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ABSTRACT

Weconsidersignalestimationfor functionalMRI studieson
multiple subjects.Therearetwo majorissues;alignmentor
registrationof imagesacrosssubjects;andusingthemulti-
subjectinformationto capturecovarianceinformation: we
discussonly the latter. Capturingthis covarianceinforma-
tion properlycan leadto greatimprovementsin statistical
efficiency beyond what simpleaveragingcanoffer aswell
ascompactdescriptionof groupfeatures.

1. INTRODUCTION

Thelastfew yearshaveseenasteadydevelopmentof meth-
odsfor spatio-temporalsystemidentificationassociatedwith
functionalmagneticresonanceimaging(fmri) experiments.
Earlierwork of [5], [16] involvedlinearestimation,[8] dis-
cusseda principalcomponentsapproach(unrelatedto what
we do in this paperbelow), while [10] introducedthe use
of wavelets.More recently[7],[12],[14], [6],[13] haveused
morecomplex impulseresponsemodelsaswell asspatial
regularisation. Model comparisonhasbeenmost recently
adressedin [15],[13].

While theseearlierdevelopmentshave beenfocusedon
analysisof data from individual subjects,the majority of
neuroimagingexperimentsare aimedat uncovering brain
mechanismsthatarecommonto groupsof subjectsaswell
as comparingthe brain function betweengroupsof sub-
jects. Thereare two main issuesin the analysisof these
multi-subjector longitudinaldata. The first issueinvolves
thealignmentor registrationof datafrom differentsubjects
ontoa commoncoordinatesystem.Theotherissueis con-
cernedwith efficientpoolingof informationacrosssubjects
in orderto model the spatio-temporalcovariancestructure
of noiseandresponse.We discussonly the latter problem
here.Wementionbriefly thatcurrentregistrationtechniques
involving spatialwarping and folding methods(e.g., [3])
have gonefar beyondsimplelandmarkmatchingbasedon
theTalairachatlas.

Multisubject studiesare quite standardin other areas
of bioscienceandrely on the methodsof longitudinaldata
analysis[4]. Suchdatatypically involve very short time
seriesmeasuredon a proportionatelylargernumberof sub-
jects. In neuroimagingexperiments,the oppositeis true:
With imagingmodialitiessuchas fMRI, EEG, andMEG,
the numberof observationsper subjectT is muchgreater
than the numberof subjectsn. In suchcases,traditional
longitudinaltime seriesmethodsdo not applysincea full-
rankTxT covariancematrix cannotbeformed. Recently, a
new kind of longitudinaldataanalysiscalledfunctionaldata
analysis[9] hasbeendevelopingto dealwith this singular
longitudinaldataanalysissituation.

Early work usedtime seriesmethods[11], [1], [2], but
more recentlymodernsmoothingmethodshave beenap-
plied. A numberof thesenewer techniquesaredescribedin
the book [9] althoughno spatio-temporalproblemsof the
kind consideredherearediscussed.Nevertheless,theideas
arerelevant.

2. NONSTATIONARY SPATIO-TEMPORAL
SPECTRAL ANALYSIS

We concentratehereon covarianceanalysis.Thepotential
to achieve precisionfar beyondwhatsimpleaveragingcan
offer is great.Thereareanumberof approachesbut thesim-
plestis to approximatethespatio-temporalfield by a basis
expansionsuchas Fourier or wavelet. Then a Karhunen-
Loeve decompositionis estimated. Neither temporalnor
spatialstationarityis assumed.

Let ����� denotetime and 	
��� denotepixel positions.
Spatiotemporalfieldswill beindexedby argumentssuchas
���
	 or ����� . We alsointroducebasissystems
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Thebasissystemsneednot beorthogonalsystems(e.g. B-
splines)but for easeof expose’we assumeherethat they
are.Theimagesequenceon individual i is denoted021��� � . If



354 ���
	76��8����9 is thecovariancekernelof thesignali.e.

354 ���
	76
������9��;:#<*= 4 0 1��� � ��0 1 � >��� � 9
thentheideais to estimatethefirst few termsin theexpan-
sion 354 ����	76�������9?�A@
B )DC ��)*���� � C �E)F�G � H
whereC �E)F���� � areeigenfunctionsandB ��)*� areeigenvaluesobey-
ing I 3J4 ���
	76
�����K9 C ��)*�G � H�L � L ���AB ��)*� C ��)*���� �
Usinga basisexpansionfor thefield

0 1��� � �M@�N8O�
PRQ ( �������� � L 1 ����� �S(
>��� � L 1

andtheeigenfunctions

C ��)*���� � �T@ N�U��PRQ ( ���
���� ��V ���)*� �S(
>��� � V ) (2.1)

Weapproximatetheeigenequationasfollows. Therankde-
ficient covarancekernelestimator
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And sotheeigenequationbecomesI
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leadingto thematrixsystem
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andtheorthogonalityrequirementsI
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becomesV >) V ] �`_ ) � ] . So now we simply carry out a
principal componentsanalysisof the reduceddata L 1 . The
eigenvectorsare reconstructedfrom (2.1). In practice L 1
needsto be meancorrected. If thereis a meanresponse
this will needto besimilarly approximatedby basisexpan-
sionmethods.A considerableamountof developmentis re-
quiredto show how thiscanbedone,sohereweconcentrate
on theconvariancemodelling.We dealwith a stimulusfree
experimentconsistingof repeatrunson a singleindividual
andweconcentrateondeterminingthenoisestructure.

3. IMAGING DATA

Thedatawerecollectedusinga GE Signa1.5T MRI scan-
ner modifiedfor EchoPlanarImaging(EPI) by Advanced
NMR Systems(Wilmington,MA). Thedatawerecollected
on a singlesubjectwith a repetitiontime of 1 second,with
a total of 1024time points.In orderto createa setof regis-
teredlongitudinaldatasets,theoriginaldatarecordwaspar-
titionedinto 12temporally-contiguousblocksof 64seconds
length,whereeachblockwasseparatedfrom thenext by 15
secondsto avoid spurioustemporalcorrelationsbetweenthe
datasets.Thespatio-temporalanalysiswasthenappliedto
a 4-by-4 pixel region of interest(ROI) usinga Fourier ba-
sisset.Basedon empiricalstudiesof thenoise,theFourier
basiswastruncatedfor temporalfrequenciesabove the4th
harmonic.

4. RESULTS AND DISCUSSION

The eigenvaluesFig.1 of the estimatedcovariancekernel
revealedthatmostof thecovariancestructurecouldbeex-
pressedusing the first two eigenfunctions.This suggests
that the functional dataanalysismethodcan yield signif-
icant data reductionwhen applied in this context. Fig.2
and Fig.3 show the spatio-temporaleigenfunctionscorre-
spondingto the first and secondeigenvaluesin Fig.1, re-
spectively. Theseeigenfunctionsaredisplayedasarraysof
time-series,wherethepositionof thetime serieswithin the
arrayindicatesits positionwithin the 4-by-4ROI. In Fig.4
we show themeantime series,thehistogramfor theentire
1024-lengthrecord,andthetemporalcovariancekernel,es-
timatedfrom thefirst two eigenfunctions,for atypicalpixel.
Thetemporalcovariancekernelfor thispixel, aswell asthe
others,lacksa Toeplitzstructure,suggestingthat the noise
mayby non-stationary.

5. CONCLUSIONS

Wehavedevelopedamethodfor doingspatio-temporallon-
gitudinal dataanalysisfor functionalMRI dataemploying
functionaldataanalysismethodology. Becauseof theunique
constraintsof multi-subjectfMRI data,wherethe number
of subjectsis far fewer thanthe numberof datapointsob-
served,traditionallongitudinaldataanalysismethodsarein-
appropriate.We usedthis algorithmto study longitudinal
fMRI noisedata,demonstratingthat the covariancestruc-
tureof thenoisecanbesummarizedwith just a few eigen-
functions,and that the temporalcovariancestructuremay
benon-stationary. Theseresultssuggestthat thefunctional
dataanalysisframework could be an effective methodfor
pooling informationacrosssubjectsin fMRI experiments.
Furthermorethis methodprovidesa framework for doing
full spatio-temporalfMRI analysiswithoutrequiringassump-
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Fig. 1. Eigenvaluesfor Karhunen-LoeveDecomposition
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Fig. 2. Spatio-TemporalEigenfunctioncorrespondingto
largestEigenvalue

tions of stationarityascurrentmethodsdo. In future work
wewill extendthismethodologytodescribethespatio-temporal
responseto longitudinalexperimentswith cognitiveor sen-
sorystimulationtasks.
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