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ABSTRACT

We considersemiparametridractional exponential(FEXP) esti-
matorsof the memoryparametew for a potentially nonstation-
ary linear long-memorytime serieswith smoothadditive trend.
We usedifferencingto annihilatethe trend, followed by tapering
to handlethe potentialnon-invertibility of the differencedseries.
We proposea methodof pooling the taperedperiodogramwhich
leadsto moreefficientestimator®f d thanexisting pooled tapered
estimators. We establishasymptoticnormality of the estimator
Finally, we considemminimax rate-optimalityandfeasiblenearly
rate-optimalestimators.Somesimulationsare presentedo illus-
trateourfindings. Applicationsto measurehe Hurstcoeficient of
network traffic datawill be presenteatthetime of theconference.

1. INTRODUCTION

In contrastwith wavelet basedtechniqueq1], most Fourier do-
main estimatorsknowvn to datefail in the presenceof additive
trends. This featureis very annging when analyzingreal-data,
becausehe presencef additive trendsis therule ratherthanthe
exception. A possiblesolutionto combatthesetrendswas pro-
posedby [3], who recommendediifferencingthe datap timesto
eliminatethetrend,followedby taperingwith anew classof tapers
thatareinvariantto the meanandwhich afford sufiicient leakage
controlto offsetthe potentialstrongnonirvertibility of the differ-
encedseries. Theseestimatorssomeha mimic the behaior of
the waveletestimatoravhich alsoimplicitly usea combinationof
differentiation(the order of differentiationbeinglinked with the
numberof vanishingmomentof thewavelet)andtapering.

In thispaperweconsidefFEXPintroducedn [5, 7] estimators
of d for a potentially nonstationaryjinear serieswith smoothad-
ditive trend. We usedifferencingandtaperingasdescribedabore,
with ataperin the classproposeddy [3]. We proposea method
of pooling the taperedperiodogramwhich leadsto more efficient
estimatorof d thanexisting pooled taperecestimatorsThetech-
niquesto rohustify the estimatorscan be appliedaswell to ary
periodogranbasedestimatorsincluding,e.g. the GPHestimator

2. MAIN ASSUMPTIONS AND NOTATIONS

In this section,we make precisesomenotationson the obsered
processaandonthemaintool of analysisj.e. the periodogramLet
X = (X})tez beaprocessvhosep-th differences stationaryfor
somenon neyative integer p, anddefineY = (I — B)? X where
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B isthebackshiftoperator It will beassumedh thesequethatY
admitsa spectradensity f thatcanbe expresseds

fl@) =1 =7 f" (a), )

wheref* is aneven,positive, continuousfunctionon [—, 7] and
—p —1/2 < d < 1/2. This assumptions equivalentto the
existenceof a stationaryprocess”* with spectradensity f* such
that

(I-B)Y =Y", )

where(I — B)? is definedby theinfinite seriesexpansion
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Note that, becausef the differentiation,the processY” might be
noninvertible. Define

& (@) = () 23 ie™, @
t=1
IV (z) = |d) (z)* = (27m)*1|iy;em|2. 4)
t=1

In orderto dealwith possibleoverdifferencing,the useof a taper
is necessaryin anovel family of datataperis consideredLet

e2i7rt/n

hin=1—

and,for ary integers > 0, definethetaperedDFT of orders as

e ()]
(5)

wheres is the taperorderanda, := (Es) is the normalization
constant. It is easily seenthat the taperedFourier transformis
invariantto shift in the meanand that the decayrate of the ker
nelin thefrequeng domainincreasesvith the kernelorder This
propertymeansthathigh-orderkernelsaremoreeffective in con-
trolling leakage which is importantwhen dealingwith possibly
non-irvertible series.

Whenconsideringog-transformof the periodogramit is ap-
propriateto usepooling, which consistan computingaverageof
periodogranvaluesalongblocksof sizem, prior to logging. The

n
= (27{'71(13)_1/2 th,nneitma I.:n(x) =
t=1

ds . (x)



following pooling schemes used. Define K := K(m,n,s) =
[(n—m —3s)/2(m+ s)]andfork=1,--- | K,

(m+s)(k—1)+m

-y _
Im,p,s,n,k - E :

i=(mts)(k—1)+1

Iy . (@;).

Periodogranordinatesat m consecutie ordinatesareaggr@ated,
ands frequenciesiredroppedoutof everym + s. Thiswill leadto
alossof efficiency of orderm/(m + s), but considerablysimplify
the derivations. This lossis limited provided the pooling index
m > s (whichisin generahsafepracticethepoolingsizeshould
nothowever bechoserto largein orderto avoid too muchbias).
As emphasizedh theintroduction,the principle of the FEXP
estimatoris to fit to the dataa finite dimensionalFEXP model
of orderq, wheregq is a non decreasingequencef integersthat
depend®nthesamplesizen. Recallthatastationaryprocesswith
spectradensity f satisfying(1) is aFEXPmodelof orderyq if

qg—1

F* (@) = exp{D_ 6;h; ()},

Jj=0

whereho = 1/v2x andh;j(z) = cos(jz)//m j > 1. For
sucha model, it is naturalto estimatesimultaneouslyd andthe
coeficientsd; by log-periodogranmegressionIn thecaseof inter-
esthere thelog-periodogranregressiorwill be performedonthe
log-pooled-taperegeriodogramof the p-times differencedpro-
cessY = (I — B)?X with a datataperof orders > p (it is
of utmostimportancefor all the derivationsthat follow to match
the order of differencingandthe taperorder). Denotev,, p.s =
Eo[log (I, ,.n.%)], WhereEo standsfor the expectatiorwhenY” is
a standardwhite Gaussiamoise. Let Y, x = log(Iy, , on.x) —
Ymp » Yk = (2k — 1) /2K andg(z) = —2log |1 — e**| and

(Jm,P1S(q)7 901 e 7éq—1) =
K q—1

arg  min Z(Ynk —dg(yx) — Zéjhj(yk)Y- (6)
j=0
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Whend is theonly parameteof interestthecenteringerm-ym, p.s

is irrelevantandcim,p,s(q) canbe obtaineddirectly without com-
putingfo, - - - 6,. To give the explicit expressionof d,, ,.s(q), we
needsomeadditionalnotation. Definethe following normon R%

Dl = 27K YR ul, let < .. >, denotethe associ-
atedscalarproductand identify ary function ¢ with the vector
(e(y1), - ,¢(yk)). Let Hy , bethe orthogonalprojectoron
the g-dimensionalinear subspacef RX spannedy the vectors

[Ro,- - , hq—1]. Notethatthesevectorsareorthonormabw.r.t the
scalarproduct< .,. >,. Denote
q—1
Ga=9—Hyng =09, =9—»_ <gh; > hj, % = |G;1I5.
§=0

(@)

Denotefinally Y, = (Yn,1,- - , Yo k)’ It istheneasilyseerthat

K

Gq (Yr)Yn k- (8)
k=1

5 <gr, Y, >, 2m
d P, (q) = q,.i = =
e Ya K#q
Whenthetrue modelis not of afinite order theseestimatorawill
bebiasedy theremaindeof theinfinite seriesexpansiorof log(f*).

Assumingthat f* is positive over [—m, 7], define

6;= [ hj(z)log(f" (z))de, ©)
qg—1
I, =log(f*) = > 6ih;. (10)
j=0
Define ~
En,k = IOg(Iri,p,s,n,k/f(yk)) — Ym,p,s- (11)
Then,we canwrite
q—1
Yok =dg(ye) + Y 0ihi + eni + 1 (yr), 12)
j=0

Usingthesenotationsthe FEXP estimatorcanbe decomposeds

dm,p,s(q) = d + mp(q) + ba (), (13)
with
27 K
Emp,s(q) = K—% 2 9q (Y )er,
27 ad
be(f*) = 5, ;.62 (yr)lg (yr)-

The term&,,,p,5(q) is a stochastidluctuationterm and the term

bm,p,s(f*,q) is a biastermwhich dependsn the short-memory
componentf* and on the truncationindex ¢, but not on d, and

indirectly on m, p and s throughthe choice of the frequencies
ye. If 35525101 < oo, thenly = 3772 0;h;, the biasterm

bm,p,s(f*,q) is controlledby the rateof decayof the coeficients

0;. More precisely

Lemmal Thek existsa finite constants which doesnot depend
on f* sud thatfor all ¢ < K/2,

2V b (F*, @) < (1+5a/K) Y 165

Jj=q
3. THEORETICAL RESULTS

In the following sections,it is assumedhatp = s andthatthe
trendis polynomial. Theresultsbelov hold with obvious modifi-

cationswheneer s > p (notehoweverthattaperingwill in general
introducesomelossesin efficiengy). Extensionsto smoothnon-
polynomialtrends(which canbemodelledas X; = s(t/n) + X

wheres is asmoothfunction)areconsideredn aforthcomingpa-
per. If thedifferencedporocessy” = (I — B)? X is stationaryand
satisfiesequation(1), thenit admitsthe spectradensity

fl@)=J1

To derive asymptotiaesults assumptionsnthedistribution of the
driving noiseZ andona™ arerequired.

(A1) ThesequencéZ:)icz isi.i.d.,E[Z;] =0, E[Z?] =1and

— T (@) = 1 =T Em) T a (o),

/ |E[e*7°]|"dt < oo, r > 1 (14)



Regularity conditionsfor a* arecorvenientlystatedin termsof a
functionalclass.

Definition 1 For p > 1 andp > 1, let £L*(u, p) bethe class
of positivecontinuouslydifferentiablefunctionsu on [—, 7] suc
thatforall 0 < |z|, |y| <,

maxoc.<r [W(2)| (15)
mine<.<~ |u(2)|
Ju(@) —uy) = @ =y @) _ g =
e — e < H(|x| AyD? (16)

Theorem1 Letp andm beintegers sud thatp > 1 andm >
4. AssumgAl) andthat E|Zo|*™! < co. Assumehata* €
L*(u, p) forsomep > 1,and—p—1/2 < d < 1/2. If theFourier
coeficientsof {* = log(f*) are absolutelysummableandif ¢ is
a non-deceasingsequencef integers sud that lim,, -, o0 (¢~ +
qlog®?(n)n~') =0and

lim /n/q)_16;] =0, @7
k=q

then/n/q(dm. p(q) — d) is asymptoticallyzelo-meanGaussian
with varlance(m + )i -

Here,02, , = Fo[Y;21] = Bo[V;2;] for 1 < k < 7. It maybe
shawvn that,for ary givenp, by increasingheblocksizem, theeffi-
cieny losscanbemadearbitrarily closeto the correspondingoss
incurredby taperingin the Gaussiarsemiparametriestimator

4. MINIMAX ESTIMATION

For simplicity, it is assumedn this sectionthat Z; is Gaussianit

is likely thatextensionso moregeneraldistributionsarepossible
(and perhapgo linear processw.r.t to a martingaleinnovations),
but the whole theoryin not yet available. The following proposi-
tion givesanexpressiormeansquaresrrorof the FEXP estimator

Proposition1 Lety > 1, letp bea nonneyativeinteger andé; €
(0,p+1/2), 62 € (0,1/2). Letqg bea nondeceasingsequence
sud thatlim, 0. (¢~* + glog”(n)n~') = 0 with = 6 in the
nontapeedcase(i.e. p = 0) andr = 4 in thetapeed case(i.e.
p >1). Then

lim  sup sup
N0 —§1<d<82 freL*(u)

gﬂd,p [(dmp — )] — (m + p)a?, ,| = 0.

Lemmal and Propositionl yield a boundfor the meansquare
errorof dn, ». Letw beadecreasingequencanddefine

={f:f@= exp{Z

Vg >0, Z|9j| <w(g).}. (18)

Jj=q

Gh(w}

Two examplesof sequences areof interest.For 3 > 0 andL >
0, letwg,r.(q) = L(1 + q)~# anddefineS* (8, L) = G*(wg.1.).
Definealsows,r.(q) = Le™?? and A*(8,L) = G*(vp,z). The
classA* (B, L) is of specialinterestsincethe spectraldensityof
ary causalstableandinvertible ARMA processess containedn
suchaclass.

Theorem?2 Letp be a nonnegativeinteger, let8 > 1, v > 0,
L>0,0<6 <p+1/2and0 < J, < 1/2. Defineg, (B, L) =
[(Ln)Y 429 andg, (7) = [log(n)/27]. Ther existsa constant
C which dependnlyon 3, §; andd, sud that

limsup sup sup (29)

n —81<d<d2 f*€S*(B,L)

/IRy po [(din.p(gn (B, L)) — d)°] < CLY/CPHD,
lim  sup sup (20)
N0 _§1<d<dy f*€A*(v,L)

2 2
n - = m 2 )
Tog Gy s+ [ (a0 (1)) = 4)°) = (m + p)o% /20

whee Ey4 s~ denoteshe expectationwith respecto the distribu-
tion of a Gaussianprocesswith spectal densitye® f*. If 0 <
B < landy > 1, ther existsa constantC which dependsonly
onp, 1, 42 andp sud that

limsup sup sup (21)
n —=61<d<dy frES*(B,L) N L* (1)

0 CEDE, o [(dm.p(gn (B, L)) —

Correspondindower boundsarediscussedn [4].

d)2] < CLY @8+

5. ADAPTIVE ESTIMATION

In practice,automaticselectionprocedurds requiredto selectg.
We adaptherea techniqueinitially proposedy [6], to selectthe
bandwidthin kernelestimator Let ¢, a non-increasingequence
suchthate,, — 0. A truncationindex ¢ is saidadmissibleif, for
alg<qd < e K

| ,p(q ) — ,p(Q)l < Ky log(n)om,p(q'),
wherex is aconstanfwhosevalueis givenbelaw) andafn,p (q) :=
Eo[dZ, ,(q)]- Let ¢ bethe smallestadmissibleinteger The adap-

tive estimatoris then definedasd,, ,(4). In orderto assesshe
performancef the adaptve estimatordenotey;; (f*)

Vg:qu(f7) Sq<enK, |b(f)] < Vlog(n)om.s(q). (22)
Considerthefollowing assumptions

(T1) Leté; € (0,p + 1/2) anddz € (0,1/2) andlet F* be
a functionalclass. For all » > 1, thereexists a constant
C(d1,02, F*,r)suchthatforallé; < d < d»,all f* € F*
andall g suchthatg;, (f*) < ¢ < ep K,

E[gm,p (Q)ZT] < c’ (613 62: F

(T2) F* is a functional classsuchthat there exists a constant
C(F*) suchthat,for all f* € F*

Ve:qn(f) <q< ek, |bng(f*) < C(F).

(T3) Letdr € (0,p+1/2),62 € (0,1/2), p > 0 andletF* bea
functionalclass.Thereexistsa constantC (61, §2, F*) and
aninteger N := N (41,2, F*, p) suchthatfor alln < N,
for all ¢ suchthatq, (f*) < ¢ < e, K, andfor all d €
[51,(52] andf (S .7:*,

P (IEm,p(q)l > (k)2 — 1)\/@%@((1)) <
0(61, 42, F* )n_ (k/2— 1)2/2(1+p).

1) mp(2)-



If adaptvity to thetargetfunctionis desiredthentheclassF* can
berestrictedto a singlefunction . If adaptvity in the minimax
senses theobjective, thentheclass7* shouldbe,onthecontrary
chosemaslargeaspossible.

Theorem3 Letd; € (0,p+1/2) andd, € (0,1/2). LetF* bea
functionalclassandfor each f* € F*, letq,, (f*) beasequence
of integers sud that (22), (T1), (T2) and (T3) hold. If & > 6,
ther existsa constantC'(d1, d2, F*, ) sud thatfor all f € F*,
for all d € [—4é1, 2] andfor large enoughn (dependingn g, F*
andk),

E[(d(q) — d)*] <
(1 + K)°Tmp (a5 (f7))* log(n) + C(61, 82, F*, k)n~".

We now illustratethe minimax adaptvity propertiesof the adap-
tive FEXP estimatorin the functional classesntroducedabove.
This amountsto finding a sequence;, suchthat (22) holdswith
an(f*) = g, for all functionsf* in agivenfunctionalclass.

Corollary 1 Letp be a positiveinteger, let d1 € (0,p + 1/2),
d2 € (0,1/2) and0 < B. < B* < co. Thee existsa constant
C :=C(B«,B*,L*,d1,02) sud that

limsup sup sup sup
n - —81<d<6y fx<B<B* OKLIL*

sup  (n/log(n))**/ PP VEy s [(dm,p(d) — )] < C,
fres*(B,L)
limsup sup sup sup
n —81<d<62 B.<BLP* OKLLH
n ~ ~ —
sup g By g+ [(dmp(@) —d)"] < C,
freas(g,L) log”(n)
whetee here again E4 s+ denotesexpectationwith respectto the
distribution of a Gaussiarprocesswith spectal densitye?? f*.

A logarithmiclossappearserewith respecto the minimaxrates
of corvergence.For the classesS™, it hasbeenshavn in [4] that
thislossis anunavoidablepriceto payfor adaptation.

6. SIMULATIONS

In this section,asmall-scaléMonte-Carloexperiments presented.
Dueto lack of spacepnly a very limited setof resultsare actu-
ally presentedMatlab codesandextensve simulationresultscan
be found at http://wwwtsi.enst.fr/moulines In afirst example,a
fractionalGaussiamoise(FARIMA(0,d,0)) e, is obseredin pres-
enceof an additive perturbationY;, = f(k/n) + ex, where f is
a smoothfunction, heref(t) = 2t°% + . Trendsof the form +*
arelong beenknown to induce”erroneous”long-memory In this
simulationthe fractionaldifferencingcoeficientis settod = 0.4
andthe numberof obsenrationsis 5000. The choiceof thetrunca-
tion orderq is basedon the datadriven proceduredescribedabove
with kappa = 3. Threedifferentsettingsareconsideredtheorig-
inal estimatorn(no differencingandno tapering),andtwo versions
of the proposedestimator(differencingonceandtaperingwith a
taperof order1, differencingtwice andusinga taperof order?2).
In all casesthe pooling sizeis setto m = 5. It is easilyseenon
the boxplot! belon thatthe combinationof taperingand differ-
encingeffectively leadsto a significative reductionof the bias, at

1The box haslines at the lower quartile, median,and upperquartile
values.Thewhiskersarelinesextendingfrom eachendof thebox to shav
the extentof therestof the data. Outliersaredatawith valuesbeyondthe
endsof thewhiskers.

the expenseof anincreasen the variance(due to tapering). In

this example, differentiationof order 1 appearsto be suficient
for the purposeof biasreduction. Increasingthe order of differ-

entiationincreaseby a significantamountthe estimationvariance
(recallthat, with m = 5 andp = 2, the effective numberof re-
gressiorpointsis almostreducecdby afactor?2).

I
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Estimates of d: n=5000, m=5
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