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ABSTRACT

We considessignalestimatiorfor functionalMRI studieson
multiple subjects.Therearetwo majorissuesalignmentor
registrationof imagesacrosssubjectsandusingthe multi-

subjectinformationto capturecovarianceinformation: we
discussonly the latter Capturingthis covarianceinforma-
tion properly canleadto greatimprovementsin statistical
efficiency beyond what simple averagingcanoffer aswell

ascompactescriptionof groupfeatures.

1. INTRODUCTION

Thelastfew yearshave seera steadydevelopmenbf meth-
odsfor spatio-temporadystemdentificationassociatedith
functionalmagneticresonancémaging(fmri) experiments.
Earlierwork of [5], [16] involvedlinearestimation[8] dis-
cussed principal componentsapproachunrelatedo what
we do in this paperbelow), while [10] introducedthe use
of wavelets.More recently[7],[12],[14], [6],[13] have used
more complex impulseresponsanodelsaswell as spatial
regularisation. Model comparisorhasbeenmostrecently
adressedh [15],[13].

While theseearlierdevelopmentsave beenfocusedon
analysisof datafrom individual subjects,the majority of
neuroimagingexperimentsare aimed at uncovering brain
mechanismshatarecommonto groupsof subjectsaswell
as comparingthe brain function betweengroupsof sub-
jects. Thereare two main issuesin the analysisof these
multi-subjector longitudinaldata. The first issueinvolves
the alignmentor registrationof datafrom differentsubjects
onto a commoncoordinatesystem.The otherissueis con-
cernedwith efficientpooling of informationacrosssubjects
in orderto modelthe spatio-temporatovariancestructure
of noiseandresponse We discussonly the latter problem
here.We mentionbriefly thatcurrentregistrationtechniques
involving spatialwarping and folding methods(e.g., [3])
have gonefar beyond simple landmarkmatchingbasedon
the Talairachatlas.
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Multisubject studiesare quite standardin other areas
of bioscienceandrely on the methodsof longitudinaldata
analysis[4]. Suchdatatypically involve very shorttime
seriesmeasurean a proportionatelylarger numberof sub-
jects. In neuroimagingexperiments,the oppositeis true:
With imaging modialitiessuchasfMRI, EEG, and MEG,
the numberof obsenationsper subjectT is muchgreater
thanthe numberof subjectsn. In suchcasestraditional
longitudinaltime seriesmethodsdo not apply sincea full-
rank TXT covariancematrix cannotbe formed. Recently a
new kind of longitudinaldataanalysiscalledfunctionaldata
analysis[9] hasbeendevelopingto dealwith this singular
longitudinaldataanalysissituation.

Early work usedtime seriesmethodg[11], [1], [2], but
more recently modernsmoothingmethodshave beenap-
plied. A numberof thesenevertechniquesiredescribedn
the book [9] althoughno spatio-temporaproblemsof the
kind consideredherearediscussedNeverthelesstheideas
arerelevant.

2. NONSTATIONARY SPATIO-TEMPORAL
SPECTRAL ANALYSIS

We concentratdereon covarianceanalysis. The potential
to achieve precisionfar beyond what simple averagingcan
offeris great.Thereareanumberof approachebut thesim-
plestis to approximatethe spatio-temporafield by a basis
expansionsuchas Fourier or wavelet. Thena Karhunen-
Loeve decompositionis estimated. Neither temporalnor
spatialstationarityis assumed.

Let t,7 denotetime and P, ) denotepixel positions.
Spatiotemporalieldswill beindexedby argumentssuchas
t, P or , (). We alsointroducebasissystems

X,E:r])%r = ]-a"'aLXa glgau = ]-a"'aLl/J
The basissystemaeednot be orthogonakystemge.g. B-
splines)but for easeof expose’we assumenerethat they
are.Themagesequencen individual i is denotedrgp. If



K(t, P;1,Q) is thecovariancekernelof thesignali.e.
K(t, P;7,Q) = cov(a} p, a;p)
thentheideais to estimatethefirst few termsin the expan-

sion

K(t, P;7,Q) = SAu¢{ "6l

where¢§f‘ll areeigenfunctionsnd\(® areeigervaluesobey-
ing

[ K.Pir, Q@ = X267
Usinga basisexpansiorfor thefield
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We approximategheeigenequatiomasfollows. Therankde-
ficient covarancekernelestimator
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And sotheeigenequatiobecomes

[ T eSabrvlofudrd@ = XOWTpf,
leadingto the matrix system

Sifu =AW f,

andthe orthogonalityrequirements
/ Dy PSP AtdP = by,

becomesfl f, = &4, Sonow we simply carry out a
principal componentsnalysisof the reduceddatad®. The
eigervectorsare reconstructedrom (2.1). In practiced?
needsto be meancorrected. If thereis a meanresponse
thiswill needto besimilarly approximatedy basisexpan-
sionmethods A considerablemountof developments re-
quiredto shov how thiscanbedone soherewe concentrate
onthecorvariancemodelling. We dealwith a stimulusfree
experimentconsistingof repeatrunson a singleindividual
andwe concentrat@n determiningthe noisestructure.

3. IMAGING DATA

Thedatawerecollectedusinga GE Signal.5T MRI scan-
ner modifiedfor EchoPlanarimaging (EPI) by Advanced
NMR SystemgWilmington, MA). The datawerecollected
on asinglesubjectwith arepetitiontime of 1 secondwith
atotal of 1024time points.In orderto createa setof regis-
teredlongitudinaldatasets theoriginal datarecordwaspar
titionedinto 12 temporally-contiguoublocksof 64 seconds
length,whereeachblock wasseparatedfom thenext by 15
secondso avoid spuriougemporalcorrelationdetweerthe
datasets.The spatio-temporahnalysiswasthenappliedto
a 4-by-4 pixel region of interest(ROI) usinga Fourier ba-
sisset. Basedon empiricalstudiesof the noise,the Fourier
basiswastruncatedor temporalfrequenciesabore the 4th
harmonic.

4. RESULTSAND DISCUSSION

The eigervaluesFig.1 of the estimatedcovariancekernel
revealedthat mostof the covariancestructurecould be ex-
pressedusing the first two eigenfunctions. This suggests
that the functional dataanalysismethodcan yield signif-
icant datareductionwhen appliedin this contet. Fig.2
and Fig.3 shaw the spatio-temporakigenfunctionscorre-
spondingto the first and secondeigervaluesin Fig.1, re-
spectvely. Theseeigenfunctionsaredisplayedasarraysof
time-seriesyherethe positionof thetime serieswithin the
arrayindicatesits positionwithin the 4-by-4ROI. In Fig.4
we shav the meantime seriesthe histogramfor the entire
1024-lengthrecord,andthetemporalcovariancekernel,es-
timatedfrom thefirst two eigenfunctionsfor atypical pixel.
Thetemporalcovariancekernelfor this pixel, aswell asthe
others,lacksa Toeplitz structure,suggestinghat the noise
may by non-stationary

5. CONCLUSIONS

We have developeda methodfor doingspatio-temporabn-
gitudinal dataanalysisfor functional MRI dataemploying
functionaldataanalysisnethodologyBecaus@f theunique
constraintsof multi-subjectfMRI data,wherethe number
of subjectsis far fewer thanthe numberof datapointsob-
sened,traditionallongitudinaldataanalysisnethodsarein-
appropriate. We usedthis algorithmto study longitudinal
fMRI noisedata,demonstratinghat the covariancestruc-
ture of the noisecanbe summarizedwith just a few eigen-
functions, andthat the temporalcovariancestructuremay
be non-stationary Theseresultssuggesthatthe functional
dataanalysisframework could be an effective methodfor
pooling information acrosssubjectsin fMRI experiments.
Furthermorethis methodprovides a framework for doing
full spatio-tempordMRI analysiswithoutrequiringassump-
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Fig. 2. Spatio-EmporalEigenfunctioncorrespondingo
largestEigernvalue

tions of stationarityascurrentmethodsdo. In future work
wewill extendthismethodologyto describehespatio-temporal
responsdo longitudinalexperimentswith cognitive or sen-
sory stimulationtasks.
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