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ABSTRACT improved because the spectral dynamic range is greatly re-

e . . duced in each subband.
Adaptive filtering techniques in subbands have beenrecently  £q; the fyliband case, an algorithm known as the filtered
developed for a number of applications including acoustic 44 gient adaptive (FGA) algorithm and its variations have
echo cancellation and wideband active noise control. In been developed in order to improve the convergence rate of

such applications, hundreds of taps are required resultinggjications where the input signal is highly correlated. The
in high computational complexity and low convergence rate 4in idea of this paper is to employ these algorithms in the
when using LMS based algorithms. For fullband systems, adaptive subband structure proposed in [3].

new algorithms which try to overcome these drawbacks have 1o paper is organized as follows. In Section 2, the sub-
been investigated. A class of these algorithms employing j)5n4 adaptive structure proposed in [3] is described. Sec-
variants of the filtered gradient adaptive (FGA) algorithm o, 3introduces the FGA algorithm for this afore-mentioned

has been successfully developed. In this paper, we applys,nhand adaptive structure. Section 4 proposes the orthogo-
these techniques to a recently proposed subband adaptive,,| rojection FGA algorithms for the same structure. Sim-

filter structure in order to improve the convergence rate and | ation results are presented in Section 5, and Section 6 con-
the computational load. Computer simulations show the tains some concluding remarks.

benefits obtained with these proposed algorithms.

2. THE SUBBAND ADAPTIVE FILTER
1. INTRODUCTION STRUCTURE

Adaptive filtering techniques, particularly using FIR filters The adaptive subband structure presented in [3] was derived
in view of their stability and unimodal performance proper- from the filter bank structure with sparse adaptive subfilters
ties, are used in many applications. However, in some ap-0f Fig. 1. In a system identification application, such a
plications such as acoustic echo cancellation and widebandstructure models exactly any FIR system if the sparse adap-
active noise control, the order of the adaptive filters is very tive filtersGy (z) satisfy the following equation:

high, resu!tlng in alarge number.of operations for their im- [ Go(z) Gi(2) -+ Gua(2) ] =
plementation and hence presenting a slow convergence rate
when using LMS based algorithms. [ Po(2) Pi(2) -+ Pu-i(2) [ Fp(2) 1)

As an attempt to solve the above problem, subband pro-whereP;(z) are the polyphase components of the unknown
cessing techniques have been proposed for adaptive filtersystem transfer functiol’(z), and F,(z) is the type-2
[1]-[3]. The advantages expected from subband process-polyphase matrix of the synthesis bank which results in per-
ing are: (a) the computational complexity is approximately fect reconstruction when associated with the analysis filters
reduced in proportion to the number of subbands, becauser,(z) of Fig. 2.
both the number of taps and weight update rate can be dec- By including maximally decimated perfect reconstruc-
imated in each subband; and (b) the convergence rate istion analysis and synthesis banks following each sparse sub-

This work was partially supported by The Natural Sciences and Engi- fl_lter in Fig. 2, movmg the sparse S.Ubflltdrbc (ZM) tQ the .
neering Research Council of Canada, MICRONET - National Network of [ight of the decimators, and assuming that non-adjacent fil-
Centers of Excellence, and by FCAR, Quebec. ters of the analysis bank have frequency responses which
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Fig. 1. Adaptive structure with an analysis filter bank and
sparse subfilters.

do not overlap, the structure of Fig. 2 has been obtained [3].
Observe that, in the resulting structure, the subfilters G, (z)
operate at arate which is 1/M -th of the input rate, and that
from (1), their lengths shouldbe K = ((N + Nf)/M) — 1,
where N is the length of the unknown system to be iden-
tified and IV, is the length of each synthesis filter Fy,(z).
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Fig. 2. Adaptive subband structure with critical sampling
applied to system identification problem.

For each subband of the general structure (correspond-
ingto an arbitrary number (A1) of subbands) showninFig. 2,
we definethe a priori error signal given by

Ei(k) = Di(k) — Yi(k) @)

where Y; (k) is given by

X0,0(k)Go(k) + X, (k)Gi(k), i=0
X1 i(k)Gi1 (k) + X T, (k)Gi(k)
)

l/l(kl): +Xzz+1(k)Gi+1(k ) O0<i<M-1
Xazrvl 1(k)GM2(k)
+XMT-1‘M-1(k)GM'1(k)7 i=M-1
©)
with X,,J(k) = [th(k‘) XZ’J(k‘ — ].) A XZ’J(k‘ — N)]T

In the next two sections, two new algorithms will be
derived for this structure using the above notation.

3. THE FGA ALGORITHM IN SUBBANDS

We start the derivation of the Filtered Gradient Adaptive
(FGA) agorithm in subbands, for the particular structure
presented in the former section, by defining the following
objective function which is similar to what was donein [4]
for the full band case.

M-1 k

ATE? (5 @)

N | =

=0 7=0
It is easy to obtain a recursive form for the above ex-
pression which is given by

M-—1
E2( (5)

i=0

DN | =

T(k) = )+

The updating equation for each ith subband coefficient
vector can be carried out as follows.

Gi(k) + ppi(k) (6)

where the updating processis performed a ong the direction
vector p; (k) regulated by step-size u.

The direction vector is chosen to be the negative gradi-
ent of the objective function being minimized or

pi(k) = =V o0, J(k) = Api(k — 1) + (k) (7)

where

Gi(k+1)=

gi(k) = Xi—1,i(k)Ei—1 (k) + X (k) E; (k)
+Xii+1(k)Eiv1(k), 0<i<M -1 (8)

Note that the above equation al so stands for other values
of ¢ for which the first term is not present if + = 0 and the
last termis not present if i = M — 1.

The FGA agorithm in subbands represented by (2), (6),
and (7), in the case of full band or M = 1, is equivalent to
the Momentum LMS algorithm [5] and its name (Filtered
Gradient Adaptive) comes from the fact that the direction



vector may be considered the output of afilter with asingle-
pole A with g; (k) being theinput. Positive values of A cor-
responds to a low-pass filter and encompasses a smoother
convergence to this algorithm athough no significant gain
in convergence speed over the conventional LM S algorithm
can be expected. [5] also links the MLMS agorithm with
the Conjugate Gradient algorithm and gives the following
stability conditions: [A| < 1and0 < p < 32, where Ay
is the highest eigenvalue of the input-signal autocorrel ation
meatrix. Table 1 presents the subband FGA agorithm.

Table 1. The FGA agorithm in subbands.

For each subband i:

ComputeY( ) asin ©)]
Ei(k) = Di(k) = Yi(k) @)
Compute g;(k) asin (8
pi(k) = Api(k — 1) + gi(k) (7
Gi(k+1) = Gi(k) + ppi(k) (6)

4. ORTHOGONAL PROJECTION FGA
ALGORITHMSIN SUBBANDS

If we consider a dightly different definition for the objec-
tive function, we can accommodate the possibility of atime
varying forgetting factor A, asin

pi(k) = Ni(k)pi(k — 1) +gi(k) 9)

In order to improve the convergence speed of this class
of algorithms, a procedure was introduced in [6] to deter-
mine \;(k) such that p;(k) and p;(k — 1) are orthogonal
or, equivaently, p7 (k)p;(k — 1) = 0. From(9) we make
i (k)pT (k = 1)pi(k — 1) + 7 (k — 1)g;(k) = 0 such that
the time-varying forgetting factor is given by

p; (k= Dgi(k)
p! (k—1)pi(k — 1)

TFrom pi(k) = Xi(k)pi(k — 1) + gi(k) = gi(k) —
T(k(l‘l)ilgg(ly‘)npz(k 1), we seethat p; (k) correspondsto
g; (k) minusthe projection of g;(k) ontop;(k—1). Thisal-
gorithm was named Orthogonal Gradient Adaptive (OGA)
in[6] andits subband version (OGASB) isshownin Table 2.

A normalized version of the OGA agorithmisalso avail-
ablein [6]. Following asimilar approach, we propose anor-
malized version for the subband case given by

Ai(k) = —

(10)

oy Xicni(k)Eia (k) | Xii(k)Ei(k)

&) =X LM X |
Xiit1(k)Eit1 (k) , _
Xm0 <f<M-1 A

The following table also presents this normalized version
named NOGASB (from Normalized Orthogona Gradient
Adaptive) algorithm.

Table 2. The OGA and NOGA agorithm in subbands.

For each subband 7:

Compute Y; (k) asin 3
Ey(k) = D;(k) — Yi(k) @)
Computeg; (k) asin (OGASB) (8)

(NOGASB) (11)
Xi(k) = — P, (10)
pi(k) = Xi(k)pi(k — 1) +gi(k)  (9)

Gilk+1) = Gy() + upi(k)  (6)

Although the (fullband) NOGA algorithm presentsthea
posteriori error equal to zero if g(k) L p(k — 1), the same
does not apply to the NOGA SB algorithm dueto the typical
coupling among channels for the subband structure used.

5. SSIMULATION RESULTS

The identification of alength N = 256 FIR system is con-
sidered. In al the simulations, we have employed the value
of the step-size which resulted in the best convergencerate
for each algorithm. Experiments were performed with the
subband structure of Fig. 2with M = 2, 8 and 16 subbands,
and with perfect reconstruction analysis and synthesis co-
sine modulated filter banks with prototype filters of lengths
Ny, = 32, 128 and 256, respectively. We present here only
the results for the NOGA algorithm, since the results for the
FGA and OGA agorithms are similar to those obtained by
the NOGA agorithm, but the convergencerate for these are
worse than that for the NOGA algorithm.

Figure 3 presentsthe M SE evolution of the NOGA algo-
rithm considering the subband and fullband systems, where
the subband implementation uses the algorithm described
in Table 2. The input signal is a colored noise sequence
generated by passing a white noise sequence of unit vari-
ance through afirst-order IR filter with the pole located at
z = 0.9. The step-size used are ¢ = 0.1, 0.2 and 0.3, for
M = 2, 8 and 16, respectively. The fullband uses i = 1.
The subband structure converges to an MSE of the order
of the stopband attenuation of the analysis filter (which is
around —75 db for M = 8 and M = 16), due the assump-
tion of non-overlapping between non-adjacent analysis fil-
ters[3].

The results obtained in Fig. 3 show that increasing the
number of subbands (M), reducesthe convergencerate. This
result is opposite to that obtained using LMS based algo-
rithms. Here, we can say that the smaller spectral dynamic
range in each subband, due to the subband decomposition,
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Fig. 3. MSE curvesto NOGA considering fullband and sub-
band system.

is not enough to dominate the fact that we are updating the
coefficients of the adaptive subfilters with a rate M times
smaller than the fullband system. Also, in a subband sys-
tem, thetotal number of coefficients need to updateis higher
than that need in the case of the fullband system (see Eq. 1).
However, we expect that by using input signals with higher
spectral dynamic range, the subband algorithm will have a
better performance in view of the convergence rate of the
MSE.

Figure4 presentsthe M SE evol ution of the NOGA where
the input signal z(k) is a colored noise sequence given by:

u(n) = w(n) —0.99u(n — 1) — 0.99u(n — 2)
—0.99u(n — 3) — 0.99u(n — 4) (12)
where w(n) isawhite noise sequence of unit variance. The

step-size used were i, = 0.05, 0.15 and 0.3, for M=2, 8 and
16, respectively. The fullband uses i, = 1.
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Fig. 4. MSE curvesto NOGA considering fullband and sub-
band systems.

In Fig. 4 we confirm our expectancy, i.e., for a highly
correlated input signal, the subband agorithm has a better
convergence rate than the fullband system, and higher the
number of subbands (M), better will be the convergencerate
of the adaptive algorithm.

Considering now the computational complexity (num-
ber of multiplications), for the subband FGA agorithm we
obtain:

5N +1, 203N, —5)
M M

Comparing this with the computational complexity of
the fullband FGA algorithm (3V + 1), we observe that for
(N >> Np), the subband agorithmis 31/ /5 less complex
than the fullband algorithm. This result can be extended to
OGA and NOGA agorithms, where we can obtain similar
conclusions.

+ 4logo M (13

6. CONCLUSIONS

We have derived new critical sampling subbands adaptation
algorithmsbased onthe FGA algorithm anditsvariants. Ex-
perimental results have shown that the convergence rate is
improved when the input signals have a high spectral dy-
namic range. The convergencerate of the M SE may further
be increased by using a higher number of subbands; also
the computational complexity of the proposed algorithmsis
smaller than those of the fullband ones. Thus, we can state
that for an application where the performance of the FGA-
like algorithms are necessary (for instance, when the error
bursting is a problem) and the number of coefficientsis very
high, these new subband implementations are good choi ces.
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