
ABSTRACT
In this paper the tracking performance of a transmit antenna

weight adaptation algorithm applied in a fading channel is
considered. The system uses a stochastic gradient algorithm
incorporating gradient sign feedback from a receiving unit to
adjust the transmit weights. The feedback is simply a bit
indicating which of two normalized perturbed transmission
weights delivers greater power to the receiver. A reasonable
performance measure is defined and an analytic estimate of the
performance in an AR1 vector fading channel is derived and
compared to simulations.

1. INTRODUCTION

It is generally accepted that the downlink of next generation
cellular systems will require greater capacity than the uplink.
This is largely due to the asymmetry of data traffic patterns. For
example, a mobile data terminal may download large web sites
while uploading only control information such as IP addresses.
The use of transmit adaptive antenna arrays at the base station is
a promising area for downlink capacity improvement. This
paper describes a gradient algorithm utilizing mobile to base
feedback in order to achieve some of those possible gains.

In many systems Frequency Division Duplexing (FDD) is
used, so that the downlink and uplink channels in a multipath
environment are not generally the same. This restricts how the
uplink channel measured by the base station can be applied on
the downlink. In general, transmit antenna algorithms in this
environment can be classified as (a) space time codes, (b) blind
adaptive algorithms, or (c) algorithms incorporating feedback.
Space time codes achieve diversity gain by applying codes
across the multiple antennas [1][3][8], and for one receive
antenna provide transmit diversity without coding gain. The
gains by these codes diminish as the fading channels
experienced by the Tx antennas become correlated with each
other, giving no gain for fully correlated fades. These
algorithms perform coherent combining in the receiver, and do
not achieve the gains that can arise from the array gain of
adaptively weighted transmission, where the coherent
combining takes place over the air. Blind algorithms utilize the
measured uplink channel to infer characteristics of the downlink
channel, which are then used to adapt transmit antenna weights.
This may require accurate antenna calibration, as for example in
estimating the angle of arrival and angular dispersion of the
received signal to generate transmit weights [9], or it may
assume that the long term characteristics of the uplink and
downlink channels are strongly correlated [7]. However, if the
antennas experience independent fading then blind techniques
will not work, as without correlation between antennas no
correlation from uplink to downlink channel can be extracted.

In order to benefit from both fading diversity and beam
steering, an algorithm incorporating detailed downlink channel
information must be used, which in FDD systems requires
mobile to base feedback. This has led to several proposals for

feedback [4][5][6]. In this paper, the system proposed in [2] is
considered. The usable power delivered to the mobile is
considered to be an inverse cost, to be maximized, and the
system proposed uses weight vector perturbations to extract a
coarse estimate of the gradient of this inverse cost, which is
then used to adjust the transmit antenna weights. The algorithm
properties and convergence in static conditions were considered
in [2]. This paper will provide an analytic performance measure
for a fading channel, allowing for optimization of the adaptation
rate.

2. PRELIMINARIES

2.1. System Model

The system is considered to use Nyquist pulse shaping so that
a discrete time representation of the waveforms is adequate. The
multipath environment is taken to introduce Rayleigh fading
with only one resolvable path, which reduces the gain matrix to
a rank one case. The signal received by the mobile is given by
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where s(n) is the modulation sequence, n(n) is the received
noise and interference, P(T) is the transmit power, w is the N×1
transmit weight vector for N antennas and c is the channel
response vector. n is the modulation rate sample index.

With one delay path the mobile’s gain matrix is of rank one.
HccR ≡ (2)

The total usable signal power at the receiver is given by
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The fading channel is defined as a first order autoregressive
(AR1) complex gaussian process with a zero mean complex
gaussian stimulus x with a time index i, slower than n.
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The channel is taken to be uncorrelated across the antennas.
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2.2. Inverse Cost Function and Eigenanalysis

The algorithm is shown in [2] to be a stochastic gradient
algorithm operating on the inverse cost function
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It is convenient to consider the eigenmodes of the system.
Since the gain matrix (2) is rank one, the weight vector can be
decomposed into two constituent eigenvectors of R if properly
selected. The first eigenvector is the normalized channel vector,
projecting the weight vector into the range of c.  Since all other
eigenvalues are zero the eigenvectors are arbitrary and we select
the normalized projection of w into the nullspace of c as the
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second eigenvector, to provide a two mode representation of w.
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Then the weight vector is portrayed in terms of these two
eigenvectors as
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It will be convenient to define the vector v comprised of the
squared magnitudes of u. I.e., v0 is the “energy” of w in the
channel subspace, which is receivable by the mobile, and v1 is
the error “energy” of w in the channel nullspace, which cannot
be received by the mobile.
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3. ADAPTATION BY GRADIENT SIGN FEEDBACK

3.1. Algorithm Description

The system has been described in more detail in [2]. The
nomenclature will reflect pilot assisted coherent CDMA. The
transmitter transmits the data with a weight vector w, while the
weight vector applied to the pilot alternates between odd and
even perturbed values as shown in Figure 1.
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A measurement and feedback interval can be comprised of

several even/odd time slots. The weights are generated from a
tracked “base” weight vector wbase algorithm as follows.
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p is a zero mean complex gaussian perturbation vector and

( ) Ipp 2=HE (16)

The receiver provides a feedback bit selecting which time
slot, even or odd, provided a larger delivered power and the
transmitter adjusts the weights by updating wbase to the value of
the associated perturbed vector. The perturbation vector and
transmission weight vectors are regenerated and the process
continues. As shown in [2], this is a stochastic gradient
adaptation algorithm operating on the inverse cost J (eq. (6)),
and the algorithm parameter β is the adaptation rate. Setting the
data channel weight vector to the sum of the even and odd pilot
vectors allows for simple coherent reception, as an efficient
receiver can use the mean of the even and odd time slot channel
estimates as the channel estimate for demodulation of the data.
3.2. Dynamic Performance

The performance of the algorithm will be considered by
deriving expressions for a transition matrix applied to the
eigenmodal energy vector v of the weight vector w. This
transition matrix incorporates the effect of both the algorithm
update and the channel change for one time step. Each step is
shown to be a linear transformation of the vector v using the
following approximations: (1) independence of the channel
vector norm from update to update, (2) second order Taylor
approximation of the fading channel update on the weight
response in the range of c, i.e. v0. The first assumption will
more closely apply for large numbers of antennas, as the
channel norm approaches a constant. The second is found to be
reasonable because the expectation of odd order terms are zero,
and the 4th order term will be small.

The step update from the algorithm feedback decision was
derived in [2]. Translating that result into a simplified notation
for this rank one situation (only 1 resolvable path) with
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the algorithm update is given by
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where the vector v contains the magnitude squared of the
projection of the weight vector into the range of c and into the
null space of c, and γ is the ratio of the magnitudes of the
elements of u. v~  is an intermediate value, before the effect of
the change of the fading channel is considered. For the
transition of v due to the time varying channel, a 2nd order
Taylor approximation of the incremental step due to the new
stimulus x is applied, given by the gradient vector and Hessian
matrix of v0 with respect to c. The effect of the channel change
is approximately (time indices for w, x, c are omitted as they
become irrelevant using the approximations)
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Figure 1: Example of two antenna transmitter
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Taking the expectation of (20) with respect to both x and c
(using assumption 1) gives, with the ones vector 1
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Equation (22) will be used as an approximation to the update
in the desired eigenspace. Given this update in v0, the update in
v1 is known, as the weight norm is not changed by a change in
the channel. Applying the conservation of the weight vector
norm gives the channel update transition.
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Note that the update of (23) is intuitively satisfying. For small
σx the update represents a transfer of an equal fraction of modal
power from each of the N eigenmodes to all N eigenmodes. The
N-1 weighting arises from the representation of all N-1
nullspace eigenmodes in the single term v1. Clearly the
approximation of (22) can only be valid if the resultant values
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Figure 2: Mean correlation v0, N=2, simulated and from (26), (27)
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Figure 3: Bit error rates for N=2, a=[0.968, 0.9968]
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Figure 4: Simulated BER for N=2, β=0.1778, a=[0.968,0.9968],
compared to optimal weights, STC, vector quantization
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Figure 5: Mean correlation v0, N=4, simulated and from (26), (27)
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Figure 6: Bit error rates for N=4, a=[0.968, 0.9968]
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Figure 7: Simulated BER for N=4, β=0.1 and a=[0.968,0.9968],
compared to optimal weights, STC, vector quantization



of v0 remain positive, so we find that the AR1 rate of change
must  be slow enough to satisfy
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The step update for both the algorithm and channel change is
then approximated as
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The transition matrix G(i) incorporates first the algorithm
update based on the measured channel at time i and then the
channel update to time i+1. It can be shown that with iterative
application of G(i) as in (25), γ converges to a steady state value

(26)
This gives the steady state solution for the “expected”

normalized correlation value v0 by using
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3.3. Discussion and numerical results

Equation (26) provides a mechanism for evaluating the
effectiveness of an adaptation rate β for a fading rate of the
AR1 process. It is of interest to note that with β=0
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This is a confirmation of the common sense solution in this
case, where 1/N of the weight vector energy lies within span of
the channel vector and the remainder is in its nullspace.

To confirm the applicability of this analysis simulations were
performed for N=2 and N=4 antennas with fading uncorrelated
across the antennas as per equation (5), over a variety of values
of the AR1 parameter a and the adaptation rate β. In addition,
bit error rates were simulated in order to compare the BER
performance with the performance of the vector “cross
correlation” v0. The simulations implemented the receiver’s
decision and the feedback channel with no errors.

The simulation results are compared to the analysis in Figure
2 and Figure 5 for 2 and 4 antennas respectively. Both figures
show that the simulated vector correlation has a very good
match with the analysis for all fading rates except a=0.9, for
which we note that the AR process is approaching the limit of
(24). Comparing these figures to Figure 3 and Figure 6 we see
that the analysis provides a good prediction of the best value of
β for minimizing bit error rates.

Bit error rates from the simulation of the gradient sign
feedback (GSF) are shown for two of the fading rates in Figure
4 and Figure 7. For comparison, these figures also include the
analytic performance of diversity space time codes (STC) for a
single Rx antenna (with no coding gain, as in [1] for two Tx
antennas) and simulated performance of vector quantization
code book selection feedback, wherein the receiver provides
feedback selecting which of several weight vectors is best [5].
For two antennas, VQ1BF is one bit feedback selecting which
antenna should transmit (2nd order selection diversity), VQ2BF
is two bit feedback selecting a phase rotation of <0, π/2, π,
3π/2> for the second weight. For 4 antennas, VQ2BF is two bit

feedback selecting which of the 4 antennas should transmit (4th

order selection diversity) and VQ3BF is 3 bit feedback selecting
a phase rotation of <0, π> for weights w1, w2, w3. For two or
three bit feedback, the feedback decision interval is lengthened
so that the feedback data rate is unchanged.

BERs are plotted versus Tx Eb/N0 normalized to the Rx Eb/N0

for 1 Tx antenna, so that the 3.01dB and 6.02dB array gain from
2 antenna or 4 antenna systems can be seen. For slow fading the
algorithm performs close to the theoretic limit and outperforms
the vector quantization feedback approaches. For faster fading,
the gradient approach gives similar performance to vector
quantization, but both feedback approaches are outperformed by

diversity space time coding,
which does not require the
transmitter to adapt to the
time varying channel.

4. CONCLUSION

An analysis of the tracking performance of the gradient sign
feedback implementation of transmit antenna array weight
adaptation has been presented. The performance is considered
for the case of a first order autoregressive Rayleigh fading
process. The analysis is verified through simulation. For slow
fading channels the algorithm is found to give a better BER than
diversity space time coding and vector quantization feedback.
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