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ABSTRACT

We considersemiparametricfractionalexponential(FEXP) esti-
matorsof the memoryparameter� for a potentially nonstation-
ary linear long-memorytime serieswith smoothadditive trend.
We usedifferencingto annihilatethe trend,followed by tapering
to handlethe potentialnon-invertibility of the differencedseries.
We proposea methodof pooling the taperedperiodogramwhich
leadsto moreefficientestimatorsof � thanexistingpooled,tapered
estimators. We establishasymptoticnormality of the estimator.
Finally, we considerminimax rate-optimalityandfeasiblenearly
rate-optimalestimators.Somesimulationsarepresentedto illus-
trateourfindings.Applicationsto measuretheHurstcoefficientof
network traffic datawill bepresentedatthetimeof theconference.

1. INTR ODUCTION

In contrastwith wavelet basedtechniques[1], most Fourier do-
main estimatorsknown to date fail in the presenceof additive
trends. This featureis very annoying whenanalyzingreal-data,
becausethepresenceof additive trendsis the rule ratherthanthe
exception. A possiblesolution to combatthesetrendswas pro-
posedby [3], who recommendeddifferencingthedata� timesto
eliminatethetrend,followedby taperingwith anew classof tapers
thatareinvariantto themeanandwhich afford sufficient leakage
control to offset thepotentialstrongnoninvertibility of thediffer-
encedseries. Theseestimatorssomehow mimic the behavior of
thewaveletestimatorswhich alsoimplicitly usea combinationof
differentiation(the orderof differentiationbeing linked with the
numberof vanishingmomentof thewavelet)andtapering.

In thispaper, weconsiderFEXPintroducedin [5, 7] estimators
of � for a potentiallynonstationarylinearserieswith smoothad-
ditive trend.Weusedifferencingandtaperingasdescribedabove,
with a taperin the classproposedby [3]. We proposea method
of pooling the taperedperiodogramwhich leadsto moreefficient
estimatorsof � thanexistingpooled,taperedestimators.Thetech-
niquesto robustify the estimatorscan be appliedas well to any
periodogrambasedestimators,including,e.g. theGPHestimator.

2. MAIN ASSUMPTIONS AND NOTATIONS

In this section,we make precisesomenotationson the observed
processandon themaintool of analysis,i.e. theperiodogram.Let���	�
����
 �����

bea processwhose� -th differenceis stationaryfor
somenonnegative integer � , anddefine � ���
������
����

where

�
is thebackshiftoperator. It will beassumedin thesequelthat �

admitsa spectraldensity � thatcanbeexpressedas
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where � 1 is aneven,positive,continuousfunctionon 4 �6572�5 8 and� � �#$:9�;	< � <=$:9�;
. This assumptionis equivalent to the

existenceof a stationaryprocess� 1 with spectraldensity � 1 such
that �
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is definedby theinfinite seriesexpansion
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Note that, becauseof the differentiation,the process� might be
noninvertible.Define
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In orderto dealwith possibleoverdifferencing,theuseof a taper
is necessary. In a novel family of datataperis considered.Leta ��b T �c$6�B&^.A(+d � Z T
and,for any integer e>fhg , definethetaperedDFT of order e as
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where e is the taperorder and

j i?l �nm . ii�o is the normalization
constant. It is easily seenthat the taperedFourier transformis
invariant to shift in the meanand that the decayrateof the ker-
nel in the frequency domainincreaseswith thekernelorder. This
propertymeansthathigh-orderkernelsaremoreeffective in con-
trolling leakage,which is importantwhendealingwith possibly
non-invertibleseries.

Whenconsideringlog-transformof theperiodogram,it is ap-
propriateto usepooling,which consistsin computingaveragesof
periodogramvaluesalongblocksof size p , prior to logging. The



following pooling schemeis used. Define q l � q � p 2AV!2 e 
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Periodogramordinatesat p consecutive ordinatesareaggregated,
and e frequenciesaredroppedoutof every puK�e . Thiswill leadto
a lossof efficiency of order p 9R� p�K�e 
 , but considerablysimplify
the derivations. This loss is limited provided the pooling indexp���e (whichis in generalasafepractice;thepoolingsizeshould
nothowever bechosento largein orderto avoid toomuchbias).

As emphasizedin theintroduction,theprincipleof theFEXP
estimatoris to fit to the dataa finite dimensionalFEXP model
of order � , where � is a non decreasingsequenceof integersthat
dependsonthesamplesize

V
. Recallthatastationaryprocesswith

spectraldensity � satisfying(1) is a FEXPmodelof order � if
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sucha model, it is naturalto estimatesimultaneously� and the
coefficients � F by log-periodogramregression.In thecaseof inter-
esthere,thelog-periodogramregressionwill beperformedon the
log-pooled-taperedperiodogramof the � -times differencedpro-
cess � ���
�r����
 � �

with a datataperof order e�f�� (it is
of utmostimportancefor all the derivationsthat follow to match
the orderof differencingandthe taperorder). Denote � y b � b i �� H 4 � ��  � x� Sy b � b T b z 
�8 , where

� H standsfor theexpectationwhen � is
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When � is theonly parameterof interest,thecenteringterm � y b � b i
is irrelevantand

¥� y b � b i � � 
 canbeobtaineddirectly without com-
puting

¥� H 2]w]w]ws¥� � . To give theexplicit expressionof
¥� y b � b i � � 
 , we

needsomeadditionalnotation.Definethefollowing normon ¸ µ
: ¹[ºU¹ T �»;)5 q -WX ¼ µz G X º .z , let

< Q 2 Q�½ T denotethe associ-
atedscalarproductand identify any function ¾ with the vector� ¾ � ¡ X 
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�
 . Let ¿ � b T be the orthogonalprojectoron
the � -dimensionallinear subspaceof ¸ µ spannedby the vectors4 a H 2]w�w:wI2 a � -YX 8 . Note that thesevectorsareorthonormalw.r.t the
scalarproduct

< Q 2 Q´½ T . Denote
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Denotefinally Á T �#� � T b X 2:w]w�wW2 � T b µ 
0Â . It is theneasilyseenthat
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Whenthetruemodelis not of a finite order, theseestimatorswill
bebiasedby theremainderof theinfiniteseriesexpansionof � �� \� � 1 
 .

Assumingthat � 1 is positive over 4 �65!2�5 8 , define
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Usingthesenotations,theFEXPestimatorcanbedecomposedas¥� y b � b i � � 
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with
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The term Ç y b � b i � � 
 is a stochasticfluctuationterm andthe termÈ y b � b i � � 1 2 � 
 is a biasterm which dependson the short-memory
component� 1 andon the truncationindex � , but not on � , and
indirectly on p 2 � and e through the choiceof the frequencies¡ z . If
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, then
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 is controlledby therateof decayof thecoefficients� F . Moreprecisely,

Lemma 1 There existsa finite constantË which doesnot depend
on � 1 such that for all ��Ìhq 9�; ,
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3. THEORETICAL RESULTS

In the following sections,it is assumedthat � � e andthat the
trendis polynomial.Theresultsbelow hold with obviousmodifi-
cationswhenever e>fN� (notehowever thattaperingwill in general
introducesomelossesin efficiency). Extensionsto smoothnon-
polynomialtrends(which canbemodelledas

À���7� e �ÏÎ�9)VW
 K ���
where e is a smoothfunction)areconsideredin a forthcomingpa-
per. If thedifferencedprocess� �Ð�
���?��
����

is stationaryand
satisfiesequation(1), thenit admitsthespectraldensity
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To deriveasymptoticresults,assumptionsonthedistributionof the
driving noise Ò andon

j 1 arerequired.

(A1) Thesequence
� Ò �A
 ����� is i.i.d.,
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Regularity conditionsfor
j 1 areconvenientlystatedin termsof a

functionalclass.

Definition 1 For Ö ½ $
and × ½ $

, let Ø 1 � Ö 2 × 
 be the class
of positivecontinuouslydifferentiablefunctionsº on 4 �65!2�5 8 such
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Theorem1 Let � and p be integers such that ��f $
and pàfá

. Assume(A1) and that
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. Assumethat
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. If theFourier
coefficientsof
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shown that,for any given� , by increasingtheblocksizep , theeffi-
ciency losscanbemadearbitrarilycloseto thecorrespondingloss
incurredby taperingin theGaussiansemiparametricestimator.

4. MINIMAX ESTIMA TION

For simplicity, it is assumedin this sectionthat Ò � is Gaussian;it
is likely thatextensionsto moregeneraldistributionsarepossible
(andperhapsto linear processw.r.t to a martingaleinnovations),
but thewhole theoryin not yet available. The following proposi-
tion givesanexpressionmeansquareerrorof theFEXPestimator.

Proposition1 Let Ö ½ $
, let � bea nonnegativeinteger and ê X ã� g 2 �ªK $:9�;�
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in the taperedcase(i.e.��f $
). Then
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Lemma1 and Proposition1 yield a boundfor the meansquare
errorof

¥� y b � . Let ó bea decreasingsequenceanddefineô 1 � ó 
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Two examplesof sequencesó areof interest.For ù ½ g and ú ½g , let ó~û b ü � � 
~� ú �A$ K�� 
 - û anddefineý 1 � ù 2 ú 
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 .
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 . The
class � 1 � ù 2 ú 
 is of specialinterestsincethe spectraldensityof
any causalstableandinvertible ARMA processesis containedin
suchaclass.
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where

� / b ï^ð denotestheexpectationwith respectto thedistribu-
tion of a Gaussianprocesswith spectral density

& /�� � 1 . If g <ù <é$
and Ö ½ $

, there existsa constant
x�
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Correspondinglower boundsarediscussedin [4].

5. ADAPTIVE ESTIMA TION

In practice,automaticselectionprocedureis requiredto select � .
We adaptherea techniqueinitially proposedby [6], to selectthe
bandwidthin kernelestimator. Let

Å T a non-increasingsequence
suchthat
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where
 isaconstant(whosevalueisgivenbelow) and
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�8 . Let ¥� bethesmallestadmissibleinteger. Theadap-
tive estimatoris thendefinedas
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Considerthefollowing assumptions

(T1) Let ê X ã � g 2 �kK $)9�;�
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If adaptivity to thetargetfunctionis desired,thentheclass� 1 can
berestrictedto a singlefunction � 1 . If adaptivity in theminimax
senseis theobjective, thentheclass� 1 shouldbe,onthecontrary,
chosenaslargeaspossible.

Theorem3 Let ê X ã � g 2 ��K $)9�;�

and ê . ã � g 2:$:9�;�
 . Let � 1 bea

functionalclassandfor each � 1�ã � 1 , let � 1T � � 1 
 bea sequence
of integers such that (22), (T1), (T2) and (T3) hold. If 
 ½ ë

,
there existsa constant

� � ê X 2 ê . 2 � 1 2 
 
 such that for all � ã � 1 ,
for all � ã 4 � ê X 2 ê . 8 andfor large enough
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 . è y b � � � 1T � � 1 
�
 . � �� \�
VW
 K � � ê X 2 ê . 2 � 1 2 
 
0V -WX Q
We now illustratethe minimax adaptivity propertiesof the adap-
tive FEXP estimatorin the functional classesintroducedabove.
This amountsto finding a sequence� 1T suchthat (22) holdswith� 1T � � 1 
7� � 1T for all functions � 1 in agivenfunctionalclass.

Corollary 1 Let � be a positiveinteger, let ê X ã � g 2 � K $:9�;�
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. There existsa constantx� l � x� � ù 1 2 ù 1 2 ú 1 2 ê X 2 ê . 
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where here again
� / b ï^ð denotesexpectationwith respectto the

distributionof a Gaussianprocesswith spectral density
& /�� � 1 .

A logarithmiclossappearsherewith respectto theminimaxrates
of convergence.For theclassesý 1 , it hasbeenshown in [4] that
this lossis anunavoidablepriceto payfor adaptation.

6. SIMULA TIONS

In thissection,asmall-scaleMonte-Carloexperimentis presented.
Due to lack of space,only a very limited setof resultsareactu-
ally presented.Matlabcodesandextensive simulationresultscan
be found at http://www.tsi.enst.fr/moulines. In a first example,a
fractionalGaussiannoise(FARIMA(0,d,0))

Å z
is observedin pres-

enceof an additive perturbation,� z � � � v 9^VW
 K Å z
, where � is

a smoothfunction,here � �ÏÎ�
%�Ñ;)Î H�� � K Î
. Trendsof the form

Î��
arelong beenknown to induce”erroneous”long-memory. In this
simulation,thefractionaldifferencingcoefficient is setto � � g Q á
andthenumberof observationsis ��g�g�g . Thechoiceof thetrunca-
tion order � is basedon thedatadrivenproceduredescribedabove
with v j ��� j����

. Threedifferentsettingsareconsidered:theorig-
inal estimator(no differencingandno tapering),andtwo versions
of the proposedestimator(differencingonceandtaperingwith a
taperof order1, differencingtwice andusinga taperof order2).
In all cases,thepoolingsizeis setto p � � . It is easilyseenon
the boxplot 1 below that the combinationof taperinganddiffer-
encingeffectively leadsto a significative reductionof thebias,at

1The box haslines at the lower quartile, median,and upperquartile
values.Thewhiskersarelinesextendingfrom eachendof thebox to show
theextentof therestof thedata.Outliersaredatawith valuesbeyondthe
endsof thewhiskers.

the expenseof an increasein the variance(due to tapering). In
this example,differentiationof order 1 appearsto be sufficient
for the purposeof biasreduction. Increasingthe orderof differ-
entiationincreaseby a significantamounttheestimationvariance
(recall that, with p � � and � �â;

, the effective numberof re-
gressionpointsis almostreducedby a factor

;
).

diff. 0:taper 0 diff. 1:taper 1 diff. 2:taper 2

0.34

0.36

0.38

0.4

0.42

0.44

0.46

V
a

lu
e

s

Estimates of d: n= 5000, m= 5
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