
 
 

ABSTRACT 
 
A new class of invariant pattern recognition algorithms is 
required for interpreting nondestructive evaluation signals that 
occur during in-line inspection of components with varying 
material properties. This paper presents the theoretical 
development of these invariance algorithms and provides 
experimental validation of these algorithms using applications 
in magnetic flux leakage NDE and ultrasound NDE. 
 

1. INTRODUCTION 

Invariant pattern recognition algorithms form the heart 
of most visual/image recognition techniques. The field 
of invariants is not new; many algorithms, rooted in 
rigorous mathematical theory, have been developed 
over the years. However, developments in invariant 
theory for images have focused on “classical” 
parametric variations such coordinate transformations 
such as translation, rotation and scaling. The 
development of general mathematical techniques that 
provide invariant features for operational 
transformations is still largely unexplored.  

Operational parametric variations occur as the result 
of changing physical conditions during an imaging 
process – as in the interpretation of nondestructive 
evaluation (NDE) signals obtained during the 
interrogation of infrastructure composed of varying 
material properties. Local variations in the material 
properties cause the received NDE signals to exhibit 
uncontrolled, and often unpredictable variations making 
signal inversion inaccurate and unreliable. Classical 
invariant pattern recognition/signal processing 
techniques cannot model such parametric variations; a 
new class of invariance transformation algorithms is 
called for to render signals invariant to operational 
conditions that include variations in material properties. 
This paper presents the theoretical development of this 
new class of invariant signal processing algorithms and 
provides experimental validation of these algorithms  

 
 
using applications in magnetic flux leakage NDE and 
ultrasound NDE. 

This paper is organized as follows. Following this 
introduction, the research objectives are presented and 
the proposed invariance algorithm is described. The 
next section presents application examples 
demonstrating the validity and robustness of the 
invariance transformation algorithm. Two applications 
are presented – thickness-invariant characterization of 
metal pipeline segments using magnetic flux leakage 
interrogation and composition-invariant characterization 
of concrete pipe segments using ultrasonic testing. The 
paper concludes with a discussion on the general nature 
of the invariance transformation algorithms that have 
been developed, and their potential application to a 
diverse class of problems. 

2. INVARIANCE TRANSFORMATIONS 

The objective of the invariance transformation is to 
isolate information relating to the object geometry 
irrespective of the operational parameters associated 
with the imaging or interrogation process. The 
algorithm should not only compensate for these 
variables, but also ideally, be able to operate without a 
precise knowledge of these variables. Such algorithms 
are, in fact, a part of many biological systems. For 
example, the human visual system is able to estimate 
the size of an object, regardless of its distance from the 
observer (obviously within a certain range of distances). 
The visual system accomplishes this by making two 
measurements, one with each eye. These two 
measurements are dissimilar and this dissimilarity is 
exploited in the visual cortex for synthesizing the 
composite 3-D view of the object, along with fairly 
accurate estimates of its size. The key process that 
allows for distance-invariant object size estimation is 
the fact that the image seen by each eye differs slightly 
from the other. This procedure can be modeled 
mathematically, and a generalization of the 
mathematical procedure can be developed for 
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performing parameter-invariant image characterization. 
Two dissimilar “views” of the test specimen can be 
obtained by utilizing the two inspection modalities. The 
invariance transformation is an algorithm that can 
combine disparate signals by selectively promoting 
desired parametric variations (e.g. object geometry 
related changes) and suppressing unwanted ones 
(operational procedure related changes).  

A transformation that combines disparate signals 
can be designed when the signal interpretation problem 
is recast as a problem in the interpolation of scattered 
multidimensional data. The field of computational 
mathematics is rich with sophisticated techniques for 
data interpolation. Of all these techniques, feed-forward 
neural networks have triumphed as the ones possessing 
the widest range of application. These include 
multiquadric surface interpolation, as in a radial basis 
function (RBF) networks [1] fuzzy inference systems 
(FIS) [2] and wavelet transform based networks 
(WaveNets) [3].  The key requirement for designing an 
invariance transformation procedure is a set (consisting 
of at least two) signals that originate from the same 
process. 

Given two signals, XA and XB, characterizing the 
same phenomenon, two distinct initial features, xA(d, l, 
t) and xB(d, l, t), are chosen, where t represents an 
operational variable (for instance, material property of 
the object under test) and d and l represent geometrical 
parameters (for instance, defect depth and length, 
respectively). xA and xB are chosen such that they have 
dissimilar variations with t. A systematic procedure is 
developed to obtain a feature, h, which is a function of 
xA and xB and invariant to the parameter, t. For 
simplicity, xA and xB are considered to be dependent on 
only three parameters d, l and t.  We need to find a 
function,  f, such that 

f{ xA (d, l, t), xB (d, l, t)} = h(d,l)               (1) 

Given two functions g1 and g2,a sufficient condition to 
obtain a signal invariant to t can be derived as 

h(d,l) ?  g1 (xA) = g2 (xB)                (2) 

where ?  refers to a homomorphic operator. Then the 
desired t-invariant response is defined as  

f(xA, xB) = g2 (xB) ?  g1
-1(xA) = h(d,l)              (3) 

To implement this procedure, the functions h, g1 and g2 

need to be obtained. Since h is a user-defined function, 
it can be chosen conveniently; for example, a linear 
combination of d and l. The function g2 could be used to 
serve as a “conditioning” function, chosen to better 
condition the data. For example, if xB contains widely 
spread values, g2 can be chosen to be a logarithmic 
function. Having chosen h and g2 arbitrarily, a suitable 

functional form is assumed for g1, whose coefficients 
are to be determined. This is done by solving a set of 
simultaneous equations at discrete points, (di, lj, tk); i: 1 
to m;  j: 1 to n; k : 1 to p, in the data space. That is, 

       h(di, lj) ?  g1{ xA (di, lj, tk)} = g2{ xB (di, lj, tk)}      (4) 

should be solved exhaustively. This is nothing but a 
problem in multidimensional interpolation. Invariance 
is possible using this method only if a unique solution 
to (4) exists, which depends on an appropriate choice of 
g1.  Designing an invariance transformation function in 
essence translates to finding the most suitable g1 for the 
data set given. As mentioned earlier, functions modeled 
by feedforward neural networks are ideal functional 
forms for g1. In a practical application, images from two 
different inspection modalities (transducer frequency, 
transducer orientation, etc.) could be the two dissimilar 
signals that are required by this invariance 
transformation technique.  

3. APPLICATION EXAMPLES 

The invariance transformation algorithm described in 
the previous section is applied for interpreting NDE 
signals obtained from two kinds of inspection processes 
– metal gas pipelines that are inspected using magnetic 
flux leakage methods and concrete water pipelines that 
are inspected using ultrasonic techniques. Laboratory 
experiments have been developed for generating a suite 
of NDE signals for both kinds of inspection methods – 
these have been used to exercise the invariance 
algorithms. Details of the experimental process and 
typical application results are presented in the following 
subsections. 

3.1.  Magnetic flux leakage inspection 

Magnetic flux leakage (MFL) inspection is the method 
of choice for inspecting a large portion of the 280,000-
mile natural gas transmission pipeline system [4]. These 
pipes, usually buried underground, are 24 – 36 inches in 
diameter and are constructed from X-Grade steel. Along 
any length of the pipe, pipe thickness and magnetic 
characteristics vary – these lead to changes in the 
magnetic flux leakage image of the pipe segment, thus 
making defect characterization difficult. Invariance 
transformation algorithms can potentially render the 
magnetic images invariant to the effects of pipe-wall 
thickness and/or magnetization characteristic, while at 
the same time, preserve image variations that occur due 
to defect depth. Different components of the magnetic 
flux density vector can be used to generate the disparate 
inspection signals – a set of orthogonal sensors can be 
employed to record the various components. 



 
 
 
 
 
 

 
 

Fig. 1. Magnetic flux leakage images from pipes with 
varying wall thickness and defect depth. 

 
 
 
 
 
 
 
 
 

 
Fig. 2. Magnetic flux leakage images after invariance 
transformation. 

 
 
Figure 1 shows magnetic images from sections of 

pipe-walls with 3 different wall-thicknesses and  2 
different defect depths. Figure 2 shows the 
corresponding magnetic images after they have been 
processed with the invariance transformation algorithm 
described in the previous section. The results 
demonstrate that gray level variations due to changing 
magnetization level that occur due to changing pipe-
wall thicknesses are reduced/eliminated whereas gray 
level variations due to defect geometry are preserved. 

3.2.  Ultrasonic inspection 

Ultrasonic inspection is widely used for assuring the 
integrity of a variety of metallic and non-metallic 
objects, including composites [5]. In this paper, we 
focus on using ultrasonic NDE for inspecting concrete 
specimens representative of wastewater pipelines [6]. 
An immersion ultrasound system with pairs of 
transducers are used to perform through-transmission 
inspection of defective concrete samples. The 
composition of the concrete is varied from a cement + 
sand mix to a cement + sand + aggregate mixture; the 
defect depth is also varied. The inspection is conducted 
at two frequencies – 500 kHz and 1 MHz; the two sets 
of C-scan images are used to generate peak-to-peak 
signal amplitudes related to defect depth. These form 
the disparate signals required for the invariance 
transformation, which can be applied to provide a peak-
to-peak signal amplitude that is invariant to the concrete  

 
 
 
 
 

 
 

 
 
Fig. 3. Ultrasound C-scan image obtained by scanning a 
6”x4”x2” concrete (cement + sand + water mixture) 
specimen containing a 1”x1”x0.5” rectangular slot-
shape defect using a pair of 500 kHz ultrasound 
transducers. 
 
 
composition and yet responds to changes in defect 
depth. Figure 3 shows a sample C-scan obtained from a 
concrete specimen embedded with a rectangular defect. 
Peak-to-peak signal amplitudes at two different 
transducer frequencies inspecting concrete specimens 
with varying composition and defect depth can be seen 
in Figures 4 (a) and (b). Figure 5 shows the results of 
the invariance transformation. This demonstrates a 
particularly useful application of invariance 
transformations to NDE – concrete, by its 
heterogeneous nature is extraordinarily difficult to 
characterize.  

4. CONCLUSIONS 

The results presented in this paper demonstrate the 
validity of using invariance transformation algorithms 
for two very different NDE techniques – the magnetic 
flux leakage inspection method, which is a static (dc) 
process and the ultrasonic inspection method, which is a 
high frequency process. The algorithm is sufficiently 
general in that it can be used for invariant pattern 
recognition in many imaging applications far removed 
from NDE. The technique is robust and easy to 
implement – all that is required is a suite of specimen 
signatures for designing the invariance transformation. 
In the NDE area, such transformations are a necessary 
pre-processing stage for developing advanced 
inspection and evaluation techniques. 
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Fig. 6. Invariance transformation results for the 
concrete specimen scans. 
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              (a)      (b) 
Fig. 5. Peak-peak signal amplitudes from C-scans of 6”x4”x2” concrete specimens made with two different 
compositions scanned at two different frequencies – 500 kHz and 1 MHz. Specimens contain rectangular slot-
shaped defects of varying depths – 0.25”, 0.5” and 1”. 

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

Defect depth (inches)

P
ea

k 
si

gn
al

 a
m

pl
it

ud
e

Invariance Transformation Results

Cement:Sand
Cement:Sand:Aggregate


