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ABSTRACT

This paperreviews the multifractal wavelet model (MWM)
and its applicationsto network traffic modelingand infer-
ence.Thediscovery of thefractal natureof traffic hasmade
new modelsandanalysigoolsfor traffic essentialsinceclas-
sical Poissonand Markov modelsdo not captureimportant
fractal propertieslike multiscalevariability and burstiness
that deleteriouslyaffect performance Setin the frameawork
of multiplicativecascadegshe MWM providesalink to mul-
tifractal analysis,a naturaltool to characterizeburstiness.
The simple structureof the MWM enabledastO(N) syn-
thesisof traffic for simulationsandatractablequeuinganal-
ysis, thusrenderingit suitablefor real networking applica-
tionsincluding end-to-engpathmodeling.

1. INTRODUCTION
Fractalmodelshave madea major impactin communica-
tions, particularlyin the arenaof queuinganalysisof data
networks (such as local-areanetworks (LANSs), wide-area
networks (WANs), andthe Internet). It hasbeencorvinc-
ingly demonstratedndconfirmedby mary studiesthatnet-
work traffic signals,suchas the time seriesof numberof
bytesor pacletsarriving at a router, exhibit fractal proper
ties such as self-similarity, burstiness,and long-rangede-
pendencéLRD) [1]. Thesepropertiesareinadequatelye-
scribedby classicalraffic modelssuchasPoissonMarkov,
andARMA modelg[1], with theresultthatthesemodelsare
fartoo optimisticin their predictionsof performance.

Fractalsare geometricobjectsthat exhibit an irregular
structureat all resolutions.Most fractalsare self-similar, if
we usea magnifyingglassto “zoom” (in or out) of thefrac-
tal, we obtaina picturesimilar to the original. Deterministic
fractalsusually are constructedby predeterminedterative
refinemenstepsand,thus,exhibit strongpatternghatrepeat
atall scalesReal-world phenomenaanrarelybe described
using suchsimple models. Nevertheless;similarity on all
scales’canhold in a statisticalsenseeadingto the notion
of randomfractals. For examplethe bytesper time traffic
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Figurel: Modelingburstytraffic data. Arrival processesf bytes
per8ms (top) and32ms (bottom)for (a) real wide-areatraffic [3]

and (b) one realizationof a multifractal wavelet model (MWM)

synthesis.The MWM tracehasthe samebursty natureasthe real
dataat differentscales.

obsened on a WAN whenviewed on differenttime-scales
displaysa similar bursty structure(seeFigurel).

As the pre-eminentrandom fractal model, fractional
Brownian motion (fBm) hasplayeda centralréle in mary
fields[1, 2]. fBm is the unique Gaussiarprocesswith sta-
tionaryincrementsaindthefollowing scalingpropertyfor all
a>0

B(at) Z " B(1), (1)

with the equality in (finite-dimensional)distribution. In
otherwords,when“zoomed”into, fBm appearstatistically
thesameupto arescalingfactor Theconstantd, 0 < H <
1, is known asthe Hurst parameter For1/2 < H < 1,
fBm’s incrementgrocessfractional Gaussiamoise (fGn),
hasanautocorrelatiorfiunctionthatdecaysoslowly thatit is
non-summablea propertyknown aslong-rangedependence
(LRD).

Waveletsarea powerful tool for theanalysisandsynthe-
sisof LRD signals. ThoughLRD signalsarehighly corre-
latedin the time domain,they becomenearly decorrelated
in the waveletdomain. Exploiting this fact, severalauthors



have proposedvavelet-basedeneralizationsf f{Gn[2]. Us-
ing efficient multiscaletreestructuresthesemodelsprovide
fastO(N) synthesisalgorithmsto synthesizelV-point data
sets. As a consequencef their Gaussiamature,however,
thesecan produceunrealisticsynthetictraffic tracesin cer
tain situations.First, Gaussiartraffic cantake negative val-
ues,while realtraffic is inherentlypositive. Seconda Gaus-
sian maminal cannotcapturethe burstinesson small time
scaleghatgreatlyaffectsqueuing[4].

In [5], we proposeda simple multiplicative traffic
model called the multifractal waveletmodel (MWM). Set
in theframawork of multifractal cascadeghe non-Gaussian
MWM outperformsGaussiarLRD traffic modelsin captur
ing the“spiky” bursts[5] andqueuingbehaior of measured
traffic [4]. The MWM'’s attractve featuresinclude linear
time synthesif traffic traces,a tractablequeuinganalysis,
andstrongmultifractalpropertieghatcloselymatchthoseof
realtraffic. Thesemake it viable for numerousetworking
applicationsncluding a novel cross-trafic estimationalgo-
rithm [6]. In this paperwe review the MWM andseveral of
its applications.

2. WAVELETS AND LRD

The discretewavelettransformis a multiscalesignalrepre-
sentatiorof theform [7]

a(t) = > w277 (27t —k) + 2)
k

Jo
S > w227t —k), jkez
j=—00 k

with J, the coarsesscaleandu;, andw;,; the scalingand
waveletcoeficients. Thescalingcoeficientsmaybeviewed
asproviding a coarseapproximationof the signal,with the
waveletcoeficientsproviding higherfrequeng “detail” in-
formation.

Wavelets sene as an approximate Karhunen-L@&ve
transformfor fBm [2], f{Gn, andmoregeneralLRD signals.
In otherwordshighly-correlatedsignalsbecomenearlyun-
correlatedn thewaveletdomain. In addition,the enegy of
thewaveletcoeficientsof continuous-timéBm decayswith
scaleaccordingto a power law [2]. While for sampledBm
thepower-law decayis notexact[2], theHaar wavelettrans-
form of fGn exhibits power-law scalingof theform?®

var(W ;) = o2 22H-DG-1) (9 _ 92H-1)  (3)

Thus, by generatingndependentvavelet coeficients W
with appropriatedecayof enegy with scaleand inverting
thewavelettransformwe cansynthesiz&aussia.RD pro-
cesses.Gaussiarprocesseshowever, possessiegative val-
uesthatareunrealisticfor realtraffic andcannotcapturethe
burstinesof traffic atfiner scaleq4].

1we usecapitalletterswhenwe considerthe underlyingsignal X (and,
hencejts waveletandscalingcoeficients)to berandom.

(a) Scaling coefficient tree

(b) MWM construction

Figure2: (a) Binary tree of Haarscalingcoeficients. (b) MWM
construction: At scalej, we form the wavelet coeficient as the
productW; , = A; xU; . Then,atscalej — 1, we form the scal-
ing coeficientsU; _1 2. andU;_1 2,+1 assumsanddifferencef
U; x andW; i, (normalizedby 1/+/2).

3. MULTIFRACTAL WAVELET MODEL

Thebasicideabehindthe MWM is simple.To presere non-
negativity, we usethe Haarwavelet transformwith special
wavelet-domairconstraints.To captureLRD, we mimic the
waveletenegy decayasafunctionof scale.

3.1. Haar waveletsand non-negative Data

Beforewe canmodelnon-n@ative signalsusingthewavelet
transform,we must develop conditionson the scalingand
wavelet coeficient valuesfor z in (3) to be non-n@ative.
While cumbersomdor a generalwaveletsystemthesecon-
ditionsaresimplefor theHaarsystem.In a Haartransform,
thescalingcoeficientscanberecursvely computedising

Uiok = 272 (ujp1k + wigak)
—1/2 (4)
Ujokt1 = 272 (Ujp1k — Wit1,k)-
For non-n@ative signals,u;, > 0, V 7, k, which with (4)
impliesthat

Vi, k. (5)

|wi k| < gk,

3.2. Multiplicati ve model

The positivity constraints(5) on the Haar wavelet coefi-
cientsleadusto avery simplemultiscale multiplicative sig-
nal modelfor positive processed.et A; ,, bearandomvari-
ablesupportedntheinterval [—1, 1] anddefinethewavelet
coeficientsrecursvely by

Wik = Ajr Ujk- (6)
Togethemwith (4), we obtain(seeFigure2(b))
Ujar = 2721+ Ajia0) Ujai @)
Ujaky1 = 271/2(1 — Ajr1k) Ujgr, k-

We usebetadistributionsfor A4 ;..



3.3. Multifractal analysis

The MWM is a multiplicative cascadg5]. Cascadeareas-
sociatedwith a powerful tool called multifractal analysis
which providesa statisticalanguageandcalculusto charac-
terizeburstiness.

At the heartof multifractal analysislies the multifractal
formalism[5], which relatesthe scalingbehaior of sam-
ple momentsof a traceto the frequeng of occurrenceof
“bursts” of differentstrengthin thattrace. This formalism
exploits the momentsof all orders,unlike the conceptof
LRD thatrelieson second-ordestatisticsonly. The multi-
fractalformalismrelatesnon-Gaussianitandburstinessex-
plicitly andfurnishesa solid formalismon which to explain
thesuperiorityof theMWM overGaussiaimmodelsin model-
ing burstynetwork traffic loads.Moreover, this formalismis
instrumentaln relatingthe burstinesof traffic to the range
of buffer sizesfor which the multiscalequeuingformula of
Sectiond.2is valid [8].

4. NETWORKING APPLICATIONS

The MWM hasprovento be a versatilemodel, mainly due
to its simple structure. This sectionoverviens someof its
applicationgo networking.

4.1. Traffic synthesis

The MWM providesfast synthesisof traffic for simulation
purposesStartingfrom thetopnode,U , o, of theHaarscal-
ing coeficienttree(seeFigure2(a)),the scalingcoeficients
atafiner scalesarecomputedteratively by applying(6) and
(7) thus obtaininga realizationof the process. In essence
the algorithm simultaneoushsynthesizeshe wavelet coef-
ficients and inverts the wavelet transform, requiring only
O(N) operationdo createalength-V signal.

By specifyingthe variancedor the 4; 5, we canmodel
the time-domainLRD or covariancestructureof a signal
through the enegy decayof its wavelet coeficients with
scalej [5]. TheMWM constructiorguaranteedecorrelated
wavelet coeficients. Typically, the residualcorrelationbe-
tweenthe wavelet coeficients of LRD processess small,
andthereforewe canapproximatehetime-domairbehaior
of suchLRD processeguiteaccurately

4.2. Multiscale queuing
Datapacletsaremultiplexedandqueuedat Internetrouters,
wherethey aredelayedandoftendiscardedor dropped)due
to overflow. Thequeuingbehavior of traffic is thuscrucialto
network performanceTraffic modelswith tractablequeuing
analysesan help understancand amelioratenetwork con-
gestion. Thoughthe queuinganalysisof classicalmodelsis
well developed,mostqueuingresultsfor LRD modelsare
valid only for asymptoticallylarge queuesizes thuslimiting
their utility for realnetworkswith finite routerqueuesizes.
The MWM, however, possessea non-asymptoticueu-
ing formula[4]. Exploiting the binary tree structureof the
MWM (seeFigure?2), we have developeda queuingformula
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Figure3: Accuragy of MWM queuingbehaior andthemultiscale
queuingformula(MSQ). TheMWM matcheshequeuingbehaior
of realWAN traffic [3] accuratelyTheMSQ formulais anaccurate
approximatiorto the MWM queuingfor all queuesizes.

applicableto tree-basednodelsfor ary finite queuesize(see
Figure3).

The queuelength of aninfinite-lengthbuffer with con-
stantlink capacityc (assuminghe queuewas empty some
time in the past)obeystheidentity

@ = sup(K[r] —rc). €)

Here K|[r] is the total traffic that enteredthe queuein the

pastr time instants. In otherwords, the queuesize (@ is a

function of the traffic arrivals aggrejatedover time scales
of r time units. In the multiscale representatiorof the

MWM model, suchaggreyatesappearexplicitly at dyadic
time scaleqr = 2™) asthe Haarscalingcoeficients(up to

normalizationconstants)We exploit thefactthatthescaling
coeficientsarerelatedto eachotherby independentandom
multipliers2='/2(1+ 4; ;) to deriveanapproximatiorto the

tail queueprobability P(Q > b) calledthe multiscalequeu-
ing formula(MSQ) [4]. TheMSQ canbedirectly computed
from thedistributionsof A4; ;.

From Figure 3 obsene that the MWM hastail queue
probability very closeto that of the real traffic andthatthe
MSQaccuratelftrackstheMWM'’ squeuingbehaior. These
malke the MWM usefulfor numerouspracticalapplications
like end-to-encpathmodeling.

4.3. End-to-end path modeling

Packetsfrom network connectionswhile traveling from one
endof the Internetto the other passthroughseveralrouters
wherethey are multiplexed with traffic from otherconnec-
tions(end-to-engaths).A betterunderstandingf thetraffic
dynamicson an end-to-endpathwill greatlybenefitthe de-
sign anddevelopmentof future network control algorithms
and protocols. Two factsmalke this task difficult. First, it
is unrealisticto expectinternalroutersto determineandre-
portthesepropertiespecausehis would requiretheir main-
taining overwhelmingamountsof stateinformation. Thus
it becomesnecessaryto infer the propertiesby sampling
the currentnetwork statethroughprobepaclets(end-based
measurements)vhich arerelatively easyandinexpensveto
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Figure4: Cross-trdfic estimationvia end-to-endpath modeling.
We modelan end-to-engpathas a single bottleneckqueuefed by

cross-trafic from the MWM andestimatecross-trafic volumesvia
efficient exponentiallyspacedchirp” paclettrains.

probe
packets

malke. Secondmodelingevery aspecbf the severalrouters
that comprisean end-to-endpath has proved intractable,
thus necessitatingeduced-compbaty modelsfor end-to-
endpaths.

The MWM inspires a simple edge-basedalgorithm,
Delphi for estimatinginstantaneousolumesof competing
cross-trafic from delaysexperiencedy probepaclets|[6].
Delphi usesa simple reduced-compbety modelfor anen-
tire end-to-endphath: a singlebottleneckqueuewhereprobe
paclets are multiplexed with competingcross-trafic mod-
eledby theMWM (seeFigure4).

Inherentin ary probing schemeis an uncertaintyprin-
ciple or “accurag-sparsity”"tradeof. The volumeof cross-
traffic enteringaqueuebetweertwo probescanbecomputed
exactly from their delay spreadat the recever provided the
gueuedoesnotemptyin between.Unfortunately this situa-

tion is guaranteednly if theprobesarevery closelyspaced.

However, sendingongtrainsof narrovly spacegrobeswill

congesthe network andaffect the very cross-trafic we are
trying to measure.If probesare spacedfar apart,thenthe
gueuecanemptyin betweenwhichresultsin uncertaintyin
the cross-trafic volume.

Delphi balances this “accurag-sparsity” tradeof
through a “chirp” probing paclet train that matchesthe
binary tree structureunderlyingthe MWM (seeFigure 5).
The first threeprobesof the chirp are spacedcloseenough
to provide exact estimatef the cross-trafic at the bottom
of the binary tree, i.e., U;o and Uj, and thus U o.
The succeedingrobesare exponentiallyspacedto reduce
the probe traffic load, thus reducingtheir impact on the
cross-trafic. Using an approximatemaximum likelihood
estimatorbasedon the MSQ, we canrecursvely estimate
the scaling coeficients U;;;0 from Uj;;;_1,0 and the
gueuingdelay experiencedby probe P;». The recursion
haltswhenarequiredcoarsesscaleis reachedDelphi does
not require a priori statisticsof cross-trafic and usesan
adaptve algorithmto estimatehe modelparameterslt has
performedwell in simulation experiments(see Figure 6)
andis beingdeployedin theInternet.
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Figure5: Chirp probepaclet trains. Probepaclets are exponen-
tially spacedo matchthe binarytreestructureof the MWM.
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Figure6: Cross-trdfic estimatesn simulationexperiments.Plot-
ted is the cross-trafic at a fine time-scale(9.6ms) andthe actual
andestimatedcross-trafic at a coarsetime-scalg(307.2ms). Ob-
senethatthe estimatesreaccurate.

5. CONCLUSIONS

Thereis a greatneedfor new analyticaltoolsto helpunder
standandimprove currentnetworks. We have presentedne
suchtool, theMWM, whichthoughsimplehasproveduseful
for real networking applicationsjncludingtraffic synthesis,
gueuinganalysisandend-to-encgathmodeling.
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