?/ﬁﬂ?;'}\?;:{%?;?&c& I\I,E\mh search was also optimised by combining redundantly repeated mod-
traini’ng We have conside?ed two methods of improving gener- els w_hlch occurin the phone-marke_d lattice with the same start and
: end times. Typically after compaction, the method requires about

alisation, both of which increase the amount of confusable data0 4xRT per iteration for the Switchboard experiments and 0.1xRT
processed _during training: weaker language models and acousticper iteration for the NAB experiments reported in Section 9.
model scaling.

In [8] it was shown that improved test-set performance could
be obtained using a unigram LM during MMIE training, even though 6. FRAME DISCRIMINATION
a bigram or trigram was used during recognition. The aim is to
provide more focus on the discrimination provided by the acoustic |n FD training [4, 6], the MMIE denominator is replaced by a sin-
model by loosening the language model constraints. In this way, gle state HMM which is the weighted sum of all states in the orig-
more confusable data is generated which improves generalisationinal HMM system. Optimisation of this function is performed in
A unigram LM for MMIE training is used in this paper. the same manner as for MMIE.

When combining the likelihoods from an HMM-based acous- The weights assigned to each state output distribution in the
tic model and the LM, it is usual to scale the LM log probability. system are derived from alignments of the training data generated
This is necessary because, primarily due to invalid modelling as- during Maximum Likelihood training. This very general denomi-
sumptions, the HMM underestimates the probability of acoustic nator model leads to good generalisation at the expense of poorer
vector sequences. An alternative to LM scaling is to multiply the training set performance. Furthermore, exact computation of the
acoustic model |Og likelihood values by the inverse of the LM scale denominator requires calculation of all the Gaussians in the sys-

factor (acoustic model scaling). While this produces the same tem for each frame, and for large HMM systems it is necessary to
effect as language model scaling when considering only a single
word sequence as for Viterbi decoding, when likelihoods from dif- 1Al run times are measured on an Intel Pentium 11l running at 550MHz.

5. LATTICE-BASED MMIE TRAINING




approximate the denominator using just the most likely Gaussians.8.2. Switchboard System
In [6] an efficient algorithm was developed for this purpose.

Acoustic model scaling can also be used with FD. For the re-
sults reported for Switchboard a scaling factor of 0.5 was used,
since without acoustic scaling FD training was found to offer no
reduction in word error rate (WER) over MLE. However for com-
parison with the results in [6], the FD results on the NAB corpus
use no acoustic scaling.

For the Switchboard experiments, we used two training sets com-
prising of a total of 265 hours of data taken from the Switchboard1
and Call Home English corpora. Further details of this training
corpus, denoted h5train00, are given in [10]. Most experiments
were performed with a 68 hour subset, denoted h5trainOOsub. The
data had cepstral mean and variance normalisation applied on a
conversation side basis, along with vocal tract length normalisa-
tion. The HMMs used had 6165 clustered speech states and 12
Gaussians per state for h5train0Osub training and 16 Gaussians per
state when using h5train00.

Two test sets were used for the experiments: eval97sub, a sub-
set of the 1997 Hub5 evaluation set, containing 10 conversation
sides of Switchboard2 (Swb2) data and 10 of CHE; and the 1998
Hub5 evaluation data set, eval98, containing 40 sides of SWB2
and 40 CHE sides (in total about 3 hours of data). Recognition
used a 27k word vocabulary with a language model formed by an
interpolation of Switchboard and Broadcast News LMs.

7. INTERPOLATED OBJECTIVE FUNCTIONS

The use of the MMIE objective function is rather prone to cause

over-training so that after a few iterations the error rate on inde-

pendent test data starts to increase. Therefore MMIE training is

normally stopped before over-training occurs. In contrast, MLE is

much less prone to over-training, and therefore objective functions

which are a combination of MMIE and MLE could be of interest.
The idea of forming an interpolated MMIE/MLE objective

function is related to the idea of the H-criterion in [3]. Given the

re-estimation equations (3) and (4), it is straightforward to imple- 9. EXPERIMENTAL RESULTS

ment an objective function which is an interpolation of the MMIE

and MLE criteria. The denominator part of the EBW equations 9.1. NAB results

simply needs to be scaled, since the numerator alone represents . . .

the required statistics for the MLE criterion. For instance, to im- 1aPle 1 gives recognition results for MMIE training for the NAB

plement an objective function which(s9 Faire +0.1FuLe, the corpus. The r_esults for HMM sets V\_/ith a number of mixture com-
denominator of the EBW equations is scaled by a factor of 0.9. ponents are included after 4 iterations of MMIE. The table also

contains the results using MLE and the FD results from [6].

8. EXPERIMENTAL SETUP #Mix csrnabldt hl csrnablethl
Comp | MLE FD MMIE | MLE FD MMIE

The following sections describe the experimental framework for 1 1364| 11.95| 11.36 | 15.64| 14.32| 13.16
both the Switchboard experiments and those on NAB data. In| 2 11.84| 10.58 | 10.12 | 13.19| 12.04| 1131
both cases the input data consists of PLP coefficients derived from| 4 10.67| 9.77 | 942 | 11.25] 10.84| 10.59
a mel-scale filter bank (MF-PLP), with 13 coefficients including 12 930 | 899 | 880 | 996 | 9.85 | 9.40
co and their first and second-order differentials. The HMMs used | 12.ns | 9.30 — 923 | 996 | — 9.61
were gender independent cross-word triphones built using decision-

tree state clustering. Conventional MLE was used to initialise the Table 1. % WER using MMIE and FD training for various NAB
HMMs prior to discriminative training. For both sets of experi- model sets. All tests use unigram LMs and acoustic likelihood
ments, word lattices for MMIE training were created using a bi- scaling apart from 12.ns which used language model scaling and a
gram language model, while unigram probabilities were actually bigram LM in MMIE training

applied to these lattices for MMIE training.

Recognition experiments used lattice rescoring of word lat- The relat_lve |mprovemer)t due tp MMIE, avgraged over both
test sets, varies from 16.3% in the single Gaussian system to 5.5%

tices derived using MLE HMMs. The pronunciation dictionaries i .
used in training and test were originally based on the 1993 LiMs| N the 12 mixture component system. However, importantly, there

WSJ lexicon, but have been considerably extended and modified. is still a worthwhile improvement over the best MLE system. Also,
unlike the case discussed in [6], the current implementation of

MMIE outperforms the results from FD in all cases. Hence the
8.1. NAB System generalisation performance of the system is much better than the
MMIE experiments in [9] which used a bigram language model,
The NAB experiments used HMMs trained on the SI-284 Wall no acoustic model scaling and different alignment and update pro-
Street Journal database (66 hours of data) and used per-utterancgedures. The effect of not using the acoustic model scaling with a
cepstral mean normalisation. The HMMs used in the NAB experi- bigram language model is given in the line marked 12.ns in Table 1
ments were the same as those used in [6] to test FD training. Thesavhere the performance is, on average, the same as FD.
HMMs have 6399 speech states and versions of these models with
1,2,4and 12 mixturg components per state were used. 9.2. Switchboard results
The NAB experiments used the 1994 DARPA Hub1l develop-
ment and evaluation test sets, denoted csrrditdnd csrnabkt The effect of applying MMIE training to Switchboard is given in
respectively, and used lattice rescoring of the same 65k word vo-Table 2 for several iterations of MMIE updating. Furthermore, pre-
cabulary trigram lattices previously used in [6] for strict compara- vious experiments in [10] showed that generalisation performance
bility with those results. is a greater issue with conversational telephone Switchboard data



than with the much cleaner read newspaper texts in the NAB cor- 10. CONCLUSIONS
pus: if acoustic scaling and a unigram language model aren’t used

on Switchboard then no performance improvements result from This paper has shown that significant improvements over standard

MMIE training of the most complex models.

Iteration h5train00sub h5train00

Number | eval97sub| eval98 | eval97sub| eval98
0 46.0 46.6 44.4 45.6
1 44.4 45.4 42.6 44.0
2 43.7 447 41.9 42.9
3 43.9 44.4 41.6 42.7
4 43.9 44.3 41.4 42.2

Table 2. % WER from several iterations of MMIE training on the
h5train00 and h5train00sub data sets.

On average, a 2.3% absolute reduction in WER is obtained

using the 68-hour training setup and 3.2% absolute using the 265-

hour setup. However if training is continued there is some evi-
dence of over-training. Therefore results are reported only up to

maximum likelihood training can be obtained using discriminative
training techniques for large vocabulary tasks with very large data
sets. For good performance, it is important to take steps to im-
prove MMIE generalisation using acoustic likelihood scaling and
weakened language models. While greater performance improve-
ments occur for simpler acoustic models, the techniques described
are able to provide reductions in word error rate over the best-
performing MLE models. MMIE training is shown to be more
effective than the use of frame discrimination. The use of an inter-
polated objective function may lead to small further improvements
over MMIE.
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the 4th training iteration. Note also that these results are some-

what better than those we previously obtained for the 265-hour
setup [10].

The use of an interpolated objective function was then inves-
tigated using the 68 hour h5train00sub setup with various propor-
tions of the MMIE objective function, and training was continued
until the eighth iteration. The recognition results from these mod-

els are given in Table 3, which gives error rates for several values[2]

of the proportion of the MMIE functiorx (i.e, xFvmie + (1 —
x)}"MLE).

x = fraction MMIE
1.0 | 09 | 08 | 0.7 | 05
eval97sub| 44.2 | 44.0 | 441 | 43.6 | 43.9
eval98 | 44.3| 440 | 44.0| 44.2 | 449

Table 3. % WER for an interpolated (MMIE and MLE) objective
function for different values of the MMIE interpolation weight.
The h5train00sub training set was used.

The WER results for a proportion of 0.7 MMIE and 0.3 MLE

are slightly better than the best results in Table 2 for the h5train005ullé]

setup. Unsurprisingly, the HMM model parameters for these inter-
polated models are closer to the original MLE models than using
pure MMIE. It was found that the average parameter difference
from the MLE model set varied roughly linearly with the propor-
tion of MMIE used in the overall objective function. As well as
giving similar performance to MMIE, a model set that is closer to

the MLE set may have advantages, for instance, with procedures
that assume maximum likelihood parameter training such as some[8]

adaptation and confidence estimation techniques.

Finally the effect of FD using the h5trainOOsub database was
investigated. On eval97sub, after 4 iterations, an error rate of
44.8% was obtained, compared to 43.9% for MMIE and 46.0%
from MLE. The computational cost per iteration of FD was roughly

1.5xRT for this data and therefore is about 3 times as expensive as

the iterations of MMIE. However MMIE first requires lattice cre-
ation but this can be done once for several MMIE experiments and
training iterations. For comparison, MLE training runs in about
0.07xRT per iteration.
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