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ABSTRACT

Inferenceof network internallink characteristichasbe-
comeanincreasinglyimportantissuefor operatingandeval-
uatinglarge telecommunicatiometworks. Sinceit is usu-
ally impracticalto directly monitor eachlink alonga spe-
cific path, end-to-endprobesare sometimesusedto col-
lectlink characteristiégnformationat edgenodesof the net-
work. This paperdealswith unicastprobing methodsfor
estimationof link delay characteristics.Unicasttraffic is
easyto generateandis supportediy almostevery network
currentlyin operation.Underthe assumptionshatlink de-
laysarespatiallyandtemporallyindependentye proposea
biascorrectedestimatorfor theinternallink delaycumulant
generatingunction (CGF) basedon unicastprobeend-to-
enddelaymeasurementd.hroughsimulationwe shav that
the proposedestimatorattainsa level of meansquareder-
ror comparableo link delay CGF estimatebtainedfrom
directly measuredink delay statistics. We can usethese
CGF estimatedgo estimatedelay mean,varianceand level
exceedanc@robabilitiesfor eachlink.

1. INTRODUCTION

Network monitoring, predictionanddiagnosisarevery im-
portantissuesfor network operatorsand designers.How-
ever, thesearechallengingproblemsdueto severalfactors:
(1) directmeasuremertf paclettransporstatisticsareusu-
ally impossible- internal nodesmay not supportsuchdi-
agnosticor thesediagnosticsmay be disabledto minimize
overhead(?2) theinternalparametersf ISPcontrolledlinks
areusuallyinaccessibldo outsiders. Network monitoring
algorithmscanbecateagorizedinto two differentgroups:pas-
sive andactive methods Active methodssendspecialpack-
ets, called probes,over known routesthroughthe network
to measureend-to-enddelay paclet errorrates,andpacket
loss probabilities. Vardi [1] proposeda network tomogra-
phy methodto estimatesource-destinatiotraffic intensities
by monitoringthe link countdata. This problemwas fur-

therinvestigatedy Cao,etal [2] for the caseof time vary-
ing network transportcharacteristics.The methodsof [1]
and [2] are passie as no probesare used. Active prob-
ing methodsare an alternatve way to collectinternallink
statistics Despitethefactthatactive probesmayperturbthe
network traffic, thesemethodscangive morereliableinfor-
mationaboutlink behavior thanpassie methodsThereare
two kinds of active probingschemesunicastandmulticast
probing. Sereral paperson link bandwidthmeasurement
proposeaunicastprobeqe.g.,Jacobsoifi3], Downey [4], Lai
& Baker[5]). Multicastprobesarealsowidely usedto per
form inferenceof link delaydistributions,internallosschar
acteristicsandnetwork connectvity. (e.g.,see[6] [7], [8],
[91).

In this paperwefocusonestimatingheinternallink de-
lay cumulantgeneratingunction (CGF). Packet delaysare
dueto threefactors:(1) queueingdelays,which dependon
servicetimesandbuffer occupang; (2) transmissiomlelays,
whichdependn pacletsizeandlink datarate;(3) propaga-
tion delayswhichdependnthetransmissiomedium.The
sum of thesedelaysover a route canbe measuredy end-
to-enddelaysof unicastprobessentover the route. After
collecting a sufficient numberof theseprobes,an overde-
terminedsystemof equationss constructedor the delay
CGFs.Basedon a least-squar@pproximationwe propose
abiascorrectedestimatorfor eachinternallink delayCGFE
We evaluateperformancef thealgorithmusingthens net-
work simulationprogram[10]. Sereral measureof per
formanceare investigated,ncluding overall mean-square
goodnes®f fit of the estimatedCGF to the empirical CGF
andcorrectbottleneckdetectionprobability andbottleneck
localization.

The paperis organizedas follows. In section2, we
describethe network delay model. Section3 presentshe
bias correctedinternal link delay CGF estimator Section
4 presentsheresultof computersimulationscomparinghe
biascorrectedo thesampleneanink delayCGFestimates.
In section5, we presentseveral applicationsandextensions
of ourtechnique.



2. NETWORK DELAY MODEL

Let a communicatiometwork consistof m internallinks.

Identicalprobepacletsare sentthroughn pathsacrossthe

network. Supposeve know theroutingof eachof theprobes
which specifieshenxm proberoutingmatrix A. A hasele-

mentsa;; equalto 1 whenprobepath: intersectdink j, and
equalto 0 otherwise.Let M; denotethe setof link indices
whichcomposehesith probepath,s = 1,... ,n. ThenY; =

EjEM,- X;; is the measuredend-to-enddelay of a probe
transmittedalong the ith pathwhere X;; is the delay en-
counteredy probei acrosdink j andi = 1, ... ,n. Define
the end-to-encprobedelay CGF Ky, (t) = log E[e*¥:] and
thelink delayCGF of the jth link Kx, (t) = log E[e!*#],

j € M;, with CGF parametet, ¢t € (—oo0,00). We make

the following spatialindependencand stationaryassump-
tions, respectiely:

Al) Thelink delaysX;; are mutually independentj €
Mi,’l: = ].,... , M.

A2) If pathsof probei andprobek both containa com-
mon link j, then X;; and X;; have identical CGF
denotedK x; .

The CGFof Y canthereforebeexpresseds
Ky,(t) = logE [e"]

= logE [et(zjeMi X“')]

= log{ 11 E [etX”]}

JEM;

= Z log E [etX"f]

JjeM;
= > aij - Kx,(®)
j=1
= Ay - Kx(t) 1)
where A(;, denotesthe ith row of the routing matrix A
andKx (t) = [Kx, (t), ...,Kx,, (1)]" (T denotegrans-
pose).Thuswe canexpressthevectorof end-to-endCGF's
Ky (t) = [Ky, (t), ..., Ky, (t)]" bythelinearrelation
Ky (t) = A- Kx(t). ®)

Whenn > m and A is full rank, the relation (2) is in-
vertible and thus Kx (t) can be determinedfrom Ky (¢)
by the formula Kx (t) = (ATA)"'ATKy(t). Let B =
(AT A)~1 AT thenwe have

n

Kx;(t) =) bji - Ky, (t). 3)

i=1

A full rankmatrix A canbeensuredy makingn > m, and
selectingdistinctprobepathswhich coverthe network, i.e.,
every link is containedin somepath. When A is not full

rank, only linearcombinationsof link CGF's lying outside
of thenull spaceof A canbedeterminedrom (2).

3. ESTIMATION OF CGF

Let V; bethenumberof probescollectedfor agivenpathi,
i=1,...,n. Define

N;
N 1 - .
My, (1) = 5 D _e™, @
! k=1

whereY;;, is the measurednd-to-enddelay of the kth re-
ceived probealongpathi. We obtainestimatef the vec-
tor Kx(t) from My(t) = [My,(t)... My, (¢)]" by the
methodof least-square@.S). Notethatas My; (t) is anun-
biasedestimateof themomenigeneratingunction My; (t) =
k¥ (), aplausibleestimatoffor K x; () in (3) would bethe
method-of-momentestimatg MOM):

Ry, =3 by -log A0) (5)

i=1

Unfortunately this estimatoris biaseddueto non-linearity
of thelog. In orderto obtaina biascorrectedestimatorfor

Kx;, (t), we apply a techniquesimilar to that of Gibbens
[11]. In[11] linearizationwasusedto derive biascorrected
estimatordor effective bandwidth, whichis of similarmath-
ematicaform asthecumulantgeneratindgunction. Obsene

thataslog(l + u) = u — % + H.O.T.

5 N bji
K%, (t) =log {H;;l <Myi (t)) } -
og { T 0 [ 0] = (T2, 2 [ 0] -

(
| J (MY (t)) bﬁ)} N . (1 bji

Hi"=1 (MYi (t))bﬁ
(B[, (1))

a reasonablavay to correctthe biasis to use(3) with an
estimateof w;:

wherew; = 1 — This suggestghat

R, (6) = 3 byiog (W, (1)) + Blus] + 3 Blu?], (6)

i=1



whereE][-] denoteempiricalaveragefor whichwe useMOM
estimates

R N bjs
[T, B | ( My, (2)
Blw)] = 1- A[li(t) ) ] (7)
21T, B | (My.(t) ™
Ewl = 1- M[i(t) ) ]+
. 2 | (3 0) ™| 9
P ©

M x, (t) is an estimateof the momentgeneratingfunction
of link delayatlink j, which canbe obtainedfrom

My, (t) = f[ (My (t))bf’ .

i=1

(10)

N N bji
We obtainthe empirical averageE [(My (t)) ] by im-

plementinga sliding window methodwith window size W
andstepsizeS. Definethenumber,, = | ¥ | of win-
dow increments

bji

R R bji Ny 1 1 (I-1)S+w
B [(Myi(t)) ] S vl X e
=1 " k=(1—1)S+1

(11)

~ N 2bj;
We obtain the empirical average E [(My (t)) ] in a

similarmanner

4. EXPERIMENTAL RESULTS

We usedthe ns network simulatorprogramto performa
TCP/UDP simulation of the network in Fig. 1. Probes
weresentthrough5 differentpathsin orderto estimatede-
lay CGFfor 4 links. Thetopologyis shovn in Fig. 1, and
thecorrespondingoutingmatrix A4 is

1100
101 1
A=]101 0 (12)
001 1
0100

We setup a similar testervironmentto thatreportedin
Prestiand Duffield [9]. All the links to be estimatedhad
bandwidtrdMb/secwith latengy 50ms.Eachlink wasmod-
eledasa Drop-Tail queue(FIFO queuewith finite buffer).
Thequeuebuffer sizeswere50 paclets.We generategrobes

Probe5 %

Link 1

Probel
Probe2
Probe3

Link 3

1 S 0———0

Fig. 1. Proberouting pathsfor the experimentdescribedn
Section4

Delay CGF at Link 4
T T T

— Sampled Delay CGF
~ - Bias Corrected Delay CGF Estimate
Biased Delay CGF Estimate

Fig. 2. Link delay CGF at link 4 in the ns simulationde-
scribedin Section4

as 40 byte UDP paclets. The probetransmissionsvere
generatedndependentlyat eachsourcenodeaccordingto
a Poissonprocesswith meaninterarrival time being 16ms
andrate20Kb/sec.Thebackgroundraffic consistedf both
Exponentialon-off UDP traffic andFTP traffic.

N probeswere collectedfor eachpath for a total of
5xNN probes. We estimatedeachprobequeueingdelay by
substractinghe minimum probe delay over the N trials.
This provides a biasedestimateof queueingdelay across
the probepath sincethe minimum probedelayis a biased
estimatorof transmissiordelayplus lateng. However, the
biasdecreasess1/N. In orderto estimatethe expected
valuesin (8) and(9), we setthe window size W to be 2/3
of N, andthewindow shift stepsize S to be 10 probedelay
samples.

We comparedhe proposedbias correctedestimatorto
thebiasedestimaton(5) for K x (). We evaluatedthe CGFs
overtheranget = —200 to ¢ = 200. Comparingthe esti-
matesof CGF of sampledink delayswith andwithoutbias
correctionin Table1, we canseethatthe proposedestima-
tor achieveslower MSE. The correspondingstimatedCGF
for Link 4 is shovn in Fig. 2. Theseresultswereobtained
by using N = 1500 probesperroute.



Table 1. MSE of KXj (biascorrected)and f(&j (no bias
correction)

Link 1 2 3 4
MSEof Kx, | 0.0086| 0.0247| 0.0483| 0.0096
MSE of KS(J, 0.0060| 0.0326| 0.0644| 0.0325

5. APPLICATIONSAND EXTENSIONS

Eachlink delayCGFpreseresall thestatisticainformation
of thedelaysinceit is thelog of the Fouriertransformof the

link delayprobability densityfunction. We canaccurately
estimatemary featuresof the delay distribution from the

delay CGFE Herewe give resultsfor Bottleneck link detec-

tion We definea bottleneckasthe eventthatthe probability
of alink delayexceedingsomedelaythreshold’ exceedsa

prespecifiedhresholdP. By the Chernof bound,

P(X; >0) <e YE[eM] = P. (13)

By appropriatelyselectinghethreshold andathresholdP

closeto 1, we candetectabottlenecHink by testingwhether
max;—1,.. nP; > P In Table2, we shav the Chernof

bounddor P(X; > ¢ = 0.02s) whichwereestimatedrom

the computersimulationin Section4. By settingthreshold
P to be0.95,we canidentify link 3 asthebottlenecKink.

Table 2. Chernof boundandempiricalestimateof P(X; >
0.02) for eachlink delayin Section4

Link 1 2 3 4
P; 0.7517| 0.4030| 0.9620| 0.9012
P(X; >0) | 0.2504| 0.1921| 0.3447| 0.2790

6. CONCLUSION AND FUTURE WORK

In this papemwe proposediunicasimethodo performinfer-
enceoninternallink delaycharacteristicsWe derivedabias
correctedestimatorfor internallink delay cumulantgener
ating functionsbasedon LS approximation.The proposed
estimatorwasevaluatedoy ns simulationswith TCP/UDP
backgroundraffic and FIFO finite buffer link queues.The
MSE of the proposecdestimatoris lower thanthat of the di-
rectbiasedsamplemeanestimator

In the future, we will look into the following issues.
First, our proposedestimatorassumesstationarity of the
network over the probing period (AssumptionA2), which
maybeviolatedin realapplications Someadaptve estima-
tion mustbe donein orderto track the true link delaydis-
tributions. Besidesijf theinternallink delaysarespatially
dependenta moresophisticateanodelmustbeused.
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