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ABSTRACT

On-line, spatially localized information about internal network

performancecan greatly assistdynamic routing algorithmsand
traffic transmissiorprotocols. However, it is impracticalto mea-
surenetwork traffic at all pointsin the network. A promisingal-

ternatie is to measureonly at the edgeof the network andinfer

internalbehaior from thesemeasurementdn this paperwe con-
centrateon theestimationandlocalizationof internaldelaysbased
on end-to-enddelaymeasurementisom sourcedo recevers. We

develop an EM algorithm for computingMLEs of the internal
delaydistributionsin caseswvherethe network dynamicsare sta-
tionary over the obsenation period. For time-varying caseswe

proposea sequentiaMonte Carlo procedurecapableof tracking
non-stationarydelay characteristics.Simulationsare includedto

demonstratéhe promiseof thesetechniques.

1. INTRODUCTION

Optimizingcommunicatiometwork routingandservicestratgies
requiresknowledgeof the congestior(delay)at differentpointsin
thenetwork. However, it is impracticalto directly measurgaclet
delays at eachand every router Measuringend-to-end(from
sourceto recevers) delaysis relatively easyand inexpensve in
comparison.Consequentlyit is naturalto considerthe following
inverseproblem: from end-to-endmeasurementsanwe resohe
thedelayexperiencedat eachrouter?This is somevhatanalogous
to the medicaltomographyproblem,andhencethe namenetwork
tomayraphy[1, 2, 3, 4].

The basic idea is quite straightforvard. Considera net-
work consistingof a single source,sendingpaclets to several
recevers. Standardnetwork routing protocolsproducea tree-
structuredtopologyfor the network in this case(c.f. Fig. 1), with
the sourceat the root and the recevers at the leaves. Suppose
two closelytime-spacedback-to-back)paclets are sentfrom the
sourceto two differentrecevers. The pathsto thesereceverstra-
versea commonsetof links (connectiondetweenrouters),but
at somepoint the two pathsdiverge (asthe tree branches).The
two paclets shouldexperienceapproximatelythe samedelay on
eachsharedink in their path. This facilitatestheresolutionof the
delayson individual links (at leastin a probabilisticsenseto be
madeclearshortly).

Wecollectmeasurementsf theend-to-endlelaysfrom source
to recevers,andwe index the paclet pair measurementsy k& =
1,..., K. For the k-th paclet pair measurementet y, (k) and
y2(k) denotethetwo end-to-endlelaysmeasuredThe orderingl
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and2 is completelyarbitrary The delaysarequantizedsuchthat
the (quantized)delay on eachlink falls in the range0, 1,...,L
time units. Associatedvith eachindividual link/routerin the net-
work is a probability massfunction (pmf) for the queuingdelay
Letp; = {pi,0..., s} denoteprobabilitiesof adelayon link .
The goal of the network tomographyproblemconsideredn
this paperis to estimatetheseprobabilities,basedon the end-to-
end paclet pair measurementslf the network is approximately
stationaryover the measuremenperiod, thena naturalapproach
is to usethe maximumlikelihood estimatorandin Section2 we
develop an EM algorithmfor this purpose. More generally the
dynamicsof the network may be changingover time, andthe de-
lay distributionsthemselesareno longerstatic. In this case we
mustmodelthe dynamicsandtrackthe network behaior. In Sec-
tion 3 we proposea stochastianodelof thenetwork dynamicsand
developasequentiaMonte Carloalgorithmfor trackingthetime-
varying delay distributions. Our approachesgliffer considerably
from a previously proposedmethodfor inferring internal delays
[2] in threekey respects1. Themethodin [2] emplo/s amulticast
probingtechniquewhich is not supportecby mary networks. In
contrast,our methodsare basedon unicastmeasurementsyhich
can be madeon ary network!. 2. Our sequentialmethodsare
specificallydesignedor trackingtime-varying behaior, whereas
themethodin [2] is only appropriatdfor stationarycases3. Both
ourapproachearebasednalikelihoodfunctionanalysisjn con-
trastto the sample-serageapproactemploedin [2].
Beforemoving on, let us commentbriefly on the assumption
thatback-to-baclpacletsaredelayedy roughlythe sameamount
on eachsharedlink in their path. If the delaysareidenticalon
sharedinks, thenthe differencebetweenhe two delay measure-
mentscan be attributed solely to the delaysexperiencedon un-
sharedinks in thetwo paths. This is the key to resolvingthe de-
layson alink by link basis.However, in practicethetwo paclets
may experiencsslightly differentdelayson sharedinks dueto the
factthatonepacletprecedesheotherin thequeuesindadditional
pacletsmay intervenebetweerthe two. In effect, the discrepan-
cies betweenthe delayson sharedlinks addsa zero meanerror
to the differencebetweerthetwo end-to-endneasurementsL his
“noise” producesa smoothing(or blurring) in the inferred delay
pmfs. Nonethelesshecauséhe errorsarezeromean,we canstill
usethe estimatedielaypmfsto obtainreasonablestimate®f the
averagedelay on eachlink. Thus, our methodologyis still very
useful,evenwhenthedelayson sharedinks arenotidentical.
The paperis organizedas follows. In Sections2 and 3 we
develop an EM algorithmfor maximumlik elihood estimationin

1As pointedoutin [4], it shouldbe possibleto extendthemethodin [2]
to theunicastcase.



stationaryscenariosand a sequentiaMonte Carlo procedurefor
estimatiorin bothstationaryandnonstationargasesin Sectiord,
we evaluatethe performancef thesemethodswith simulatedhet-
work experiments We make closingremarksin Section5.

2. EM ALGORITHM FOR STATIONARY NETWORKS

Giventhe paclet pair measurementg = {y1(k), y2(k)}, weare
interestedn maximumlikelihoodestimategMLEs) of p = {p;}.
Thelikelihood of eachdelay measuremeris parameterizedby a
convolution of the pmfsin the path from the sourceto recever.
Thecouplingof the pmfsof eachlink resultsin alikelihoodfunc-
tion that cannotbe maximizedanalytically The joint likelihood
I(y|p) of all measurementis equalto a productof theindividual
likelihoods.

Themaximizationof thejoint likelihoodfunctionrequiresnu-
mericaloptimization,andthe EM algorithmis an attractive strat-
egy for this purpose Thefirst stepin developinganEM algorithm
is to proposea suitablecompletedata quantity that simplifiesthe
likelihoodfunction. Let z;(k) denotethe delayon link ¢ for the
pacletsin the k-th pair. Letz; = {z;(k)} andz = {z;}. The
link delaysz are not obsered, and hencez is called the unob-
serveddata Definethecompletedatax = {y,z}. Notethatthe
completedatalikelihoodmaybefactorizedasfollows:

I(x|p) = f(y|z)9(z|p),

wheref is the conditionalpmf of y givenz (whichis apointmass
functionsincez determinesy), andg is thelikelihoodof z. The
factorizationshaws thatl(x|p) « g(z|p), sincef(y|z) doesnot
dependon the parameterp. If we wereableto measurehe un-
obsereddata,thenthe MLEs we seekwould betrivially obtained
from thecompletedatalik elihood. Thus,the completedatalik eli-
hoodis far simplerto work with thanthe original lik elihood.

The completedatalikelihoodis g(z|p) = IT; ; p:‘j"’j, where

mi; = Sn_y L., (k=; IS the numberof paclets (out of all the
paclet pair measurementshat experiencea delayof j onlink 3.
Thereforewe have

I(x|p) x sznj” .

By
If them; ; wereavailable,thenthe MLE of p; ; is simply

mi,j

-
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The EM algorithmis aniterative methodfor finding the MLE
of p thatusesthe completedatalik elihoodfunction. Specifically
the EM algorithm alternatesbetweencomputingthe conditional
expectationof completedatalog likelihoodgiventheobserations
y (the E-Step)andmaximizingthis quantityover p (the M-Step).
Noticethatthe completedatalog likelihoodis linearin m:

log I(x|p) x Z m; ;logpi ;.
i3

Thus, in the E-Step we need only compute the expecta-
tionof m = {m; ;}.

E-Step: Letp® denotethevalueof p afterthel-thiteration. Then

N
E,o[miily] = Epo [Zl{zi(m—j}b’],
k=1
N
= Y Bow [Lem=n lmn k), 12()]
k=1

DY (zi(k) = jlyi (k) ya (k).
k=1

We see that the conditional expectation of m can be com-
puted by determiningthe conditional probabilities abose for
each paclet pair measurement. This can be accomplishedby
asimpleupward-davnward probabilitypropagatioralgorithm[5].

M-Step: Replacen;,; by
mi; = Eyq) [mi;y]

in (1) abore to obtainthe updatep 1.

The overall compleity of the EM algorithmis O(K M L?),
whereM is theaveragenumberof links perpath, K is thenumber
of measurementgnd L is the numberof possibledelayunits per
link.

3. SEQUENTIAL MONTE CARLO TRACKING OF
TIME-VARIATION

We now considerthe problemof estimatingtime-varying delay
distributions. We first formulatea modeldescribingthe evolution
of the network delay dynamicsandthendefinea delay distribu-
tion in thetime-varying context. Finally, we describea sequential
Monte Carloprocedurdor dynamicestimation.

The queuingdelay experiencedby a measuremenpaclet at
eachnodein the network is dueto other pacletsin the queue.
We considera network in which eachnode hasa queuebuffer
size L with Markovian servicesat rate u. The extensionto in-
homogeneouretworks (differing serviceratesandqueuesizes)is
straightforvard. We assumethat we make measurementésend
paclet-pairs)at a rate of CiuL whereCy > 1 is a constant.
This ensureghat thereis suficient time for the queuesto relax
betweermeasurementsesultingin approximatelystatisticallyin-
dependenmeasurementsiNe modelall otherpaclet arrivalsat a
given queueusinga time-varying Poissonarrival processandas-
sumethatthe bandwidthB of this processs limited suchthat

1

B .
< 2CpuL

)

This implies a quaststationarity;the dynamicsof the systemare
evolving at a rateslow enoughthatwe candiscretizeat the mea-
surementate(specificallywherethemeasurementremade)and
studythediscretizedsystem We completeour modelby imposing
arandomwalk structureonthelog-intensityof thetraffic arrivals:

log A\x. = log Ax—1 + wg, 3)

where k£ denotesthe k-th measurementand wy is zero-mean
Gaussiamoiseof variances”. The modeldescribedthusfar in-
ducesinstantaneouslelay pmfs of the form p; ; o« p?, where
p; is theratio of the arrival rate and servicerate on the ¢-th link.
Suchpmfs are exponentiallyincreasingor decreasingfor p > 1



andp < 1, respectiely. Thisimpliesthatthe modeis eitherat
delay0 or delay L. In real networks, however, the delay pmfs
candisplay modesa other points due to the non-Poissoniama-
ture of traffic. A straightforvard extensionof the model above
canhandlethesesituations We introduceanadditionaldynamical
(continuous)parametek; for eachlink anddefinethe delay pmf
asp;; o p‘j‘""', which placesthe modeof the pmf neark;.
Theparametek; evolvesaccordingto a continuousandomwalk
(with reflectionat 0 and L).

We now presenbur sequentiaMonte Carloestimatiorproce-
dure.For easeof presentationwe describethe specialcasewhere
x; = 0. Themoregeneralkaseis a straightforvard modification.
Our goalis the estimationof a delay distribution at eachnodein
thenetwork. Underthe modelwe have just outlined,the notion of
adelaydistribution s ill-defined. We now definethetime-varying
delaydistribution of window size R at measuremert# as:

k

1
pii (R k) = 5 S 1ew= 4)
I=k—R+1

with z; (1) beingthedelayexperiencedat queuei by measurement
paclets!. Dueto the slowly evolving queuedynamics,this is a
goodapproximation(for large R) to adiscretedistribution formed
by consideringhe queuelengthat every arrival andserviceevent
betweermeasurements — R + 1 andk.

We would like to track the delay distribution over time. The
availableobsenationsarea highly non-linearfunction of the sys-
tem. As aresult,the extendedKalmanfilter is not suitablefor the
task,andwe usea sequentiaMonte Carlo algorithminstead.We
wish to calculatethefollowing estimateof p; ; (R, k):

k
pii(Rk) = Ep(zk_ml:uyo:k)[ > 1{z,-(z)=j}]
I=k—R+1
1 k
=5 > ) =jlyos)
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wherey(1) = [y1 (1), y(0)].

Our sequentiaMonte Carlo algorithmis basedon sequential
importancesamplingtechniqueg6]. The algorithm makes use
of a setof N trajectoriesor particles eachof which represents
anindependensamplepathof the network’s dynamicalevolution
and thus independentlyexplores part of the samplespace. Our
proposedestimator(5), requiresan integration over the density
p(Ai|yo:x), which cannotbe analytically solved. Therefore,we
approximatethe estimatorusing Monte Carlo integration. To do
this, we mustsamplefrom p(Ai|yo.x ), which itself is not easily
accomplished An alternatve approachs to performimportance
sampling.Thebasicideahereis to generatalravs from animpor-
tancedistribution 7z, which canbe sampledrom moreeasily We
usethesedravsto computethe desiredVionte Carlointegrationas
follows. We canre-writetheintegrationas,

o _ p(Ai]yo:x)
[ CCRORY [W] e Oulyons) A

Then,the Monte Carloestimatds

N
% O PG = Gy, A, ©)
v=1

wherew” = p(A"|yox) / 7 (AL |yo:x ). We form our approx-
imateestimatordenotedp; ; (R, k), by replacingthe true integral
in (5) by its Monte Carloapproximation.

In this paper we simply usethe prior distribution asthe im-
portancesamplingdistribution (i.e., thedistribution governingthe
randomwalk (3)). In the sequentiaframeavork, we wish to obtain
attime k anestimateof thedistributionp(Ao:x|yo:x) withoutredo-
ing all thework involvedin generatinghe estimateattimek — 1.

Thisis achiezed by forming thetrajectory)\(()’:’,z without modifying

the pre/ioustrajectory)\((;:’,z_l, whichis possiblesinceimportance
samplingdistribution hasa Markovian structure(first-orderran-
domwalk (3)). At time k, we samplefrom 7 (A |)\g:’,2_1, Yo:k),

andform thetime- particlev by appendingxg’) to )\gj,ifl.

Degenerag is a major issuein the applicationof sequential
importancesampling. The varianceof the weightsincrease®ver
time, sothatat somestagemary importanceweightsmaybevery
closeto zero,andthe numberof particlescontributing to the esti-
matoris greatlyreduced This effectincreaseshevariability of the
estimator(comparedo the varianceonewould have with the full
N particlescontributing). The procedureof resamplingconsists
of eliminating particlesthat have small importanceweightsand
branchinghe samplepathsof particleswith substantialveightsto
createnew particles. This ensureghat the numberof significant
weightsremainscloseto V.

This culling and birthing processdoesintroducesomeaddi-
tional computationabverheadn theformationof ourapproximate
estimator Technically it necessitatehacktracking”"thenew sam-
ple pathsover theinterval R of interestin our estimatori.e., per
forming fixed-intenal smoothing[6]. This inducesa substantial
computationaloverhead(the compleity of the smoothingalgo-
rithm is O(RN®) per measurement)ln simulationswe obsere

thatif we usethe approximatior(replacew,(c”) by wl(”))

N
1 . v v
% 2 pz(l) = ly (@) A,
v=1
for the summationin (6), thenwe achieve similar performanceat
a compleity of O(ML>N) per measurementyhere M is the
averagenumberof links perpath,and L is the numberof possible
delayunitsperlink.

4. EXPERIMENTS

To assesshe performancef our algorithmswe simulate(in Mat-
lab) thefour-recever network depictedn Figurel below.

receivers
Fig. 1. Network topologyin simulationexperiments.

Experiment 1: We generatd 000paclet-pairmeasurementsom
stationarydelay distributionson eachlink. Figure 2 depictsthe



true delay distributions on links 2,...,7 along with the MLEs
computedoy the EM algorithm. This sameexperimentis repeated
in 50independentrials. Figure3 (a) shavs thetrue averagedelay
for eachlink andthe averagedelay computedirom the estimated
pmfs. Similar resultswere obtainedwith the sequentiaMonte
Carloproceduren this case.

Experiment 2: We perform50 independentrials of the scenario
in Experimentl, but this time introducesmall,randomdiscrepan-
ciesbetweenthe delayson sharedinks. Figure3 (b) depictsthe
true averagedelayfor eachlink andthe averagedelay computed
from the estimatedpmfs (note the agreementvith Figure 3 (a),
indicative of therobustnesof our methodso sucherrors).
Experiment 3: We generate8000paclet-pairmeasurementfsom
time-varyingdelaydistributions. Thetemporaldynamicsaregov-
ernedby (3). Figure4 depictsthe true andestimatedomfs (gener
atedby our sequentiaMonte Carloalgorithm)onlinks 1, 2, and7
attwo differenttimes. Figure5 plotsthe true andestimatedaver-
agedelayonlinks 2, 4, and7 asafunctionof time.
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Fig. 2. True (solid) and estimatedstem)delay pmfs for links 2
and3 (row 1), 4 and5 (row 2), and6 and7 (row 3) usingthe EM
algorithm.
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Fig. 3. Estimationof averagedelayson eachlink for (a) identical
delayson sharedinks and(b) smalldelaydiscrepanciesnshared
links. Boxesindicatethe true averagedelay on eachlink (1-7).

Error barsdenotethe one-standard-déation confidenceintenal

of theestimatedaveragedelay (usingthe EM algorithm).
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5. DISCUSSION

Our experimentsdemonstratehe potential of both the EM and
sequentiaMonte Carloalgorithmsfor network delaytomography
Wefind thatvery goodestimate®f thedelaypmfscanbeobtained
from a small numberof measurementsnd estimateof average
delaysareveryrobust,evenin the presencef non-idealdelaydis-
crepancie®n sharedinks. ThesequentiaMonte Carloalgorithm
appearso trackslowly varyingnetwork behaior reasonablyvell.

Ongoingwork is aimedat theoreticalnalyseof our methods.
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Fig. 4. Delay pmf estimatesn nonstationaryscenariousing se-
guentialMonte Carloprocedure True (solid) andestimatedstem)
pmfsonlinks 1,2, and7 atmeasurements = 1000 andk = 2000
for awindow size R = 200.
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Fig. 5. Trackingof averagedelayon links 2, 4, and7 over mea-
suremenperiod. True (solid) andestimateddashedaveragede-
lay versugtime.
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