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ABSTRACT

This paperreviews the multifractal waveletmodel(MWM)
and its applicationsto network traffic modelingand infer-
ence.Thediscoveryof thefractalnatureof traffic hasmade
new modelsandanalysistoolsfor traffic essential,sinceclas-
sical PoissonandMarkov modelsdo not captureimportant
fractal propertieslike multiscalevariability and burstiness
thatdeleteriouslyaffect performance.Setin the framework
of multiplicativecascades,theMWM providesalink to mul-
tifractal analysis,a natural tool to characterizeburstiness.
The simplestructureof the MWM enablesfast

�������
syn-

thesisof traffic for simulationsanda tractablequeuinganal-
ysis, thusrenderingit suitablefor real networking applica-
tionsincludingend-to-endpathmodeling.

1. INTRODUCTION
Fractalmodelshave madea major impact in communica-
tions, particularly in the arenaof queuinganalysisof data
networks (suchas local-areanetworks (LANs), wide-area
networks (WANs), and the Internet). It hasbeenconvinc-
ingly demonstratedandconfirmedby many studiesthatnet-
work traffic signals,suchas the time seriesof numberof
bytesor packetsarriving at a router, exhibit fractal proper-
ties suchas self-similarity, burstiness,and long-rangede-
pendence(LRD) [1]. Thesepropertiesareinadequatelyde-
scribedby classicaltraffic modelssuchasPoisson,Markov,
andARMA models[1], with theresultthatthesemodelsare
far too optimisticin their predictionsof performance.

Fractalsare geometricobjectsthat exhibit an irregular
structureat all resolutions.Most fractalsareself-similar; if
we usea magnifyingglassto “zoom” (in or out) of thefrac-
tal, weobtainapicturesimilar to theoriginal. Deterministic
fractalsusually are constructedby predeterminediterative
refinementstepsand,thus,exhibit strongpatternsthatrepeat
at all scales.Real-world phenomenacanrarelybedescribed
usingsuchsimplemodels. Nevertheless,“similarity on all
scales”canhold in a statisticalsense,leadingto the notion
of randomfractals. For examplethe bytesper time traffic
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(a) Real traffic (b) MWM synthesis
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Figure1: Modelingburstytraffic data.Arrival processesof bytes
per 	 ms (top) and 
�� ms (bottom)for (a) real wide-areatraffic [3]
and (b) one realizationof a multifractal wavelet model (MWM)
synthesis.TheMWM tracehasthesameburstynatureasthe real
dataat differentscales.

observed on a WAN whenviewed on different time-scales
displaysasimilar burstystructure(seeFigure1).

As the pre-eminentrandom fractal model, fractional
Brownian motion (fBm) hasplayeda centralrôle in many
fields [1, 2]. fBm is the uniqueGaussianprocesswith sta-
tionaryincrementsandthefollowing scalingpropertyfor all
���� � � 
�� ������ 
�� � � � ��� (1)

with the equality in (finite-dimensional)distribution. In
otherwords,when“zoomed”into, fBm appearsstatistically
thesameup to a rescalingfactor. Theconstant� , ��� � � 
, is known as the Hurst parameter. For

 "!$# � � �  
,

fBm’s incrementsprocess,fractionalGaussiannoise(fGn),
hasanautocorrelationfunctionthatdecayssoslowly thatit is
non-summable,apropertyknown aslong-rangedependence
(LRD).

Waveletsareapowerful tool for theanalysisandsynthe-
sis of LRD signals. ThoughLRD signalsarehighly corre-
lated in the time domain,they becomenearlydecorrelated
in the waveletdomain. Exploiting this fact,severalauthors



haveproposedwavelet-basedgeneralizationsof fGn [2]. Us-
ing efficientmultiscaletreestructures,thesemodelsprovide
fast

�����%�
synthesisalgorithmsto synthesize

�
-point data

sets. As a consequenceof their Gaussiannature,however,
thesecanproduceunrealisticsynthetictraffic tracesin cer-
tain situations.First, Gaussiantraffic cantake negative val-
ues,while realtraffic is inherentlypositive. Second,aGaus-
sian marginal cannotcapturethe burstinesson small time
scalesthatgreatlyaffectsqueuing[4].

In [5], we proposeda simple multiplicative traffic
model called the multifractal waveletmodel (MWM). Set
in theframework of multifractalcascades,thenon-Gaussian
MWM outperformsGaussianLRD traffic modelsin captur-
ing the“spiky” bursts[5] andqueuingbehavior of measured
traffic [4]. The MWM’ s attractive featuresinclude linear
time synthesisof traffic traces,a tractablequeuinganalysis,
andstrongmultifractalpropertiesthatcloselymatchthoseof
real traffic. Thesemake it viable for numerousnetworking
applicationsincludinga novel cross-traffic estimationalgo-
rithm [6]. In this paper, we review theMWM andseveralof
its applications.

2. WAVELETS AND LRD

Thediscretewavelet transformis a multiscalesignalrepre-
sentationof theform [7]& � � � � ')(+* ( #�,.-0/214365879#�,:-�/ �<;>=@?BA (2)

- /'CED ,.F ' (HG CEI ( # , C 143KJL7 # , C �M;N= ? � O)� =QP ZZ

with RTS the coarsestscaleand * ( and G CEI ( the scalingand
waveletcoefficients.Thescalingcoefficientsmaybeviewed
asproviding a coarseapproximationof the signal,with the
waveletcoefficientsproviding higher-frequency “detail” in-
formation.

Wavelets serve as an approximate Karhunen-Lòeve
transformfor fBm [2], fGn, andmoregeneralLRD signals.
In otherwordshighly-correlatedsignalsbecomenearlyun-
correlatedin thewaveletdomain.In addition,theenergy of
thewaveletcoefficientsof continuous-timefBm decayswith
scaleaccordingto a power law [2]. While for sampledfBm
thepower-law decayis notexact[2], theHaar wavelettrans-
form of fGn exhibitspower-law scalingof theform1

var
�VU C4I ( � �XW 3Y#[Z\3 � ,:]2^9Z C ,_]`^ � # ; #$3 � ,_] ��a (3)

Thus,by generatingindependentwavelet coefficients
U C4I (

with appropriatedecayof energy with scaleand inverting
thewavelettransform,wecansynthesizeGaussianLRD pro-
cesses.Gaussianprocesses,however, possessnegative val-
uesthatareunrealisticfor realtraffic andcannotcapturethe
burstinessof traffic at finerscales[4].

1Weusecapitalletterswhenweconsidertheunderlyingsignal b (and,
hence,its waveletandscalingcoefficients)to berandom.

(a) Scaling coefficient tree (b) MWM construction
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Figure2: (a) Binary treeof Haarscalingcoefficients. (b) MWM
construction:At scale i , we form the wavelet coefficient as the
product jLkEl monqpMkEl m�rskEl m . Then,at scaleiot%u , we form thescal-
ing coefficients rskwvyxzl {zm and rskwvyxzl {zm}|.x assumsanddifferencesofrskEl m and jLkEl m (normalizedby uw~�� � ).

3. MULTIFRA CTAL WAVELET MODEL

ThebasicideabehindtheMWM is simple.To preservenon-
negativity, we usethe Haarwavelet transformwith special
wavelet-domainconstraints.To captureLRD, we mimic the
waveletenergy decayasa functionof scale.

3.1. Haar waveletsand non-negativeData
Beforewecanmodelnon-negativesignalsusingthewavelet
transform,we must develop conditionson the scalingand
wavelet coefficient valuesfor & in (3) to be non-negative.
While cumbersomefor a generalwaveletsystem,thesecon-
ditionsaresimplefor theHaarsystem.In a Haartransform,
thescalingcoefficientscanberecursively computedusing

* CEI 3 ( � # ,_]2143 � * CE� ] I ( A G CE� ] I ( �* CEI 3 ( � ] � # ,_]2143 � * CE� ] I ( ; G CE� ] I ( �wa (4)

For non-negative signals, * C4I (�� � �8��O)� = , which with (4)
impliesthat � G CEI ( ��� * CEI ( � ��O)� = a (5)

3.2. Multiplicati vemodel
The positivity constraints(5) on the Haar wavelet coeffi-
cientsleadusto averysimplemultiscale,multiplicativesig-
nalmodelfor positiveprocesses.Let � CEI ( bearandomvari-
ablesupportedon theinterval � ;  �  �� anddefinethewavelet
coefficientsrecursively byU CEI ( � � C4I (o� C4I ( a (6)

Togetherwith (4), we obtain(seeFigure2(b))� CEI 3 ( � # ,_]2143 �  A � CE� ] I ( � � CE� ] I (� CEI 3 ( � ] � # ,_]2143 �  ; � CE� ] I ( � � CE� ] I ( a (7)

We usebetadistributionsfor � CEI ( .



3.3. Multifractal analysis
TheMWM is a multiplicativecascade[5]. Cascadesareas-
sociatedwith a powerful tool called multifractal analysis,
whichprovidesastatisticallanguageandcalculusto charac-
terizeburstiness.

At theheartof multifractalanalysislies themultifractal
formalism [5], which relatesthe scalingbehavior of sam-
ple momentsof a traceto the frequency of occurrenceof
“bursts” of differentstrengthin that trace. This formalism
exploits the momentsof all orders,unlike the conceptof
LRD that relieson second-orderstatisticsonly. The multi-
fractalformalismrelatesnon-Gaussianityandburstinessex-
plicitly andfurnishesa solid formalismon which to explain
thesuperiorityof theMWM overGaussianmodelsin model-
ing burstynetwork traffic loads.Moreover, this formalismis
instrumentalin relatingtheburstinessof traffic to the range
of buffer sizesfor which themultiscalequeuingformulaof
Section4.2is valid [8].

4. NETWORKING APPLICATIONS

The MWM hasproven to be a versatilemodel,mainly due
to its simplestructure. This sectionoverviews someof its
applicationsto networking.

4.1. Traffic synthesis
The MWM providesfastsynthesisof traffic for simulation
purposes.Startingfromthetopnode,

� - / I S , of theHaarscal-
ing coefficient tree(seeFigure2(a)),thescalingcoefficients
atafinerscalesarecomputediteratively by applying(6) and
(7) thus obtaininga realizationof the process. In essence
the algorithmsimultaneouslysynthesizesthe wavelet coef-
ficients and inverts the wavelet transform, requiring only�������

operationsto createa length-
�

signal.
By specifyingthevariancesfor the � CEI ( , we canmodel

the time-domainLRD or covariancestructureof a signal
through the energy decayof its wavelet coefficients with
scale

O
[5]. TheMWM constructionguaranteesdecorrelated

wavelet coefficients. Typically, the residualcorrelationbe-
tweenthe wavelet coefficients of LRD processesis small,
andthereforewecanapproximatethetime-domainbehavior
of suchLRD processesquiteaccurately.

4.2. Multiscale queuing
Datapacketsaremultiplexedandqueuedat Internetrouters,
wherethey aredelayedandoftendiscarded(or dropped)due
to overflow. Thequeuingbehavior of traffic is thuscrucialto
network performance.Traffic modelswith tractablequeuing
analysescanhelp understandandamelioratenetwork con-
gestion.Thoughthequeuinganalysisof classicalmodelsis
well developed,mostqueuingresultsfor LRD modelsare
valid only for asymptoticallylargequeuesizes,thuslimiting
their utility for realnetworkswith finite routerqueuesizes.

TheMWM, however, possessesa non-asymptoticqueu-
ing formula [4]. Exploiting the binary treestructureof the
MWM (seeFigure2), wehavedevelopedaqueuingformula
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Figure3: Accuracy of MWM queuingbehavior andthemultiscale
queuingformula(MSQ).TheMWM matchesthequeuingbehavior
of realWAN traffic [3] accurately. TheMSQformulais anaccurate
approximationto theMWM queuingfor all queuesizes.

applicableto tree-basedmodelsfor any finite queuesize(see
Figure3).

The queuelengthof an infinite-lengthbuffer with con-
stantlink capacity � (assumingthe queuewasemptysome
time in thepast)obeys theidentity� ���E�@�� ��� � � � ; ��� �wa (8)

Here
� � � � is the total traffic that enteredthe queuein the

past � time instants. In otherwords, the queuesize
�

is a
function of the traffic arrivals aggregatedover time scales
of � time units. In the multiscale representationof the
MWM model, suchaggregatesappearexplicitly at dyadic
time scales( � � #T�

) astheHaarscalingcoefficients(up to
normalizationconstants).Weexploit thefactthatthescaling
coefficientsarerelatedto eachotherby independentrandom
multipliers

# ,:]E143 �  )� � CEI ( � to deriveanapproximationto the
tail queueprobability � �V� �X� � calledthemultiscalequeu-
ing formula(MSQ) [4]. TheMSQcanbedirectlycomputed
from thedistributionsof � C4I ( .

From Figure 3 observe that the MWM has tail queue
probability very closeto thatof the real traffic andthat the
MSQaccuratelytrackstheMWM’ squeuingbehavior. These
make theMWM usefulfor numerouspracticalapplications
likeend-to-endpathmodeling.

4.3. End-to-endpath modeling
Packetsfrom network connections,while traveling from one
endof theInternetto theother, passthroughseveralrouters
wherethey aremultiplexed with traffic from otherconnec-
tions(end-to-endpaths).A betterunderstandingof thetraffic
dynamicson anend-to-endpathwill greatlybenefitthede-
sign anddevelopmentof future network control algorithms
andprotocols. Two factsmake this task difficult. First, it
is unrealisticto expectinternalroutersto determineandre-
port theseproperties,becausethis would requiretheirmain-
taining overwhelmingamountsof stateinformation. Thus
it becomesnecessaryto infer the propertiesby sampling
thecurrentnetwork statethroughprobepackets(end-based
measurements),whicharerelatively easyandinexpensiveto
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Figure4: Cross-traffic estimationvia end-to-endpathmodeling.
We modelan end-to-endpathasa singlebottleneckqueuefed by
cross-traffic from theMWM andestimatecross-traffic volumesvia
efficient exponentiallyspaced“chirp” packet trains.

make. Second,modelingevery aspectof theseveralrouters
that comprisean end-to-endpath has proved intractable,
thus necessitatingreduced-complexity models for end-to-
endpaths.

The MWM inspires a simple edge-basedalgorithm,
Delphi for estimatinginstantaneousvolumesof competing
cross-traffic from delaysexperiencedby probepackets[6].
Delphi usesa simplereduced-complexity model for an en-
tire end-to-endpath:a singlebottleneckqueuewhereprobe
packetsare multiplexed with competingcross-traffic mod-
eledby theMWM (seeFigure4).

Inherentin any probingschemeis an uncertaintyprin-
ciple or “accuracy-sparsity”tradeoff. Thevolumeof cross-
traffic enteringaqueuebetweentwo probescanbecomputed
exactly from their delayspreadat the receiver provided the
queuedoesnot emptyin between.Unfortunately, this situa-
tion is guaranteedonly if theprobesareverycloselyspaced.
However, sendinglongtrainsof narrowly spacedprobeswill
congestthe network andaffect thevery cross-traffic we are
trying to measure.If probesarespacedfar apart,then the
queuecanemptyin between,which resultsin uncertaintyin
thecross-traffic volume.

Delphi balances this “accuracy-sparsity” tradeoff
through a “chirp” probing packet train that matchesthe
binary tree structureunderlyingthe MWM (seeFigure 5).
The first threeprobesof the chirp arespacedcloseenough
to provide exact estimatesof the cross-traffic at the bottom
of the binary tree, i.e.,

� C4I S and

� CEI ] , and thus

� CE� ] I S .
The succeedingprobesareexponentiallyspacedto reduce
the probe traffic load, thus reducing their impact on the
cross-traffic. Using an approximatemaximum likelihood
estimatorbasedon the MSQ, we can recursively estimate
the scaling coefficients

� CE�_§¨I S from

� CE�_§ ,:] I S and the
queuingdelay experiencedby probe � §©� 3 . The recursion
haltswhena requiredcoarsestscaleis reached.Delphi does
not require a priori statisticsof cross-traffic and usesan
adaptive algorithmto estimatethemodelparameters.It has
performedwell in simulation experiments(seeFigure 6)
andis beingdeployedin theInternet.
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5. CONCLUSIONS

Thereis a greatneedfor new analyticaltoolsto helpunder-
standandimprovecurrentnetworks.We havepresentedone
suchtool, theMWM, whichthoughsimplehasproveduseful
for realnetworking applications,includingtraffic synthesis,
queuinganalysis,andend-to-endpathmodeling.
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