STATISTICAL SCALING ANALYSIS OF TCP/IP DATA USING CASCADES
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ABSTRACT

The scaling properties of Internet data are analysed in detail
through the unifying viewpoint of Infinitely Divisible Cas-
cades. ;From exceptionally precise TCP/IP traffic traces
are extracted time series including arrival rate, durations,
and interarrival times of TCP connections. We show that
IDC’s offer a pertinent description of these series. Rela-
tions between them are investigated, yielding insights on the
sources of the scaling and possible modelling approaches.

1. MOTIVATION

The performance of packet networks, ultimately the losses
and delays experienced by packets, is strongly dependent
on the nature of the traffic carried. Not only mean rates,
but the detailed structure of the traffic flow, its burstiness,
has a major impact. This structure is very rich, and it is
well accepted [6] that scaling properties and models are the
natural language to describe it: traffic has fractal features.

In this paper we consider TCP/IP traffic, the dominant
traffic protocol in many networks including the Internet.
The existence of Long-Range Dependence (LRD) in such
traffic is now well established [6], and recent work has shown
the relevance of multifractal models [5, 12]. A preliminary
study [13] showed that the more general Infinitely Divisible
Cascade (IDC) framework can lead to further insights. Mul-
tiscaling, multifractality and hence exact self-similarility are
all special cases of Infinitely Divisible Cascades. We ex-
pand on this work by looking at new, more accurate and
longer data sets, a greater range of time series derived from
them, and use a richer set of statistical methods. From the
wavelet coefficients of the time series, we use tools we have
developed to detect the presence of scaling and the corre-
sponding range(s) of scales over which it exists, and second,
to estimate the corresponding cascade parameters. Particu-
lar attention is paid to discriminating non stationarity and
scaling phenomena, and related estimation issues.

The nature of traffic is evolving rapidly, however we be-
lieve that detailed scaling behaviour cannot arise by chance
but reflects the presence of robust natural underlying mech-
anisms. On large time scales the fact of heavy tailed file
sizes is one such mechanism for the generation of LRD. Over
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small time scales, recent work [4] suggests several contribut-
ing factors for the source of multifractal behaviour, however
many questions remain unanswered. It is beyond the scope
of this paper to enter deeply into the network origins of
complex scaling, however we go beyond the aims of [13] by
investigating relationships between the scaling found in dif-
ferent time series, in order to isolate the possible sources at
the statistical level, and inform parsimonious modelling.

2. DATA

We use exceptionally precise TCP/IP data made available
by the WAND group at the University of Waikato. This
archive, the ‘Auckland II' traces, are taken from both di-
rections of the access link of the University of Auckland
to the external Internet. The capture hardware developed
at WAND (measuring ATM technology at 155 Mbits/s for
Auckland II) is capable of loss-less measurement with syn-
chronized timestamps accurate to below 1us. Refer to
http://wand.cs.waikato.ac.nz/wand/wits /indez.html and [9]
for full details. The two traces analysed here are described
briefly in the table below. Packets consist of a header, where

Trace || length used | begins: (h:m:s) | # IP pkts
Nov29 20:44:24 13:42:58 1999 | 31.3 million
Feb3 05:15:45 11:29:52 2000 14 million

addressing and control information is kept, and a payload,
the actual data to be transmitted. Internet Protocol (IP)
packets carry payloads across heterogeneous networks with
no mechanism for reliable delivery, and no knowledge of
the whole of which they are a part. The User Datagram
Protocol (UDP) uses this basic service to transmit blocks
of data in one direction to an end process. Transmission
Control Protocol (TCP) packets are also carried in IP pay-
loads. Information in the TCP headers, together with state
information in the TCP/IP program stack running on end
computers, constitutes a two-way TCP connection (TCPC)
between end points which provides higher level services such
as retransmission of lost packets, and flow control. Web ses-
sions involve many TCPCs, ensuring the error free delivery
of text, images and other data.

(From raw data the number of TCP payload bytes and
packets in bins of size § = 40ms were extracted to form the
IP-level time series IPbytTCP and IPpktTCP, and similarly
IPpktUDP and IPpktUDP count UDP payloads. TCP-level
time series require the tracking of packets belonging to indi-



vidual TCPCs, a non-trivial task. For example many con-
nections begin but never terminate. At both IP and TCP
levels we consider only ‘complete’ connections which begin
and end correctly, and which transmit at least some data.
In our traces these constitute ~ 86% both of total connec-
tions and bytes, and ~ 90% of packets. Other connections
were examined but found not to have interesting scaling
properties. At the TCP level we study the following series
indexed by bin number: Arr, Dep, Act are respectively the
numbers per bin of TCPCs arriving, departing and active.
Other series are indexed by arrival order: Iar, Dur, Pkt,
Byt are respectively inter-arrival times, durations in ms,
and the number of packets and bytes for each TCPC.

3. ANALYSIS TOOLS

The scaling properties of the data are studied through the
analysis of the scale dependencies of their wavelet coeffi-
cients. Let X denote any of the time series introduced
above and let {Tx(a,t) = (X, ¥a,)} denote its wavelet co-
efficients, where the 9,,:(u) = a~'e(a"*(u —t)) are dilated
and translated templates of a reference pattern 1. For de-
tails on wavelet transforms, see e.g., [7].

The analysis tool used to study scaling is the so-called
infinitely divisible cascade model. An IDC relates the prob-
ability density function (pdf) of the log of the wavelet co-
efficients hx (a,t) = In|T'x (a,t)| at scale a to that at scale
a’ by a convolution kernel, called the propagator:

pa(h) = / Guor (h — b Ypor (R)dH, (1)

with the key assumption that the Laplace transform @a,a, (9)
of G, 4 (h) is separable in the variables a and g¢:

In|Ga,0r(9)] = H(g)(n(a) — n(a")). (2)

This definition, together with the fact that

InE[Tx (a,t)|]? = InEexp(qln |Tx(a,t)|) = an,nq"/n!,

n

where the c,,, are the cumulants of hx (a,t), yields

InE[Tx(a,t)|? H(q)(n(a) — n(a")) + nE|Tx(a’, 1)

Cn(n(a) — n(a"))
H(q)/H(p) n E|Tx (a,t)]” + Kq,p(a)
Can Cn/Cmca,m + ﬁn,m(a')

H(g) = 32,Cng"/nl 3)

the central consequences of the propagator, expressed in
equivalent moment or cumulant form. Note that H(q) and
n(a) are defined up to a multiplicative constant and a mul-
tiplicative and additive constant, respectively. For further
details on IDCs the reader is referred to e.g., [2, 13].

If n(a) = Ina, (3) implies that the IE|Tx (a,t)|? behave
as power laws of scale. If such behaviour holds in the limit
of small scales, the IDC reduces to a multifractal analy-
sis [11, 13], where the function H(q) is deeply related to
the (ir)regularity or high variability of the sample paths of
X. Rewriting H(q) = Ci(q + C2/(2C1)¢*> + ...), one sees

Ca,n — Cqa!' n

InE|Tx(a,t)|?

C2/(2C1) as a measure of the departure of H(gq) from lin-
earity and therefore of multi- versus mono-fractality. In
the even more specific case where n(a) = In(a) is valid
for all scales, H(q) = qH, and X is a H-self-similar pro-
cess [6, 1], and C; = H, C; = 0. LRD is another special
case, specific to ¢ = 2 and H(2) + 1 € (1/2,1], where a
power-law behaviour exists at large scales [6, 1], implying
that the past history of X has a non-negligible influence.
Note that this means that the traditional Hurst exponent
is H=H(2)+ 1~ C1+1 (since C> will be small).

When analysing data, the initial questions are i) can
we identify a range of scales where the IDC model ap-
plies, ii) can we estimate the corresponding H(q) (or equiv-
alently the C,) and n(a) functions? The favourable sta-
tistical properties of the wavelet coefficients of scaling pro-
cesses [1] indicate that the ensemble averages IE|Tx (a,t)|?
can be efficiently estimated by the time averages Sq(j) =
1/n; 3 [Tx(a = 27,27k)|? (n; is the number of coefficients
available at octave j). This technique has the advantage of
being insensitive to non-stationarites in signal variance. Be-
cause the wavelet coefficients are by nature centered about
0, the alternative of estimating the cumulants of their log-
arithm is a delicate task, but desirable due to their close
relationship with the IDC structure. To overcome the esti-
mation difficulties, we use the so-called wavelet transform
modulus maxima (WTMM) technique [8] which performs
time averages on the local maxima only. The fit to the
data is tested by checking the affine behaviours given in
(3), mainly those of log, S;(j) vs log, Sp(j). These same
relations yield estimators for H(gq) or the C,’s, and the
n(a). See [13, 2] for complete definitions, discussions and
algorithms. Finally, note that since the C,, are small, their
reliable estimation becomes increasingly difficult as n grows.
We therefore restrict ourselves to the estimation of the ap-
proximation H(q)n(a) = Ci(g + C2/(2C1)g*)(Ina).

4. DATA ANALYSIS

At the TCP level, for the Iar, Arr, Dep and Act time se-
ries, the results of the IDC analysis can be summarized
as follows (for space reasons only the Iar series appears in
figure 1). The log, Sq(j) vs log,(2?) plots (top left) show
two scaling ranges: coarse scales (CS) and fine scales (FS),
about a change point j«. In each range linear behaviour
is observed, indicating power law evolution of the S,(j)
with scale a = 27. The log, S,(j) vs log, Sp(j) plots, for
p,q € [0,5], (top right) have close to affine form over al-
most the entire range of available octaves and the estima-
tion procedures show (middle left) that n(a) is a piece-wise
log function with a knee around j., in agreement with the
log, Sq(4) vs j plots. Figure 2 shows the Gaussian like pdf
of the hx (j, k) for Iar over various scales (left plot) and the
effect of normalising them through the estimated propaga-
tor H(q)n(a) (right). The fact that the pdf’s collapse onto
each other is a clear visual validation of the IDC. Estima-
tion procedures for H(q) (middle right in figure 1) allow
us to claim that a small yet significant departure from the
simplest linear behaviour is observed. The table below gives
estimated C1, Cs and j. values for each times series for both
the coarse (CS) and fine (FS) scales.

For the coarse scales, the estimated C; values together



| [ FS [j.] CS | ¥S [J4. ] CS |

Tar Act
Ci -032 | 6 | -0.20 | 0.48 | 8 | 0.43
C2/2C1 || 0.03 0.02 | -0.02 -0.02
Dep Arr
Ci -0.54 | 8 | -0.25 | -0.54 | 8 | -0.25
Cy/2Cy || -0.02 -0.04 | -0.02 -0.04
IPpktTCP TPpktUDP
C1 -0.32 | 8 | -0.08 | -0.42 | 8 | -0.20
Cy/2C; || -0.05 -0.19 | 0.06 -0.12

with the fact that n(a) « In(a) indicates LRD with pa-
rameter H ~ 0.8 + 0.05 for Iar, Arr and Dep while Act is
H-self similar: H ~ 0.45 + 0.05. The C; and C> estimates
for the fine scales together with the fact that n(a) o In(a)
can be interpreted as multifractal behaviour, as concluded
in [13]. Rather than trying to infer multifractal spectra, a
difficult task given the poor precision of Cs, we emphasise
that it is mainly because the C1’s at fine scales differ and
are smaller than those at large scales that accounts for the
high variability of the sample paths, rather than mono vs
multi-fractality as such.

Of particular interest is that all the measured scaling
behaviour, as well as first order statistics and marginal dis-
tributions, yield astonishingly similar results for Arr and
Dep, indicating strong dependence. Moreover, the C1’s at
fine and coarse scales for Act are much closer to each other
than for the other time series, indicating that the IDC is al-
most scale invariant (i.e., n(a) = lna,Va). Since Act results
from combining Arr and Dep, this again suggests strong de-
pendence between the two.

When applied to Dur, the scaling analysis machinery
leads to observations qualitatively similar to those above.
However, the suspicious parameter values obtained indi-
cated the possibility that this was an artifact generated by
infinite moments in the series, as discussed in [3]. A care-
ful analysis based both on arguments in [3] and estimates
of marginals confirmed this, revealing that the structure of
Dur is that of weakly dependent random variables, with
heavy power law tails of infinite variance and possibly no
mean. The series Byt and Pkt showed not only remarkably
similar properties to Dur, both scaling and otherwise, but
considerable dependence at the sample path level.

Analysis of the four IP level series led to similar ob-
servations: piecewise log IDC for the full range of scales
with LRD over the coarsest scales and multifractality at
the finest. Furthermore for each of the UDP and TCP
protocols the IPpkt and IPbyt series were very closely re-
lated. However, the estimates of the C; (this includes the
LRD exponent) and C» differed significantly between UDP
(H ~ 0.8) and TCP (H ~ 0.92) (see table above). Exam-
ining the incoming and outgoing traffic separately yielded
identical conclusions.

It is immediately obvious from low resolution plots (see
the WAND web page), that the traffic is non-stationary, for
example there is a clear diurnal cycle in both load (mean)
and variance, and to a lesser extent there are changes in
scaling properties also. The results presented here were ob-
tained from subsets of the time series where ”stationnarity
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Figure 1: Scaling for IAR time series. Top: evidence
for IDC; Middle: measurement of its propagator from the
S,(7); Bottom: measurement of its propagator from the

Ca,n-

of the scaling properties” was observed, that is where esti-
mation on even finer subsets yielded compatible conclusions
and parameter values. To investigate dependencies between
load and scaling behaviour, the data was split into subsets
of low, medium and high load level. The scaling proper-
ties at CS did not significantly depend on the load level,
as opposed to that at FS where the C1 and C5 estimates
over adjacent blocks (Figure 3) closely reproduced the time
evolution of the average load and power. Further work is
needed to see if this is a true dependency or due to high es-
timation variance at low load. The results presented above
were for high or medium load. We also noted in several
series that the variance to mean ratio was approximately
constant over time, consistent with the superposition of a
varying number of processes with similar characteristics.
To conclude, IDC models provide a good description
of the scaling of the data over almost the entire range of
scales present. The main feature of the observed IDCs is
that n(a) # In(a), they are not scale invariant. Instead,
the n(a) are piecewise log with a change point around j..
For each series, j« corresponds to a characteristic time of
2.5 to 3.5 seconds, in keeping with findings in [4], and of
our own measurements of round trip times of TCPC’s. As
H(q) was always close to linear, the approximation H(q) =
C1q + C2q/2 was used, suggesting the cumulant based es-
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Figure 2: Pdf’s of the log wavelet coefficients for Iar.
Left: pdf’s at octaves 6 to 11 from left to right; Right:
collapsed pdf’s using the estimated propagator H(g)n(a).

timation method and focusing it to four parameters, j.,
the Ci at fine and coarse scales, and C2/(2C1). Key open
questions include the origin and implications of the piece-
wise log behaviour. The great similarity between the Arr
and Dep series, the i.i.d. heavy tailed nature of Dur and its
close relation to Pkt and Byt, are also noteworthy.
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5. MODELLING OF DATA

Rather than attempting unrelated ‘black box’ models of
each series separately, two hybrid models incorporating both
empirical and modelled data are presented here which help
understand underlying structural features of the data.

The great similarity between the Arr and Dep series
suggests a coordination between the TCPC arrival process
and connection durations which belies the latter’s appar-
ently simple i.i.d. structure. To investigate this mystery,
actual arrival times were obtained from the Iar series, to
which i.i.d. Pareto distributed durations were added with
parameters fitted from Dur, to generate a set of surrogate
departure times. These were binned to form a hybrid Dep
series which shows remarkable similarities with the original.
Notably, an IDC model applies with similar exponents to
that of Dep, although j. is one larger. This clearly shows
that the similarities between Arr and Dep do not require
a subtle interconnection. On the contrary, the structure of
Dep is derived from that of Arr, and is somehow preserved
from Arr even after a drastic random reordering.

The close connection between Byt and Dur suggests a
very simple relationship: that often the large scale data
rate of connections are independent of their duration. This

in turn suggests a very simple model for how IPbytTCP
could be generated from Iar and Dur, namely that the total
number of bytes in each connection be spread out evenly,
a constant bit rate within each TCPC, and then added in
bins across connections. Generating a surrogate IPbytTCP
series in this way and comparing, we see a good corre-
spondance at large scales, but utterly different behaviour
at small scales. This strongly suggests that the rich struc-
ture of Iar is not sufficient to explain that of the final data
stream, rather, the non-trivial burstiness within connec-
tions must be included, in keeping with conclusions from
[4]. Similar results apply for IPpktTCP.
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