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ABSTRACT

On-line, spatially localized information about internal network
performancecan greatly assistdynamic routing algorithmsand
traffic transmissionprotocols.However, it is impracticalto mea-
surenetwork traffic at all pointsin thenetwork. A promisingal-
ternative is to measureonly at the edgeof the network andinfer
internalbehavior from thesemeasurements.In this paperwe con-
centrateontheestimationandlocalizationof internaldelaysbased
on end-to-enddelaymeasurementsfrom sourcesto receivers. We
develop an EM algorithm for computingMLEs of the internal
delaydistributionsin caseswherethe network dynamicsaresta-
tionary over the observation period. For time-varying cases,we
proposea sequentialMonte Carlo procedurecapableof tracking
non-stationarydelaycharacteristics.Simulationsare includedto
demonstratethepromiseof thesetechniques.

1. INTRODUCTION

Optimizingcommunicationnetwork routingandservicestrategies
requiresknowledgeof thecongestion(delay)atdifferentpointsin
thenetwork. However, it is impracticalto directlymeasurepacket
delaysat eachand every router. Measuringend-to-end(from
sourceto receivers) delaysis relatively easyand inexpensive in
comparison.Consequently, it is naturalto considerthe following
inverseproblem: from end-to-endmeasurementscanwe resolve
thedelayexperiencedat eachrouter?This is somewhatanalogous
to themedicaltomographyproblem,andhencethenamenetwork
tomography[1, 2, 3, 4].

The basic idea is quite straightforward. Considera net-
work consistingof a single source,sendingpackets to several
receivers. Standardnetwork routing protocolsproducea tree-
structuredtopologyfor thenetwork in this case(c.f. Fig. 1), with
the sourceat the root and the receivers at the leaves. Suppose
two closelytime-spaced(back-to-back)packetsaresentfrom the
sourceto two differentreceivers. Thepathsto thesereceiverstra-
versea commonset of links (connectionsbetweenrouters),but
at somepoint the two pathsdiverge (as the treebranches).The
two packetsshouldexperienceapproximatelythe samedelayon
eachsharedlink in their path.This facilitatestheresolutionof the
delayson individual links (at leastin a probabilisticsense,to be
madeclearshortly).

Wecollectmeasurementsof theend-to-enddelaysfromsource
to receivers,andwe index thepacket pair measurementsby ������	�
�
�
���

. For the � -th packet pair measurement,let 
��	����� and
�������� denotethetwo end-to-enddelaysmeasured.Theordering
�
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and � is completelyarbitrary. Thedelaysarequantizedsuchthat
the (quantized)delayon eachlink falls in the range � �	���
�
���
���
time units. Associatedwith eachindividual link/router in thenet-
work is a probability massfunction (pmf) for the queuingdelay.
Let �����! ����#" $ �	�
�
� �%��" &(' denoteprobabilitiesof a delayon link ) .

The goal of the network tomographyproblemconsideredin
this paperis to estimatetheseprobabilities,basedon the end-to-
end packet pair measurements.If the network is approximately
stationaryover the measurementperiod, thena naturalapproach
is to usethe maximumlikelihoodestimator, andin Section2 we
develop an EM algorithm for this purpose. More generally, the
dynamicsof thenetwork maybechangingover time, andthede-
lay distributionsthemselvesareno longerstatic. In this case,we
mustmodelthedynamicsandtrackthenetwork behavior. In Sec-
tion 3 weproposeastochasticmodelof thenetwork dynamicsand
developa sequentialMonteCarloalgorithmfor trackingthetime-
varying delay distributions. Our approachesdiffer considerably
from a previously proposedmethodfor inferring internaldelays
[2] in threekey respects:1. Themethodin [2] employsamulticast
probingtechnique,which is not supportedby many networks. In
contrast,our methodsarebasedon unicastmeasurements,which
can be madeon any network1. 2. Our sequentialmethodsare
specificallydesignedfor trackingtime-varyingbehavior, whereas
themethodin [2] is only appropriatefor stationarycases.3. Both
ourapproachesarebasedonalikelihoodfunctionanalysis,in con-
trastto thesample-averageapproachemployedin [2].

Beforemoving on, let uscommentbriefly on theassumption
thatback-to-backpacketsaredelayedby roughlythesameamount
on eachsharedlink in their path. If the delaysare identical on
sharedlinks, thenthedifferencebetweenthe two delaymeasure-
mentscan be attributed solely to the delaysexperiencedon un-
sharedlinks in the two paths.This is thekey to resolvingthede-
layson a link by link basis.However, in practicethetwo packets
mayexperienceslightly differentdelaysonsharedlinks dueto the
factthatonepacketprecedestheotherin thequeuesandadditional
packetsmay intervenebetweenthe two. In effect, the discrepan-
cies betweenthe delayson sharedlinks addsa zero meanerror
to thedifferencebetweenthetwo end-to-endmeasurements.This
“noise” producesa smoothing(or blurring) in the inferreddelay
pmfs. Nonetheless,becausetheerrorsarezeromean,we canstill
usetheestimateddelaypmfsto obtainreasonableestimatesof the
averagedelayon eachlink. Thus,our methodologyis still very
useful,evenwhenthedelayson sharedlinks arenot identical.

The paperis organizedas follows. In Sections2 and 3 we
develop an EM algorithmfor maximumlikelihoodestimationin

1As pointedout in [4], it shouldbepossibleto extendthemethodin [2]
to theunicastcase.



stationaryscenariosanda sequentialMonte Carlo procedurefor
estimationin bothstationaryandnonstationarycases.In Section4,
weevaluatetheperformanceof thesemethodswith simulatednet-
work experiments.We make closingremarksin Section5.

2. EM ALGORITHM FOR STATIONARY NETWORKS

Giventhepacket pair measurements*,+- .
 � ����� � 
���������' , we are
interestedin maximumlikelihoodestimates(MLEs) of /0+! ����1' .
The likelihoodof eachdelaymeasurementis parameterizedby a
convolution of the pmfs in the path from the sourceto receiver.
Thecouplingof thepmfsof eachlink resultsin a likelihoodfunc-
tion that cannotbe maximizedanalytically. The joint likelihood2 �#*43 /5� of all measurementsis equalto a productof theindividual
likelihoods.

Themaximizationof thejoint likelihoodfunctionrequiresnu-
mericaloptimization,andtheEM algorithmis anattractive strat-
egy for thispurpose.Thefirst stepin developinganEM algorithm
is to proposea suitablecompletedataquantitythatsimplifiesthe
likelihoodfunction. Let 6 � ����� denotethe delayon link ) for the
packets in the � -th pair. Let 78�9�: ;6.��������' and 7,�: .78�<' . The
link delays 7 are not observed, and hence7 is called the unob-
serveddata. Definethecompletedata =>+? 	* � 7@' . Notethat the
completedatalikelihoodmaybefactorizedasfollows:2 �#=43 /5�5�BAC�#*D3 7E�1FG�#7%3 /H� �
whereA is theconditionalpmf of * given 7 (which is apointmass
functionsince 7 determines* ), and F is the likelihoodof 7 . The
factorizationshows that

2 �#=I3 /5�KJLFG�#7�3 /5� , since AC�#*D3 7E� doesnot
dependon theparameters/ . If we wereableto measurethe un-
observeddata,thentheMLEs we seekwould betrivially obtained
from thecompletedatalikelihood.Thus,thecompletedatalikeli-
hoodis far simplerto work with thantheoriginal likelihood.

Thecompletedatalikelihoodis FG�#7�3 /5�M�ON �#" P ��QDR#S T��" P �
whereU ��" P +:V!WX
Y �GZE[ R�\ X
]^Y P is the numberof packets (out of all the

packet pair measurements)thatexperiencea delayof _ on link ) .
Therefore,we have 2 �#=43 /5�5JB` �#" P ��QDR#S T��" P �
If the U �#" P wereavailable,thentheMLE of ���#" P is simplya� ��" P � U �#" PV &b Y � U ��" b � (1)

TheEM algorithmis aniterative methodfor finding theMLE
of / thatusesthecompletedatalikelihoodfunction. Specifically,
the EM algorithm alternatesbetweencomputingthe conditional
expectationof completedatalog likelihoodgiventheobservations* (theE-Step)andmaximizingthis quantityover / (theM-Step).
Noticethatthecompletedatalog likelihoodis linearin c :dfe�gD2 �#=43 /5�5JBh ��" P U �#" P dfe�g ���#" P �
Thus, in the E-Step we need only compute the expecta-
tion of ci�! U ��" P�' .

E-Step: Let / \ b ] denotethevalueof / afterthe
2
-th iteration.Thenjlk8mfnpo.q U �#" P@3 *(rs� jlk8mfnpout WhX
Y � Z�vw[ R \ X
]^Y P
x 3 *(y �� WhX�Y � jKk mfnpoDz Z vw[ Rw\ X
]^Y P
x 3 
��.����� � 
 � �����1{ �� WhX�Y � � \ b ] ��6.�w�����5�|_%3 
��;����� � 
 � �����w� �

We see that the conditional expectation of c can be com-
puted by determining the conditional probabilities above for
eachpacket pair measurement. This can be accomplishedby
asimpleupward-downwardprobabilitypropagationalgorithm[5].

M-Step: ReplaceU ��" P byaU ��" P � jKk8mfnpo	q U ��" P 3 *�r
in (1) above to obtaintheupdate/ \ bf} � ] .

The overall complexity of the EM algorithm is ~�� ���B� � � ,
where

�
is theaveragenumberof links perpath,

�
is thenumber

of measurements,and
�

is thenumberof possibledelayunitsper
link.

3. SEQUENTIAL MONTE CARLO TRACKING OF
TIME-VARIATION

We now considerthe problemof estimatingtime-varying delay
distributions. We first formulatea modeldescribingtheevolution
of the network delaydynamicsand thendefinea delaydistribu-
tion in thetime-varyingcontext. Finally, we describea sequential
MonteCarloprocedurefor dynamicestimation.

The queuingdelayexperiencedby a measurementpacket at
eachnode in the network is due to other packets in the queue.
We considera network in which eachnodehasa queuebuffer
size

�
with Markovian servicesat rate � . The extensionto in-

homogeneousnetworks(differingserviceratesandqueuesizes)is
straightforward. We assumethat we make measurements(send
packet-pairs)at a rate of �l�w� � where �l�B� �

is a constant.
This ensuresthat thereis sufficient time for the queuesto relax
betweenmeasurements,resultingin approximatelystatisticallyin-
dependentmeasurements.We modelall otherpacket arrivalsat a
given queueusinga time-varying Poissonarrival processandas-
sumethatthebandwidth� of this processis limited suchthat�O� ���� � � � � (2)

This implies a quasi-stationarity;the dynamicsof the systemare
evolving at a rateslow enoughthatwe candiscretizeat themea-
surementrate(specificallywherethemeasurementsaremade)and
studythediscretizedsystem.Wecompleteourmodelby imposing
a randomwalk structureon thelog-intensityof thetraffic arrivals:dfe�g�� X � dfe�g�� X;� ���,� X � (3)

where � denotesthe � -th measurement,and � X is zero-mean
Gaussiannoiseof variance� � . Themodeldescribedthusfar in-
ducesinstantaneousdelaypmfs of the form �%��" P�J�� P � � where�E� is the ratio of the arrival rateandservicerateon the ) -th link.
Suchpmfsareexponentiallyincreasingor decreasing,for �>� �



and ��� �
, respectively. This implies that the modeis eitherat

delay � or delay
�

. In real networks, however, the delay pmfs
can display modesa other points due to the non-Poissonianna-
ture of traffic. A straightforward extensionof the model above
canhandlethesesituations.We introduceanadditionaldynamical
(continuous)parameter�%� for eachlink anddefinethedelaypmf
as ����" P�J���� P �G� R �� �

which placesthe modeof the pmf near �%� .
Theparameter� � evolvesaccordingto a continuousrandomwalk
(with reflectionat � and

�
).

Wenow presentoursequentialMonteCarloestimationproce-
dure.For easeof presentation,we describethespecialcasewhere�%�I+�� . Themoregeneralcaseis a straightforwardmodification.
Our goal is the estimationof a delaydistribution at eachnodein
thenetwork. Underthemodelwe have just outlined,thenotionof
a delaydistribution is ill-defined.We now definethetime-varying
delaydistributionof window size � at measurement� as:���#" P8��� � ����� �� Xhb Y�X.�G� } � Z vw[ R�\ b ]^Y P
x � (4)

with 6 � � 2 � beingthedelayexperiencedatqueue) by measurement
packets

2
. Due to the slowly evolving queuedynamics,this is a

goodapproximation(for large � ) to adiscretedistribution formed
by consideringthequeuelengthat every arrival andserviceevent
betweenmeasurements����� � � and � .

We would like to track the delaydistribution over time. The
availableobservationsarea highly non-linearfunctionof thesys-
tem. As a result,theextendedKalmanfilter is not suitablefor the
task,andwe usea sequentialMonteCarloalgorithminstead.We
wish to calculatethefollowing estimateof � �#" P ��� � ��� :a���#" PE��� � ��� � � jM¡ \p¢¤£
¥�¦�§%¨�© £ � ª�« © £ ] t Xhb Y�X.�G� } � Z vw[ Rw\ b ]^Y P�x y� �� Xhb Y�X.�G� } � ����6 � � 2 �5�¬_%3 
 $�­ X �� �� Xhb Y�X.�G� } �8®¬¯$ ����6.�w� 2 �5�|_%3 
G� 2 � � � b �°��� � b 3 
 $�­ X �E± � b � (5)

where
G� 2 �5+ q 
 � � 2 � � 
���� 2 �1r .
Our sequentialMonteCarlo algorithmis basedon sequential

importancesamplingtechniques[6]. The algorithm makes use
of a set of ² trajectoriesor particles, eachof which represents
anindependentsamplepathof thenetwork’s dynamicalevolution
and thus independentlyexplorespart of the samplespace. Our
proposedestimator(5), requiresan integration over the density��� � b 3 
 $�­ X � , which cannotbe analytically solved. Therefore,we
approximatethe estimatorusingMonte Carlo integration. To do
this, we mustsamplefrom ��� � b 3 
 $�­ X � , which itself is not easily
accomplished.An alternative approachis to perform importance
sampling.Thebasicideahereis to generatedraws from an impor-
tancedistribution ³ X , whichcanbesampledfrom moreeasily. We
usethesedrawsto computethedesiredMonteCarlointegrationas
follows. We canre-writetheintegrationas,

®|¯$ �C��6 � � 2 �5�|_%3 
G� 2 � � � b �l´ ��� � b 3 
 $�­ X �³ X � � b 3 
 $�­ X ��µ ³ X � � b 3 
 $�­ X �E± � b �
Then,theMonteCarloestimateis�² Wh¶ Y � ����6.��� 2 �5�¬_%3 
G� 2 � � � \ ¶ ]b � � \ ¶ ]X �

(6)

where� \ ¶ ]X ����� � \ ¶ ]b 3 
�$�­ X �@·H³ X � � \ ¶ ]b 3 
�$�­ X � . Weform ourapprox-
imateestimator, denoteḑ�%��" P8��� � ��� , by replacingthetrue integral
in (5) by its MonteCarloapproximation.

In this paper, we simply usethe prior distribution asthe im-
portancesamplingdistribution (i.e., thedistribution governingthe
randomwalk (3)). In thesequentialframework, we wish to obtain
at time � anestimateof thedistribution ��� � $�­ X 3 * $�­ X � withoutredo-
ing all thework involvedin generatingtheestimateat time �¹� � .
This is achievedby forming thetrajectory

� \ ¶ ]$�­ X withoutmodifying

theprevioustrajectory
� \ ¶ ]$�­ X;� � , which is possiblesinceimportance

samplingdistribution hasa Markovian structure(first-orderran-
domwalk (3)). At time � , we samplefrom ³ X � � X 3 � \ ¶ ]$�­ X;� � � * $�­ X � ,
andform thetime-� particle º by appending

� \ ¶ ]X to
� \ ¶ ]$�­ X.� � .

Degeneracy is a major issuein the applicationof sequential
importancesampling.Thevarianceof theweightsincreasesover
time,sothatat somestagemany importanceweightsmaybevery
closeto zero,andthenumberof particlescontributing to theesti-
matoris greatlyreduced.Thiseffectincreasesthevariability of the
estimator(comparedto thevarianceonewould have with the full² particlescontributing). The procedureof resamplingconsists
of eliminating particlesthat have small importanceweightsand
branchingthesamplepathsof particleswith substantialweightsto
createnew particles. This ensuresthat the numberof significant
weightsremainscloseto ² .

This culling andbirthing processdoesintroducesomeaddi-
tionalcomputationaloverheadin theformationof ourapproximate
estimator. Technically, it necessitates“backtracking”thenew sam-
ple pathsover the interval � of interestin our estimator, i.e., per-
forming fixed-interval smoothing[6]. This inducesa substantial
computationaloverhead(the complexity of the smoothingalgo-
rithm is ~����K²¼».� permeasurement).In simulations,we observe
thatif weusetheapproximation(replace� \ ¶ ]X by � \ ¶ ]b )�² Wh¶ Y � �C��6;�w� 2 �5�|_%3 
G� 2 � � � \ ¶ ]b � � \ ¶ ]b �
for thesummationin (6), thenwe achieve similar performanceat
a complexity of ~�� �B� � ²¼� per measurement,where

�
is the

averagenumberof links perpath,and
�

is thenumberof possible
delayunitsperlink.

4. EXPERIMENTS

To assesstheperformanceof our algorithmswe simulate(in Mat-
lab) thefour-receiver network depictedin Figure1 below.

Fig. 1. Network topologyin simulationexperiments.

Experiment 1: Wegenerate1000packet-pairmeasurementsfrom
stationarydelaydistributionson eachlink. Figure2 depictsthe



true delay distributions on links � �
�
�
�
�¤½ along with the MLEs
computedby theEM algorithm.Thissameexperimentis repeated
in 50 independenttrials. Figure3 (a)shows thetrueaveragedelay
for eachlink andtheaveragedelaycomputedfrom theestimated
pmfs. Similar resultswere obtainedwith the sequentialMonte
Carloprocedurein this case.
Experiment 2: We perform50 independenttrials of thescenario
in Experiment1, but this time introducesmall,randomdiscrepan-
ciesbetweenthedelayson sharedlinks. Figure3 (b) depictsthe
true averagedelayfor eachlink andthe averagedelaycomputed
from the estimatedpmfs (note the agreementwith Figure 3 (a),
indicative of therobustnessof ourmethodsto sucherrors).
Experiment 3: Wegenerate3000packet-pairmeasurementsfrom
time-varyingdelaydistributions.Thetemporaldynamicsaregov-
ernedby (3). Figure4 depictsthetrueandestimatedpmfs(gener-
atedby oursequentialMonteCarloalgorithm)on links 1, 2, and7
at two differenttimes. Figure5 plots thetrueandestimatedaver-
agedelayon links 2, 4, and7 asa functionof time.
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Fig. 2. True (solid) andestimated(stem)delaypmfs for links 2
and3 (row 1), 4 and5 (row 2), and6 and7 (row 3) usingtheEM
algorithm.
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Fig. 3. Estimationof averagedelayson eachlink for (a) identical
delaysonsharedlinks and(b) smalldelaydiscrepanciesonshared
links. Boxes indicatethe true averagedelayon eachlink (1-7).
Error barsdenotethe one-standard-deviation confidenceinterval
of theestimatedaveragedelay(usingtheEM algorithm).

5. DISCUSSION

Our experimentsdemonstratethe potentialof both the EM and
sequentialMonteCarloalgorithmsfor network delaytomography.
Wefind thatverygoodestimatesof thedelaypmfscanbeobtained
from a small numberof measurements,andestimatesof average
delaysarevery robust,evenin thepresenceof non-idealdelaydis-
crepanciesonsharedlinks. ThesequentialMonteCarloalgorithm
appearsto trackslowly varyingnetwork behavior reasonablywell.
Ongoingwork is aimedat theoreticalanalysesof ourmethods.
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