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ABSTRACT

Adaptive filtering techniques in subbands have been recently
developed for a number of applications including acoustic
echo cancellation and wideband active noise control. In
such applications, hundreds of taps are required resulting
in high computational complexity and low convergence rate
when using LMS based algorithms. For fullband systems,
new algorithms which try to overcome these drawbacks have
been investigated. A class of these algorithms employing
variants of the filtered gradient adaptive (FGA) algorithm
has been successfully developed. In this paper, we apply
these techniques to a recently proposed subband adaptive
filter structure in order to improve the convergence rate and
the computational load. Computer simulations show the
benefits obtained with these proposed algorithms.

1. INTRODUCTION

Adaptive filtering techniques, particularly using FIR filters
in view of their stability and unimodal performance proper-
ties, are used in many applications. However, in some ap-
plications such as acoustic echo cancellation and wideband
active noise control, the order of the adaptive filters is very
high, resulting in a large number of operations for their im-
plementation and hence presenting a slow convergence rate
when using LMS based algorithms.

As an attempt to solve the above problem, subband pro-
cessing techniques have been proposed for adaptive filters
[1]-[3]. The advantages expected from subband process-
ing are: (a) the computational complexity is approximately
reduced in proportion to the number of subbands, because
both the number of taps and weight update rate can be dec-
imated in each subband; and (b) the convergence rate is
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improved because the spectral dynamic range is greatly re-
duced in each subband.

For the fullband case, an algorithm known as the filtered
gradient adaptive (FGA) algorithm and its variations have
been developed in order to improve the convergence rate of
applications where the input signal is highly correlated. The
main idea of this paper is to employ these algorithms in the
adaptive subband structure proposed in [3].

The paper is organized as follows. In Section 2, the sub-
band adaptive structure proposed in [3] is described. Sec-
tion 3 introduces the FGA algorithm for this afore-mentioned
subband adaptive structure. Section 4 proposes the orthogo-
nal projection FGA algorithms for the same structure. Sim-
ulation results are presented in Section 5, and Section 6 con-
tains some concluding remarks.

2. THE SUBBAND ADAPTIVE FILTER
STRUCTURE

The adaptive subband structure presented in [3] was derived
from the filter bank structure with sparse adaptive subfilters
of Fig. 1. In a system identification application, such a
structure models exactly any FIR system if the sparse adap-
tive filtersGk(z) satisfy the following equation:

�
G0(z) G1(z) � � � GM�1(z)

�
=�

P0(z) P1(z) � � � PM�1(z)
�
Fp(z) (1)

wherePi(z) are the polyphase components of the unknown
system transfer functionP (z), and Fp(z) is the type-2
polyphase matrix of the synthesis bank which results in per-
fect reconstruction when associated with the analysis filters
Hk(z) of Fig. 2.

By including maximally decimated perfect reconstruc-
tion analysis and synthesis banks following each sparse sub-
filter in Fig. 2, moving the sparse subfiltersGk(z

M ) to the
right of the decimators, and assuming that non-adjacent fil-
ters of the analysis bank have frequency responses which
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Fig. 1. Adaptive structure with an analysis filter bank and
sparse subfilters.

do not overlap, the structure of Fig. 2 has been obtained [3].
Observe that, in the resulting structure, the subfilters Gk(z)
operate at a rate which is 1=M -th of the input rate, and that
from (1), their lengths should be K = ((N +Nf )=M)� 1,
where N is the length of the unknown system to be iden-
tified and Nf is the length of each synthesis filter Fk(z).
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Fig. 2. Adaptive subband structure with critical sampling
applied to system identification problem.

For each subband of the general structure (correspond-
ing to an arbitrary number (M ) of subbands) shown in Fig. 2,
we define the a priori error signal given by

Ei(k) = Di(k)� Yi(k) (2)

where Yi(k) is given by

Yi(k) =

8>>>>>><
>>>>>>:

X
T
0;0(k)G0(k) +X

T
0;1(k)G1(k); i = 0

X
T
i�1;i(k)Gi�1(k) +X

T
i;i(k)Gi(k)

+XT
i;i+1(k)Gi+1(k); 0 < i < M � 1

X
T
M-2,M-1(k)GM-2(k)

+XT
M-1,M-1(k)GM-1(k); i = M � 1

(3)

with Xi;j(k) = [Xi;j(k)Xi;j(k � 1) : : : Xi;j(k �N)]T .
In the next two sections, two new algorithms will be

derived for this structure using the above notation.

3. THE FGA ALGORITHM IN SUBBANDS

We start the derivation of the Filtered Gradient Adaptive
(FGA) algorithm in subbands, for the particular structure
presented in the former section, by defining the following
objective function which is similar to what was done in [4]
for the full band case.

J(k) =

M�1X
i=0

1

2

kX
j=0

�k�jE2
i (j) (4)

It is easy to obtain a recursive form for the above ex-
pression which is given by

J(k) = �J(k � 1) +
1

2

M�1X
i=0

E2
i (k) (5)

The updating equation for each ith subband coefficient
vector can be carried out as follows.

Gi(k + 1) = Gi(k) + �pi(k) (6)

where the updating process is performed along the direction
vector pi(k) regulated by step-size �.

The direction vector is chosen to be the negative gradi-
ent of the objective function being minimized or

pi(k) = �r
Gi(k)

J(k) = �pi(k � 1) + gi(k) (7)

where

gi(k) = Xi�1;i(k)Ei�1(k) +Xi;i(k)Ei(k)

+Xi;i+1(k)Ei+1(k); 0 < i < M � 1 (8)

Note that the above equation also stands for other values
of i for which the first term is not present if i = 0 and the
last term is not present if i = M � 1.

The FGA algorithm in subbands represented by (2), (6),
and (7), in the case of full band or M = 1, is equivalent to
the Momentum LMS algorithm [5] and its name (Filtered
Gradient Adaptive) comes from the fact that the direction



vector may be considered the output of a filter with a single-
pole � with gi(k) being the input. Positive values of � cor-
responds to a low-pass filter and encompasses a smoother
convergence to this algorithm although no significant gain
in convergence speed over the conventional LMS algorithm
can be expected. [5] also links the MLMS algorithm with
the Conjugate Gradient algorithm and gives the following
stability conditions: j�j < 1 and 0 < � < 1+�

�N
, where �N

is the highest eigenvalue of the input-signal autocorrelation
matrix. Table 1 presents the subband FGA algorithm.

Table 1. The FGA algorithm in subbands.

For each subband i:
Compute Yi(k) as in (3)
Ei(k) = Di(k)� Yi(k) (2)
Compute gi(k) as in (8)
pi(k) = �pi(k � 1) + gi(k) (7)
Gi(k + 1) =Gi(k) + �pi(k) (6)

4. ORTHOGONAL PROJECTION FGA
ALGORITHMS IN SUBBANDS

If we consider a slightly different definition for the objec-
tive function, we can accommodate the possibility of a time
varying forgetting factor �k as in

pi(k) = �i(k)pi(k � 1) + gi(k) (9)

In order to improve the convergence speed of this class
of algorithms, a procedure was introduced in [6] to deter-
mine �i(k) such that pi(k) and pi(k � 1) are orthogonal
or, equivalently, pTi (k)pi(k � 1) = 0. From(9) we make
�i(k)p

T
i (k� 1)pi(k� 1)+pTi (k� 1)gi(k) = 0 such that

the time-varying forgetting factor is given by

�i(k) = �
pTi (k � 1)gi(k)

pTi (k � 1)pi(k � 1)
(10)

From pi(k) = �i(k)pi(k � 1) + gi(k) = gi(k) �
p
T

i
(k�1)gi(k)

p
T

i
(k�1)pi(k�1)

pi(k� 1), we see that pi(k) corresponds to

gi(k) minus the projection of gi(k) onto pi(k�1). This al-
gorithm was named Orthogonal Gradient Adaptive (OGA)
in [6] and its subband version (OGASB) is shown in Table 2.

A normalized version of the OGA algorithm is also avail-
able in [6]. Following a similar approach, we propose a nor-
malized version for the subband case given by

gi(k) =
Xi�1;i(k)Ei�1(k)

k Xi�1;i(k) k
+
Xi;i(k)Ei(k)

k Xi;i(k) k

+
Xi;i+1(k)Ei+1(k)

k Xi;i+1(k) k
; 0 < i < M � 1 (11)

The following table also presents this normalized version
named NOGASB (from Normalized Orthogonal Gradient
Adaptive) algorithm.

Table 2. The OGA and NOGA algorithm in subbands.

For each subband i:
Compute Yi(k) as in (3)
Ei(k) = Di(k)� Yi(k) (2)
Compute gi(k) as in (OGASB) (8)

(NOGASB) (11)

�i(k) = �
p
T

i
(k�1)gi(k)

p
T

i
(k�1)pi(k�1)

(10)

pi(k) = �i(k)pi(k � 1) + gi(k) (9)
Gi(k + 1) = Gi(k) + �pi(k) (6)

Although the (fullband) NOGA algorithm presents the a
posteriori error equal to zero if g(k) ? p(k � 1), the same
does not apply to the NOGASB algorithm due to the typical
coupling among channels for the subband structure used.

5. SIMULATION RESULTS

The identification of a length N = 256 FIR system is con-
sidered. In all the simulations, we have employed the value
of the step-size which resulted in the best convergence rate
for each algorithm. Experiments were performed with the
subband structure of Fig. 2 withM = 2, 8 and 16 subbands,
and with perfect reconstruction analysis and synthesis co-
sine modulated filter banks with prototype filters of lengths
Nh = 32, 128 and 256, respectively. We present here only
the results for the NOGA algorithm, since the results for the
FGA and OGA algorithms are similar to those obtained by
the NOGA algorithm, but the convergence rate for these are
worse than that for the NOGA algorithm.

Figure 3 presents the MSE evolution of the NOGA algo-
rithm considering the subband and fullband systems, where
the subband implementation uses the algorithm described
in Table 2. The input signal is a colored noise sequence
generated by passing a white noise sequence of unit vari-
ance through a first-order IIR filter with the pole located at
z = 0:9. The step-size used are � = 0:1, 0:2 and 0:3, for
M = 2, 8 and 16, respectively. The fullband uses � = 1.
The subband structure converges to an MSE of the order
of the stopband attenuation of the analysis filter (which is
around �75 db for M = 8 and M = 16), due the assump-
tion of non-overlapping between non-adjacent analysis fil-
ters [3].

The results obtained in Fig. 3 show that increasing the
number of subbands (M), reduces the convergence rate. This
result is opposite to that obtained using LMS based algo-
rithms. Here, we can say that the smaller spectral dynamic
range in each subband, due to the subband decomposition,
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is not enough to dominate the fact that we are updating the
coefficients of the adaptive subfilters with a rate M times
smaller than the fullband system. Also, in a subband sys-
tem, the total number of coefficients need to update is higher
than that need in the case of the fullband system (see Eq. 1).
However, we expect that by using input signals with higher
spectral dynamic range, the subband algorithm will have a
better performance in view of the convergence rate of the
MSE.

Figure 4 presents the MSE evolution of the NOGA where
the input signal x(k) is a colored noise sequence given by:

u(n) = w(n) � 0:99u(n� 1)� 0:99u(n� 2)

�0:99u(n� 3)� 0:99u(n� 4) (12)

where w(n) is a white noise sequence of unit variance. The
step-size used were � = 0:05, 0:15 and 0:3, for M=2, 8 and
16, respectively. The fullband uses � = 1.
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In Fig. 4 we confirm our expectancy, i.e., for a highly
correlated input signal, the subband algorithm has a better
convergence rate than the fullband system, and higher the
number of subbands (M), better will be the convergence rate
of the adaptive algorithm.

Considering now the computational complexity (num-
ber of multiplications), for the subband FGA algorithm we
obtain:

5N + 1

M
+

2(3Nh � 5)

M
+ 4log2M (13)

Comparing this with the computational complexity of
the fullband FGA algorithm (3N + 1), we observe that for
(N >> Nh), the subband algorithm is 3M=5 less complex
than the fullband algorithm. This result can be extended to
OGA and NOGA algorithms, where we can obtain similar
conclusions.

6. CONCLUSIONS

We have derived new critical sampling subbands adaptation
algorithms based on the FGA algorithm and its variants. Ex-
perimental results have shown that the convergence rate is
improved when the input signals have a high spectral dy-
namic range. The convergence rate of the MSE may further
be increased by using a higher number of subbands; also
the computational complexity of the proposed algorithms is
smaller than those of the fullband ones. Thus, we can state
that for an application where the performance of the FGA-
like algorithms are necessary (for instance, when the error
bursting is a problem) and the number of coefficients is very
high, these new subband implementations are good choices.
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