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ABSTRACT
This paper investigates the use of discriminative training techniques
for large vocabulary speech recogntion with training datasets up to
265 hours. Techniques for improving lattice-based Maximum Mu-
tual Information Estimation (MMIE) training are described and
compared to Frame Discrimination (FD). An objective function
which is an interpolation of MMIE and standard Maximum Likeli-
hood Estimation (MLE) is also discussed. Experimental results on
both the Switchboard and North American Business News tasks
show that MMIE training can yield significant performance im-
provements over standard MLE even for the most complex speech
recognition problems with very large training sets.

1. INTRODUCTION

The model parameters in HMM based speech recognition sys-
tems are normally estimated using Maximum Likelihood Estima-
tion (MLE). If certain conditions hold, including model correct-
ness, then MLE can be shown to be optimal. However, when esti-
mating the parameters of HMM-based speech recognisers, the true
data source is not an HMM and therefore other training objective
functions, in particular those that involve discriminative training,
are of interest.

During MLE training, model parameters are adjusted to in-
crease the likelihood of the word strings corresponding to the train-
ing utterances without taking account of the probability of other
possible word strings. In contrast to MLE, discriminative train-
ing schemes, such as Maximum Mutual Information Estimation
(MMIE) [1, 5, 9] which is the main focus of this paper, take ac-
count of possible competing word hypotheses and try and reduce
the probability of incorrect hypotheses.

Discriminative schemes have been widely used in small vo-
cabulary recognition tasks, where the relatively small number of
competing hypotheses makes training computationally tractable.
For large vocabulary tasks, especially on large datasets, there are
two main problems: generalisation to unseen data in order to in-
crease test-set performance over MLE; and providing a viable com-
putation framework to estimate confusable hypotheses and per-
form parameter estimation.

This paper is arranged as follows. First the details of the
MMIE objective function are introduced, followed by a descrip-
tion of the training scheme used for optimisation and methods
to enhance generalisation performance of MMIE trained systems.
MMIE systems are compared both to systems trained with the
frame discrimination (FD) technique [6] and to training using an
interpolation of the MLE and MMIE criteria. The training schemes
are evaluated using both the Switchboard/ Call Home English (CHE)
corpus and North American Business News (NAB) data.

2. MMIE OBJECTIVE FUNCTION

MMIE training was proposed in [1] as an alternative to MLE and
maximises the mutual information between the training word se-
quences and the observation sequences. When the language model
(LM) parameters are fixed during training, as they are in this paper
and in almost all MMIE work in the literature, the MMIE crite-
rion increases thea posteriori probability of the word sequence
corresponding to the training data.

For R training observation sequences{O1, . . . ,Or, . . .OR}
with corresponding transcriptions{wr}, the MMIE objective func-
tion is given by

FMMIE(λ) =
RX

r=1

log
pλ(Or|Mwr )P (wr)P

ŵ pλ(Or|Mŵ)P (ŵ)
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whereMw is the composite model corresponding to the word se-
quencew andP (w) is the probability of this sequence as deter-
mined by the language model. The summation in the denominator
of (1) is taken over all possible word sequencesŵ allowed in the
task and it can be replaced by

pλ(Or|Mden) =
X̂
w

pλ(Or|Mŵ)P (ŵ) (2)

whereMden encodes the full acoustic and language model used
in recognition.

It should be noted that optimisation of (1) requires the max-
imisation of the numerator termpλ(Or|Mwr ), which is identical
to the MLE objective function, while simultaneously minimising
the denominator termpλ(Or|Mden).

3. MMI OPTIMISATION

The most effective method to optimise the MMIE objective func-
tion for large data and model sets is the Extended Baum-Welch
(EBW) algorithm [2] as applied to Gaussian mixture HMMs [5].

The update equations for the mean of a particular dimension
of the Gaussian for statej, mixture componentm, µjm, and the
corresponding variance,σ2

jm (assuming diagonal covariance ma-
trices), are as follows:
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In these equations,θj,m(O) andθj,m(O2) are weighted sums of
data and squared data respectively, for mixture componentm of
statej, where the weighting is by posterior probability of Gaussian
occupation at each time. The summed Gaussian posterior proba-
bilities areγjm. The superscriptsnum andden refer to the model
corresponding to the correct word sequence, and the recognition
model for all word sequences, respectively.

It is important to have an appropriate value forD in the update
equations, (3) and (4). If the value is too large, training is very slow
(but stable), but if it is too small the updates may not increase the
objective function at each iteration. A useful lower bound onD is
the value which ensures that all variances remain positive. Using
a single global value ofD can lead to very slow convergence, and
therefore in [9] a phone-specific value ofD was used. We have
found that the convergence speed can be further improved ifD is
set on a per-Gaussian level, i.e. a Gaussian specificDjm used.
In this work,Djm was set at the maximum of i) twice the value
necessary to ensure positive variance updates for all dimensions of
the Gaussian; and ii) a further constant E times the denominator
occupancyγden

j,m for that Gaussian. For experiments reported here,
E=2 was used.

The mixture weight values were set using a novel approach
described in [7], and informal experiments have shown that nor-
mally it results in a faster increase in the overall MMIE objective
function than the use of the standard updating formula used in e.g.
[9]. However, the update rule for the mixture weights is less im-
portant for the decision-tree tied-state mixture Gaussian HMMs
used in the experiments reported here, since the Gaussian means
and variances play a much larger role in discrimination.

4. IMPROVING MMIE GENERALISATION

An important issue in discriminative training is the ability to gen-
eralise to unseen test data. While MMIE training often greatly
reduces training set error from an MLE baseline, the reduction in
error rate on an independent test set is normally much less, i.e.,
compared to MLE, the generalisation performance is poorer. Fur-
thermore, as with all statistical modelling approaches, the more
complex the model, the poorer the generalisation. Since fairly
complex models are needed to obtain optimal performance with
MLE, it can be difficult to improve these with conventional MMIE
training. We have considered two methods of improving gener-
alisation, both of which increase the amount of confusable data
processed during training: weaker language models and acoustic
model scaling.

In [8] it was shown that improved test-set performance could
be obtained using a unigram LM during MMIE training, even though
a bigram or trigram was used during recognition. The aim is to
provide more focus on the discrimination provided by the acoustic
model by loosening the language model constraints. In this way,
more confusable data is generated which improves generalisation.
A unigram LM for MMIE training is used in this paper.

When combining the likelihoods from an HMM-based acous-
tic model and the LM, it is usual to scale the LM log probability.
This is necessary because, primarily due to invalid modelling as-
sumptions, the HMM underestimates the probability of acoustic
vector sequences. An alternative to LM scaling is to multiply the
acoustic model log likelihood values by the inverse of the LM scale
factor (acoustic model scaling). While this produces the same
effect as language model scaling when considering only a single
word sequence as for Viterbi decoding, when likelihoods from dif-

ferent sequences are added, such as in the forward-backward algo-
rithm or for the denominator of (1), the effects of LM and acoustic
model scaling are very different. Acoustic model scaling tends to
increase the confusable data set in training by broadening the pos-
terior distribution of state occupationγden

jm that is used in the EBW
update equations. This increase in confusable data also leads to
improved generalisation performance.

5. LATTICE-BASED MMIE TRAINING

The parameter re-estimation formulae presented in Section 3 re-
quire the generation of occupation and weighted data counts for
both the numerator terms which rely on using the correct word
sequence, and for the denominator terms which use the recogni-
tion model. The calculation of the denominator terms directly is
computationally very expensive and so, in this work and as sug-
gested in [9], word lattices are used to approximate the denomina-
tor model.

The first step is to generate word-level lattices, normally using
an MLE-trained HMM system and a bigram LM appropriate for
the training set. This step is normally performed just once and
for the experiments in Section 9 the word lattices were generated
in about 5x Real-Time (RT) for the Switchboard experiments and
1.5xRT for the NAB experiments1.

The second step is to generatephone-markedlattices which
label each word lattice arc with a phone/model sequence and the
Viterbi segmentation points. These are are found from the word
lattices and a particular HMM set, which may be different to the
one used to generate the original word-level lattices. In our imple-
mentation, these phone marked lattices also encode the LM proba-
bilities used in MMIE training which again may be different to the
LM used to generate the original word-level lattices. This stage
typically took about 2xRT to generate triphone-marked lattices for
the Switchboard experiments and 0.5xRT for the NAB lattices, al-
though the speed of this process could be considerably increased.

Given the phone-marked lattices for the numerator and de-
nominator of each training audio segment, the lattice search used
here performs a full forward-backward pass at the state-level con-
strained by the lattice start and end times for each phone. The
search was also optimised by combining redundantly repeated mod-
els which occur in the phone-marked lattice with the same start and
end times. Typically after compaction, the method requires about
0.4xRT per iteration for the Switchboard experiments and 0.1xRT
per iteration for the NAB experiments reported in Section 9.

6. FRAME DISCRIMINATION

In FD training [4, 6], the MMIE denominator is replaced by a sin-
gle state HMM which is the weighted sum of all states in the orig-
inal HMM system. Optimisation of this function is performed in
the same manner as for MMIE.

The weights assigned to each state output distribution in the
system are derived from alignments of the training data generated
during Maximum Likelihood training. This very general denomi-
nator model leads to good generalisation at the expense of poorer
training set performance. Furthermore, exact computation of the
denominator requires calculation of all the Gaussians in the sys-
tem for each frame, and for large HMM systems it is necessary to

1All run times are measured on an Intel Pentium III running at 550MHz.



approximate the denominator using just the most likely Gaussians.
In [6] an efficient algorithm was developed for this purpose.

Acoustic model scaling can also be used with FD. For the re-
sults reported for Switchboard a scaling factor of 0.5 was used,
since without acoustic scaling FD training was found to offer no
reduction in word error rate (WER) over MLE. However for com-
parison with the results in [6], the FD results on the NAB corpus
use no acoustic scaling.

7. INTERPOLATED OBJECTIVE FUNCTIONS

The use of the MMIE objective function is rather prone to cause
over-training, so that after a few iterations the error rate on inde-
pendent test data starts to increase. Therefore MMIE training is
normally stopped before over-training occurs. In contrast, MLE is
much less prone to over-training, and therefore objective functions
which are a combination of MMIE and MLE could be of interest.

The idea of forming an interpolated MMIE/MLE objective
function is related to the idea of the H-criterion in [3]. Given the
re-estimation equations (3) and (4), it is straightforward to imple-
ment an objective function which is an interpolation of the MMIE
and MLE criteria. The denominator part of the EBW equations
simply needs to be scaled, since the numerator alone represents
the required statistics for the MLE criterion. For instance, to im-
plement an objective function which is0.9FMMIE+0.1FMLE, the
denominator of the EBW equations is scaled by a factor of 0.9.

8. EXPERIMENTAL SETUP

The following sections describe the experimental framework for
both the Switchboard experiments and those on NAB data. In
both cases the input data consists of PLP coefficients derived from
a mel-scale filter bank (MF-PLP), with 13 coefficients including
c0 and their first and second-order differentials. The HMMs used
were gender independent cross-word triphones built using decision-
tree state clustering. Conventional MLE was used to initialise the
HMMs prior to discriminative training. For both sets of experi-
ments, word lattices for MMIE training were created using a bi-
gram language model, while unigram probabilities were actually
applied to these lattices for MMIE training.

Recognition experiments used lattice rescoring of word lat-
tices derived using MLE HMMs. The pronunciation dictionaries
used in training and test were originally based on the 1993 LIMSI
WSJ lexicon, but have been considerably extended and modified.

8.1. NAB System

The NAB experiments used HMMs trained on the SI-284 Wall
Street Journal database (66 hours of data) and used per-utterance
cepstral mean normalisation. The HMMs used in the NAB experi-
ments were the same as those used in [6] to test FD training. These
HMMs have 6399 speech states and versions of these models with
1,2,4 and 12 mixture components per state were used.

The NAB experiments used the 1994 DARPA Hub1 develop-
ment and evaluation test sets, denoted csrnab1dt and csrnab1et
respectively, and used lattice rescoring of the same 65k word vo-
cabulary trigram lattices previously used in [6] for strict compara-
bility with those results.

8.2. Switchboard System

For the Switchboard experiments, we used two training sets com-
prising of a total of 265 hours of data taken from the Switchboard1
and Call Home English corpora. Further details of this training
corpus, denoted h5train00, are given in [10]. Most experiments
were performed with a 68 hour subset, denoted h5train00sub. The
data had cepstral mean and variance normalisation applied on a
conversation side basis, along with vocal tract length normalisa-
tion. The HMMs used had 6165 clustered speech states and 12
Gaussians per state for h5train00sub training and 16 Gaussians per
state when using h5train00.

Two test sets were used for the experiments: eval97sub, a sub-
set of the 1997 Hub5 evaluation set, containing 10 conversation
sides of Switchboard2 (Swb2) data and 10 of CHE; and the 1998
Hub5 evaluation data set, eval98, containing 40 sides of SWB2
and 40 CHE sides (in total about 3 hours of data). Recognition
used a 27k word vocabulary with a language model formed by an
interpolation of Switchboard and Broadcast News LMs.

9. EXPERIMENTAL RESULTS

9.1. NAB results

Table 1 gives recognition results for MMIE training for the NAB
corpus. The results for HMM sets with a number of mixture com-
ponents are included after 4 iterations of MMIE. The table also
contains the results using MLE and the FD results from [6].

#Mix csrnab1dt h1 csrnab1et h1
Comp MLE FD MMIE MLE FD MMIE

1 13.64 11.95 11.36 15.64 14.32 13.16
2 11.84 10.58 10.12 13.19 12.04 11.31
4 10.67 9.77 9.42 11.25 10.84 10.59
12 9.30 8.99 8.80 9.96 9.85 9.40

12.ns 9.30 — 9.23 9.96 — 9.61

Table 1. % WER using MMIE and FD training for various NAB
model sets. All tests use unigram LMs and acoustic likelihood
scaling apart from 12.ns which used language model scaling and a
bigram LM in MMIE training

The relative improvement due to MMIE, averaged over both
test sets, varies from 16.3% in the single Gaussian system to 5.5%
in the 12 mixture component system. However, importantly, there
is still a worthwhile improvement over the best MLE system. Also,
unlike the case discussed in [6], the current implementation of
MMIE outperforms the results from FD in all cases. Hence the
generalisation performance of the system is much better than the
MMIE experiments in [9] which used a bigram language model,
no acoustic model scaling and different alignment and update pro-
cedures. The effect of not using the acoustic model scaling with a
bigram language model is given in the line marked 12.ns in Table 1
where the performance is, on average, the same as FD.

9.2. Switchboard results

The effect of applying MMIE training to Switchboard is given in
Table 2 for several iterations of MMIE updating. Furthermore, pre-
vious experiments in [10] showed that generalisation performance
is a greater issue with conversational telephone Switchboard data



than with the much cleaner read newspaper texts in the NAB cor-
pus: if acoustic scaling and a unigram language model aren’t used
on Switchboard then no performance improvements result from
MMIE training of the most complex models.

Iteration h5train00sub h5train00
Number eval97sub eval98 eval97sub eval98

0 46.0 46.6 44.4 45.6
1 44.4 45.4 42.6 44.0
2 43.7 44.7 41.9 42.9
3 43.9 44.4 41.6 42.7
4 43.9 44.3 41.4 42.2

Table 2. % WER from several iterations of MMIE training on the
h5train00 and h5train00sub data sets.

On average, a 2.3% absolute reduction in WER is obtained
using the 68-hour training setup and 3.2% absolute using the 265-
hour setup. However if training is continued there is some evi-
dence of over-training. Therefore results are reported only up to
the 4th training iteration. Note also that these results are some-
what better than those we previously obtained for the 265-hour
setup [10].

The use of an interpolated objective function was then inves-
tigated using the 68 hour h5train00sub setup with various propor-
tions of the MMIE objective function, and training was continued
until the eighth iteration. The recognition results from these mod-
els are given in Table 3, which gives error rates for several values
of the proportion of the MMIE functionx (i.e, xFMMIE + (1 −
x)FMLE).

x = fraction MMIE
1.0 0.9 0.8 0.7 0.5

eval97sub 44.2 44.0 44.1 43.6 43.9
eval98 44.3 44.0 44.0 44.2 44.9

Table 3. % WER for an interpolated (MMIE and MLE) objective
function for different values of the MMIE interpolation weight.
The h5train00sub training set was used.

The WER results for a proportion of 0.7 MMIE and 0.3 MLE
are slightly better than the best results in Table 2 for the h5train00sub
setup. Unsurprisingly, the HMM model parameters for these inter-
polated models are closer to the original MLE models than using
pure MMIE. It was found that the average parameter difference
from the MLE model set varied roughly linearly with the propor-
tion of MMIE used in the overall objective function. As well as
giving similar performance to MMIE, a model set that is closer to
the MLE set may have advantages, for instance, with procedures
that assume maximum likelihood parameter training such as some
adaptation and confidence estimation techniques.

Finally the effect of FD using the h5train00sub database was
investigated. On eval97sub, after 4 iterations, an error rate of
44.8% was obtained, compared to 43.9% for MMIE and 46.0%
from MLE. The computational cost per iteration of FD was roughly
1.5xRT for this data and therefore is about 3 times as expensive as
the iterations of MMIE. However MMIE first requires lattice cre-
ation but this can be done once for several MMIE experiments and
training iterations. For comparison, MLE training runs in about
0.07xRT per iteration.

10. CONCLUSIONS

This paper has shown that significant improvements over standard
maximum likelihood training can be obtained using discriminative
training techniques for large vocabulary tasks with very large data
sets. For good performance, it is important to take steps to im-
prove MMIE generalisation using acoustic likelihood scaling and
weakened language models. While greater performance improve-
ments occur for simpler acoustic models, the techniques described
are able to provide reductions in word error rate over the best-
performing MLE models. MMIE training is shown to be more
effective than the use of frame discrimination. The use of an inter-
polated objective function may lead to small further improvements
over MMIE.
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