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ABSTRACT

We have developed a method for quantifying neural re-
sponse changes in terms of the Kullback-Leibler distance
between the intensity functions for each stimulus condition.
We use empirical histogram estimates to characterize the
intensity function of the neural response. A critical factor
in determining the histogram estimates is selection of bin-
width. In this work we analytically derive the Kullback-
Leibler distance between two Poisson processes and two
dead time modified Poisson processes in terms of the bin-
width selected. Our results show that for constant intensity
processes having the same number of expected counts, the
distance between the dead time modified processes will be
larger than between the Poisson processes.

1. INTRODUCTION

It is believed that neurons, the cells of the nervous system,
code and process information in the times of occurrences
of action potentials or “spikes,” the electrical signals they
produce (see Figure 1). Researchers seek to understand the
mechanisms of neural information coding. A key obser-
vation is that the pattern of action potentials elicited by a
neuron (or group of neurons) to a given stimulus condition
is stochastic, not deterministic. It is generally agreed that
a good model of an action potential firing pattern is a point
process with some unknown, probably complex, intensity
description. A cornerstone of learning about neural coding
is discovering stimulus properties that result in a “change”
to a neural response. Quantifying a change in a neural re-
sponse means showing a change in the intensity description
of the neural response to different stimulus conditions.

We have developed methodology for quantifying neu-
ral response changes in terms of information-theoretic dis-
tances between the empirical intensity descriptions[1]. Our
empirical intensity descriptions are empirical histogram es-
timates (or “types”) describing the probability of spike fir-
ing in a given time period or “bin” of the response. In this

∗Work performed while at Rice University.

5 ms

time

Fig. 1. This voltage trace is an example of an extracellular
recording from a neuron in the auditory pathway of a cat.
The dotted ovals show the occurrences of two action poten-
tials.

work we present analytical results related to the selection of
the binwidth for this procedure.

2. METHODS

We have developed a method for computing the Kullback-
Leibler and Chernoff distances between empirically calcu-
lated intensity descriptions. Our method is outlined in Fig-
ure 2. Briefly, we use data gathered from an experimen-
tal paradigm in which two (or more) stimuli are repeatedly
presented to a neuron. From the recorded spike patterns
to each stimulus presentation an estimate of the probabil-
ity of a spike happening in a given bin can be estimated.
The Kullback-Leibler distance or Chernoff distance can be
found between these empirical estimates. Since the proba-
bility of a spike in a given bin can depend on previous ac-
tivity, we can also expand the histogram estimate to include
dependency on previous bins (Figure 3). In expanding the
“alphabet” of the histogram we obtain a more complete pic-
ture of the spike train’s statistical structure. This distance-
based technique has several advantages:

• Quantifies how different responses are in terms of dis-
tances meaningful in classification theory.

• The technique can be expanded to measure distances
between neural ensemble responses.

• Confidence bounds can be found using bootstrap re-
sampling techniques.
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Fig. 2. Computing the Kullback-Leibler (KL) distance be-
tween neural responses. (A) A single neuron’s response
to four presentations of each of two stimuli. Each ver-
tical bar represents the occurrence of an action potential.
The records are binned along the time axis as shown by the
dashed vertical bars. (B) A table is formed by counting the
number of spikes in each bin. (C) A histogram is formed
for each bin and normalized by the number of stimulus rep-
etitions. The KL distance between each empirical proba-
bility mass function is computed and the total KL distance
for the time interval of interest is the sum of the individual
estimates for each bin. The Kullback Leibler distance is
defined as[2]

∑
x∈X p(x) log

p(x)
q(x) .

• Using a relationship between the Kullback-Leibler
distance and the Fisher Information, it is possible
in some cases, to measure how well information is
coded about particular stimulus parameters in terms
of the Cramér-Rao upper bound on expected mean
square error.

In this work we analytically compute the Kullback-
Leibler distance between responses characterized as Pois-
son processes and between responses characterized as dead
time modified Poisson processes.

3. RESULTS

3.1. Kullback-Leibler distance between Poisson pro-
cesses

The Kullback-Leibler distance between two Poisson pro-
cesses depends strongly on the chosen evaluation binwidths.
Consider two Poisson processes with time-varying intensi-
ties λp(t) and λq(t) compared over a time interval T . It is
easily shown that the distance between the two processes
evaluated over the entire interval T is less than the summed
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Fig. 3. Computing the probability of a spike in bin 3 given
the activity patterns in bins 1 and 2.

distances computed over non overlapping subintervals of T ,
{τi}, where T =

⋃
i τi, and

⋂
i τi = ∅:

D(pT (x)||qT(x)) ≤
∑
i

D(pτi (x)||qτi(x)),

where

pτ(x) =

(∫
τ
λp(t) dt

)x
x!

exp

{
−

∫
τ

λp(t) dt

}
,

with equality if and only if
∫
τi
λp(t) dt = c

∫
τi
λq(t) dt,

for all {τi} where c is a constant. Thus, a smaller binwidth
over an interval T increases the calculated Kullback-Leibler
distance. However, if the equality condition holds, as in
the case of constant rates, λp(t) = λp, λq(t) = λq, for a
particular binwidth, then smaller binwidths will not further
increase the Kullback-Leibler distance.

3.2. Kullback-Leibler distance between refractory pro-
cesses

An interval between events of a Poisson process can be
infinitely small. Because of the observed dead-time be-
tween action potentials, the Poisson process is not a re-
alistic approximation of neural spiking behavior. The
simplest refractory model adds a dead-time after each
spike, during which the probability of another spike oc-
curring is zero. After the dead-time, the process is
essentially Poisson; the inter-event interval density is
p(τ ) = λ exp(−λ(τ −∆)), τ > ∆, where ∆ is the dead-
time. Including a dead-time complicates analysis because
time increments are no longer independent: the probability
of an event during a particular time period is dependent on
when the last event occurred. Thus, the probability of an
event during a particular time period could depend on the
entire process history. To examine how the addition of a
refractory period affects the Kullback-Leibler distance be-
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Fig. 4. An observation time T of a refractory process with
dead-time ∆ is broken up into bins of time duration δ =
∆
K , where K = 5 in this example. In each ∆-length time
interval there areK + 1 possible states as shown.

tween responses this section develops an analysis frame-
work for analytically computing the Kullback-Leibler dis-
tance between refractory processes.

If the refractory process has a dead-time ∆, during any
time interval of length∆ no more than one event can occur.
If the interval ∆ is divided into K subintervals, a total of
K +1 possible “states” describe the possible occurrence of
an event in the given time interval ∆. An example of the
possible states, {sj}, for each ∆ increment are shown in the
figure 4 forK = 5.

The transition matrix between states is given by

T (n+ 1) =




1− p(n+ 1) 0 0 . . . 0 1
p(n+ 1) 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
0 0 0 . . . 1 0


 ,

where each matrix element is the conditional probability of
moving from one state at time n to another in time interval
n+1, Tij(n+1),= Pr(si(n+1)|sj(n)). Most of the entries
are either “1” or “0”. Because of the dead-time, state 1 at
time n always implies state 2 at time n+1; state 2 at time n
always implies state 3 at time n + 1 etc. In fact, only if the
state at time n is 0 is it possible for the state at time n+1 to
be either 0 or 1, depending on the probability of an event in
the time period n + 1, p(n + 1). The transition matrix can
be used to find the probability of the next state:

T (n+ 1)S(n) = S(n+ 1),

where

S(n) =




p(s0(n))
p(s1(n))
p(s3(n))

...
p(sK(n))


 .

Given initial state probabilities, the transition matrices can
be used to find the probability of any state at any time by

S(1) = T (1)S(0)

S(2) = T (2)S(1) = T (2)T (1)S(0)

...

S(n) =

(
n∏
i=1

T (i)

)
S(0).

Using the Markov state construction of the prob-
lem it is possible to calculate the Kullback-Leibler
distance between two refractory processes. Let xi
be the value of the ith subinterval, xi ∈ {0, 1}.
The goal is to find the Kullback-Leibler distance
D(p1(x0, x1, x2, . . . , xn)||p2(x0, x1, x2, . . . , xn)). Be-
cause of the refractory period lasting for K bins, the value
of xi only depends on the values of x at the previousK bins.
The Kullback-Leibler distance between two refractory pro-
cesses simplifies to

D(p1(x1, x2, . . . , xN)||p2(x1, x2, . . . , xN)) =

= D(p1(s(0))||p2(s(0))) +

N−k∑
i=1

D(p1(xi|s(i− 1))||p2(xi|s(i− 1))). (1)

Additional simplifications to the Kullback-Leibler for-
mula occur because all the transition probabilities are either
0 or 1 except those associated with state s0:

p1(xi = 1|sl(i− 1), l 	= 0) =

p2(xi = 1|sl(i− 1), l 	= 0) = 0

p1(xi = 0|sl(i− 1), l 	= 0) =

p2(xi = 0|sl(i− 1), l 	= 0) = 1.

Equation (1) simplifies to

D(p1(x1, x2, . . . , xN)||p2(x1, x2, . . . , xN)) =

= D(p1(s(0))||p2(s(0))) +

N−k∑
i=1

D(p1(xi|s(i− 1) = s0)||p2(xi|s(i− 1) = s0))

(2)



If the rate is assumed constant λ(t) = λ, then p(n+1) ≈
λ∆
K

and the set of state probabilitiesS(n)will tend to limits
π as n → ∞ [3]. At equilibrium the following equation
holds,


1− λ∆K 0 0 . . . 0 1
λ∆
K

0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
0 0 0 . . . 1 0







πo
π1
π2
...
πK


 =




πo
π1
π2
...
πK




Solving for π:

π0 =
1

(1 + λ∆)
(3)

π1 = · · · = πK =
λ∆K

(1 + λ∆)
. (4)

Using the equilibrium state probabilities from equa-
tions (3) and (4) in the equation for the Kullback-Leibler
distance in equation (2),

D(p1(x1, . . . , xN)||p2(x1, . . . , xN)) =

log
λ2∆+ 1

λ1∆+ 1
+
λ1∆

λ1∆+ 1
log
λ1
λ2

+
K( T

∆
− 1)

λ1∆+ 1

[
λ1
∆

K
log
λ1
λ2

+(1− λ1
∆

K
) log

(1− λ1
∆
K )

(1− λ2
∆
K
)

]
. (5)

Taking the limit as K →∞ yieldsDRP (λ1, λ2, T ),

lim
K→∞

D(p1(x1, . . . , xN)||p2(x1, . . . , xN)

= log
λ2∆+ 1

λ1∆+ 1
+

λ1T

λ1∆+ 1
log
λ1

λ2
+

( T∆ − 1)

λ1∆+ 1
(−λ1 + λ2)∆. (6)

3.3. Comparison between refractory Kullback-Leibler
and Poisson Kullback-Leibler of the same virtual rates

Consider two Poisson processes with rates λ1
λ1∆+1

, λ2
λ2∆+1

.
The Kullback-Leibler distance between these Poisson pro-
cesses is

DV RPP (λ1, λ2, T ) =
T

(1 + λ1∆)

[
λ1 log

λ1

λ2
+

λ1 log
λ2∆+ 1

λ1∆+ 1
+
λ2 − λ1
λ2∆+ 1

]

These processes have the same expected number of events
in an interval as the dead-time modified Poisson processes

with rates λ1 and λ2 with dead-time ∆ considered previ-
ously. SubtractingDV RPP fromDRP

DRP −DV RPP =

T

(1 + λ1∆)

[
(λ2 − λ1)− λ1 log

λ2∆+ 1

λ1∆+ 1
−
(λ2 − λ1)

(λ2∆+ 1)

]

+ log
(1 + λ2∆)

(1 + λ1∆)
−
(λ2 − λ1)∆

1 + λ1∆
. (7)

Approximating log(λ∆+1) = λ∆ (assuming λ∆ is small),

DRP −DV RPP

≈
T

(1 + λ1∆)

[
(λ22∆− λ1λ2∆)

(λ2∆+ 1)
− λ1λ2∆+ λ

2
1∆

]

+

[
λ2∆− λ1∆−

(λ2 − λ1)∆

(1 + λ1∆)

]
.

Assuming that 1
1+λ∆ ≈ 1, the second bracketed term goes

to 0 and the first term goes to

DRP −DV RPP ≈ T
(λ2 − λ1)2∆

(1 + λ1∆)
,

which is always ≥ 0, independent of the choice of λ1, λ2,
thus, the distance between two dead-time modified Poisson
processes is greater than the distance between Poisson pro-
cesses of the same virtual rates.

4. CONCLUSIONS

We have shown that the Kullback-Leibler distance between
two Poisson processes is larger when the interval on which
counts are compared is broken up into many subinter-
vals. This analysis indicates that smaller binwidths increase
the Kullback-Leibler distance. We have also shown that
the Kullback-Leibler distance between dead-time modified
Poisson processes is greater than the distance between com-
parable Poisson processes. This result indicates that the
temporal correlation introduced by the refractory process
increases the potential discriminability of the two responses,
provided that the process data are compared with appropri-
ate binwidth and order to “see” the temporal correlation.
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