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ABSTRACT

Traffic flow in high-speed data network systems is often
impulsive and long-range dependent.! Impulsiveness im-
plies a heavy-tailed marginal distribution, thus lack of fi-
nite second-order statistics. Hence, traditional methods for
quantifying the long-range dependence of traffic based on
its second-order statistics are not applicable. Long range
dependence and self-similarity play an important role in
traffic engineering. We have recently shown that the gener-
alized codifference can quantify the dependence structure of
impulsive self-similar processes, such as high-speed network
traffic. In this paper, we propose an estimator for the gen-
eralized codifference and provide the conditions for it to be
asymptotically consistent. We show that these conditions
are satisfied for the EAFRP which is a process proposed for
modeling high-speed network traffic. We provide simula-
tions results to demonstrate the properties of the proposed
estimator, and show how it can be a useful tool in maintain-
ing fairness among users sharing limited network resources.

1. INTRODUCTION

Self-similar traffic flow exhibits time rescaling invariabil-
ity, in sharp contrast to Markovian flow, which loses de-
pendence in coarsified time scales. Since bandwidth pro-
visioning is operated upon rescaled traffic to some extent,
self-similarity carries profound importance in resource allo-
cation strategies for network design. For example, previous
queueing analysis [3] showed that under self-similar traffic
input, buffer overflow probability decreased hyperbolically
instead of exponentially as the buffer size increased, the
Hurst parameter determining the decay rate. Nowadays,
as traffic sources continue to diversify, it is important to
identify the Hurst parameter of distinct sources, so as to
provide a reliable benchmark for resource allocation, e.g.
buffer space assignment and bandwidth reservation. Pro-
vided that the self-similar process has finite second-order
statistics, various method have been proposed to evaluate
the Hurst parameter, such as the log-variance time plot
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and periodogram based methods. However, in state-of-art
high-speed data networks, traffic flows often exhibit strong
impulsiveness, in other words, are marginally heavy-tail dis-
tributed. In such scenarios, where second-order statistics do
not exist, the generalized codifference can provide a mea-
sure of dependence structure, playing a similar role to the
autocorrelation.

For a stationary stochastic process xz(k), k € Z, the gen-
eralized codifference (GC) [7, 8] is defined as
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We define {z(k)} to be long-range dependent (LRD) in

the generalized codifference sense, if
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where 8 and C are real positive numbers. 3 is the LRD
index, which is related to the Hurst parameter H by 8 = 2—
2H. The smaller f is, the stronger long-range dependence
{z(k)} possesses.

The EAFRP (Extended Alternating Fractal Renewal
Process) was proposed in [8] for constructive modeling of
high-speed network traffic, and was shown to capture both
traffic impulsiveness and LRD in a GC sense. It is defined
as:

oy = ApVy 3)

where V; is a stationary renewal process alternating be-
tween 0 and 1. The renewal time intervals and reward pro-
cess Ajp (corresponding to each 1 state) are drawn from
independent heavy-tailed distributions.

Let us define an empirical estimator for GC as follows:
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First we will provide the conditions for 7x (n) to be a consis-
tent estimator of 7(n). We will show that these conditions
are satisfied for the EAFRP [8].

We will provide simulation results to demonstrate the
properties of the proposed estimator, and show how it can



be a useful tool in classifying traffic flows according to their
LRD index. Quantifying the traffic LRD is important in
network resources provisioning, such as buffer allocation.
Given certain traffic load, the stronger the LRD, the larger
the buffer requirement in order to maintain a predefined
Quality of Service (QoS). Using the LBNL Network Simu-
lator, it is shown that the proposed estimator can be used
as a metric in classifying traffic sources into categories with
different network resource requirements.

2. CONSISTENCY OF THE GC ESTIMATOR

To prove the consistency of 7k (n), the following results are
needed. Note that we will be mainly interested in the con-
vergence in probability of the considered random sequences.

Lemma 1 Letzi, k € Z, be a stationary LRD process with
first order characteristic function ®. If s € R and ®(s) # 0,
then

1.
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is a consistent estimator of In ®(s).

Proof : Let yr, = €. It is clear that y; is a second-
order stationary process as its magnitude is equal to 1. A
necessary and sufficient condition for yx to be mean ergodic,

i.e.
="y~ Blye) (5)
k=1

in the mean square sense is that its covariance function
tends to zero as time lag tends to co. The covariance func-
tion can be expressed as

(6)
Due to the characterization of the LRD in (2) and the ex-
pression of 7(n) in (1),
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which implies that c¢(n) — 0. As mean square convergence
entails convergence in probability, K ! Eszl Yk converges
in probability to ®(s). Furthermore, as In(-) is a continuous
function on C \ {0}, we deduce that

g — In B(s), K — oo. (8)

As shown in [8], the assumptions in this lemma are sat-
isfied for the EAFRP.

By proceeding in a way similar to the previous proof, it
can be shown that

Lemma 2 Let xx be a stationary process and, for m €
N and s € R, let 8 (s,—s;m) = E{e®*@r+m==6)} pe
its second-order characteristic function evaluated at (s, —s).
As long as the process e**"* is autocorrelation ergodic in the
mean square sense and & (s, —s;m) # 0, it holds:
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A necessary and sufficient condition for the process e**“*

to be autocorrelation ergodic is [6]:
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Proposition 1 Let z, k € Z, be an EAFRP process. Its
generalized codifference estimator, Tk (n) is a consistent es-
timator of T(n).

Proof:

It is sufficient to show that the assumptions of Lemma
1 and 2 are satisfied by the EAFRP process. Indeed, in this
case, we have, as K — oo:

7x(n) = —In®?(s,—s;n) + In ®(s) + In ®(—s) = 7(n). (11)

In Appendix A we show that the conditions of Lemma
2 are satisfied for x, while the applicability of Lemma 1 is
a direct consequence of the results in [8].

To estimate the LRD index, ie. § in (2), a least mean
square error line is fitted in the log-log scale plot of Tk (n).
The slope of the fitted line is a consistent estimation of 3 as
n — oo and K — oo. This is due to the fact that 7x (n) is a
consistent estimator of 7(n), the consistency of integrated
squared error (ISE) estimators[5] implies the consistent es-
timation of 8.

3. SIMULATIONS

This section is divided into two parts. In part (A) we
demonstrate the statistics of the proposed estimator for
EAFRP process using simulations. In part (B) we consider
real traffic traces fed in a queuing system simulated via the
LBNL Network Simulator, and show that the LRD index
estimated through the proposed estimator is an important
parameter in network resource provisioning.

A) Ewaluation of estimator performance

The EAFRP is a renewal processes, alternating between
ON(1) and OFF(0) states, the durations of which are heavy-
tail distributed with indices a1 and g, respectively. The re-
wards during ON states are also heavy-tail distributed with
tail index aa. As it was shown in [8] the GC is a power-
law decaying function, with exponent —(min (ao, 1) — 1).
EAFRPs were constructed based on ag = 1.9, 1 = 1.1,...,1.9
and a4 = 1.4. Tk (n) is computed, and a least squares line
is fitted on the log-log plot of 7x (n).> The estimated mean
slope and the corresponding variance based on 50 Monte
Carlo simulations is shown in Fig. 1.

Although in theory the variance of a marginally heavy-
tailed process is infinite, it is occasionally argued in the
literature that the empirical variance of a finite length seg-
ment would be finite, thus a log-variance plot could still
be used to estimate the LRD index. The least squares line
fitted in the log-variance plot gives the LRD index, which
is equal to the exponent of the power-law decaying auto-
correlation function of the data. The log-variance results
are also included in Fig. 1. It clearly indicates that the
log-variance plot method is of no use in this case, while

2The estimation is thus sensitive to the fitting range. In our
experiments, the first 50 points of Tx (n) are used.



the proposed estimator performs reasonably well. Fig. 2
shows the variance of the GC estimator decreases as the
data length increases.

B) Classification of real traffic based on the proposed es-
timator

In self-similar traffic engineering, long-range dependence
plays an important role in network resources provisioning.
Traffic flows with long-range dependence causes buffer over-
flow more frequently than sources with only short-range de-
pendence. On the other hand, most of the existing resources
allocation strategies were developed based on the assump-
tion that the traffic sources are following arriving patterns
such as Markovian modulated traffic. They do not take the
long-range dependence effect into account. Hence, traffic
flows with long-range dependence are often being treated
unfairly, in comparison with Markovian sources. For ex-
ample, our initial simulations show that the Random Early
Drop (RED)[2] algorithm often punishes self-similar sources
more severely than necessary by marking or dropping pack-
ets from them. Hence, identifying the long-range depen-
dence in already diversified traffic streams is essential to
network resources allocation strategies design.

The generalized codifference estimator could be an use-
ful tool in classifying traffic streams with long-range depen-
dence.

Figure 3(a) shows a typical example of real traffic traces
collected from the 100Mbps Ethernet located at ECE de-
partment, Drexel university. Traffic traces are displayed
as bytes per second. The impulsive outlook of the data is
evident from that figure.

The traffic trace is formatted as a n x 2 array. The first
column and the second column correspond to the time (in
microseconds) until next packet to be generated and its size
respectively.

To generate another traffic trace with the same degree
of impulsiveness but with weaker LRD, we modified the
original data trace as follows. We partitioned the data trace
into large blocks, e.g 200 x 2, and randomly re-ordered these
blocks. This operation partially removed the long-range
dependence structure of the original data. The re-ordered
trace is shown in Fig. 3(b).

We applied the proposed estimator on both data traces,
and plotted the estimated GC in log-log scale (see Fig. 4).
Comparing the minimum mean-square fitted lines in Fig.
4 (a) and (b), the original data set and the re-ordered one
has an estimated slope of -0.2971 and -0.4465 respectively.
As expected, the re-ordered data trace exhibits weaker de-
pendence.

The queueing simulation is performed using the LBNL
Network Simulator platform. The simulated network topol-
ogy is shown in Fig. 5. It consists of 5 nodes. Source nodes
0, 1, 2 are competing the buffer space (20 packets) in node
3, and bottleneck link between node 3 and node 4 to reach
destination node 4. Link configurations are shown in Fig. 5.
Numbers annotated above links are the link bandwidth and
delay respectively. Nodes 0, 1, 2 are UDP senders, and node
4 functions solely as a sink. Traffic generated from nodes 0
and 1 correspond to the traffic trace shown in Fig. 3(a), and
(b) respectively. Real traffic collected from another UNIX
terminal forms the traffic stream stemming from node 2.
Queue objects used in node 3 are the DropTail type, which

implements FIFO scheduling and drop-on-overflow buffer
management typical of most present-day Internet routers.

The packet dropping process is shown in Fig. 6(a)(b)
for node 0 and node 1 respectively. Note that to shorten
the simulation time, all the traffic traces are compressed by
a factor of 10, i.e. the first column in the data trace file is
divided by 10 before they are input to the simulator. Thus,
the total simulation time shown is 1000 seconds, instead of
the original 10* seconds. The total packets dropped from
node 0 is 59529 Bytes, corresponding a bit loss ratio of
1.28%, vis-4-vis 54776 from node 1, corresponding 1.17%. It
is easily seen that the traffic source with stronger long-range
dependence gets smaller throughput than its counterparts
with weaker dependence structure. Hence, it is necessary
to allocate more buffer space to sources with stronger long-
range dependence, as to maintain fairness among different
users when they are sharing limited network sources.

4. APPENDIX A

In [8] it was shown that:

[(@a(s) = D +1][@a(=s) — V)n+1]
+L(m) (12)

B(s,—s;m) =

where ®4(s) denotes the characteristic function of the am-
plitude of the ON states of the EAFRP process (heavy-
tailed); 7 is the mean of the AFRP model amplitude, and
L(m) denotes a function that decays in a power-law fashion
with m.

Also in [8] it was shown that:

P(s) =1+ Qa(s)n—1n (13)

Based on (12) and (13) it can be seen that c¢(m) is a
function of L(m), thus tends to 0 as m — oo.

To give a sketch of the proof of sufficient condition (10),
let us consider the residue life T' of the EAFRP at t = k+m.
It is shown in [8] that P{n—m < T'} is a power-law decaying
function of (n —m). It can be shown that:

E{eis[(wk*wk+m)*(wk+n*wk+n+m)]}
= |®(s,—s,m)]’P(n—m >T) + Li(n —m) (14)

where L1(n—m) is a power-law decaying function of n—m.
The proof is omitted due to lack of space. For arbitrary
finite m, the last term tends to zero while n — co.
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Estimation of LRD index

Theory | Proposed GC estimator | Log-Variance graph
0.1 0.1268(0.0029) 0.6709(0.0507)
0.2 0.1942(0.0106) 0.7983(0.0831)
0.3 0.3016(0.0139) 0.7810(0.0574)
04 0.3671(0.0252) 0.8659(0.0478)
0.5 0.5032(0.0253) 0.8722(0.0295)
0.6 0.5776(0.0376) 0.8881(0.0198)
0.7 0.6530(0.0634) 0.9168(0.0251)
0.8 0.7318(0.0495) 0.9806(0.0128)
0.9 0.8252(0.0749) 0.9618(0.0136)

Figure 1: Mean (variance) of the LRD index obtained based
on 50 independent realizations of an EAFRP of length

18, 000.
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Figure 5: Network Topology

Estimation of LRD index at different lengths

N | 3000 6000 9000 12000 | 15000 | 18000
Mean | 0.2730 | 0.2941 | 0.3070 | 0.3016 | 0.3136 | 0.3034
Var | 0.0129 | 0.0116 | 0.0085 | 0.0062 | 0.0059 | 0.0060

Figure 2: Mean and variance of the proposed GC estimator
obtained based on 50 different realizations of an EAFRP
with ag = 1.9, a1 = 1.3.
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Figure 3: (a) Real traffic trace (b) re-ordered trace.
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Figure 4: Codifference of (a) real traffic trace, (b) re-ordered

trace.
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