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ABSTRACT

A new class of invariant pattern recognition algorithms is
required for interpreting nondestructive evaluation signals that
occur during in-line inspection of components with varying
material properties. This paper presents the theoretical
development of these invariance algorithms and provides
experimental validation of these algorithms using applications
in magnetic flux leakage NDE and ultrasound NDE.

1. INTRODUCTION

Invariant pattern recognition algorithms form the heart
of most visual/image recognition techniques. The field
of invariants is not new; many algorithms, rooted in
rigorous mathematical theory, have been developed
over the years. However, developments in invariant
theory for images have focused on “classical”
parametric variations such coordinate transformations
such as trandation, rotation and scaling. The
development of general mathematical techniques that
provide invariant  features  for operational
transformationsis still largely unexplored.

Operational parametric variations occur as the result
of changing physical conditions during an imaging
process — as in the interpretation of nondestructive
evaluation (NDE) signals obtained during the
interrogation of infrastructure composed of varying
material properties. Local variations in the material
properties cause the received NDE signals to exhibit
uncontrolled, and often unpredictable variations making
signal inversion inaccurate and unreliable. Classical
invariant  pattern  recognition/signal  processing
techniques cannot model such parametric variations; a
new class of invariance transformation algorithms is
called for to render signals invariant to operational
conditions that include variations in material properties.
This paper presents the theoretical development of this
new class of invariant signal processing algorithms and
provides experimental validation of these algorithms

using applications in magnetic flux leakage NDE and
ultrasound NDE.

This paper is organized as follows. Following this
introduction, the research objectives are presented and
the proposed invariance algorithm is described. The
next section presents application  examples
demonstrating the validity and robustness of the
invariance transformation algorithm. Two applications
are presented — thickness-invariant characterization of
metal pipeline segments using magnetic flux leakage
interrogation and composition-invariant characterization
of concrete pipe segments using ultrasonic testing. The
paper concludes with a discussion on the general nature
of the invariance transformation algorithms that have
been developed, and their potential application to a
diverse class of problems.

2. INVARIANCE TRANSFORMATIONS

The objective of the invariance transformation is to
isolate information relating to the object geometry
irrespective of the operational parameters associated
with the imaging or interrogation process. The
algorithm should not only compensate for these
variables, but also ideally, be able to operate without a
precise knowledge of these variables. Such algorithms
are, in fact, a part of many biological systems. For
example, the human \isual system is able to estimate
the size of an object, regardless of its distance from the
observer (obviously within a certain range of distances).
The visual system accomplishes this by making two
measurements, one with each eye. These two
measurements are dissmilar and this dissimilarity is
exploited in the visual cortex for synthesizing the
composite 3-D view of the object, along with fairly
accurate estimates of its size. The key process that
alows for distance-invariant object size estimation is
the fact that the image seen by each eye differs slightly
from the other. This procedure can be modeled
mathematically, and a generalization of the
mathematical procedure can be developed for



performing parameter-invariant image characterization.
Two dissimilar “views’ of the test specimen can be
obtained by utilizing the two inspection modalities. The
invariance transformation is an algorithm that can
combine disparate signals by selectively promoting
desired parametric variations (e.g. object geometry
related changes) and suppressing unwanted ones
(operational procedure related changes).

A transformation that combines disparate signals
can be designed when the signal interpretation problem
is recast as a problem in the interpolation of scattered
multidimensional data. The field of computational
mathematics is rich with sophisticated techniques for
data interpolation. Of all these techniques, feed-forward
neural networks have triumphed as the ones possessing
the widest range of application. These include
multiquadric surface interpolation, as in a radial basis
function (RBF) networks [1] fuzzy inference systems
(FIS) [2] and wavelet transform based networks
(WaveNets) [3]. The key requirement for designing an
invariance transformation procedure is a set (consisting
of at least two) signals that originate from the same
process.

Given two signals, X and Xg, characterizing the
same phenomenon, two distinct initial features, xa(d, I,
t) and xg(d, I, 9, are chosen, where t represents an
operational variable (for instance, material property of
the object under test) and d and | represent geometrical
parameters (for instance, defect depth and length,
respectively). xa and xg are chosen such that they have
dissimilar variations with t. A systematic procedure is
developed to obtain a feature, h, which is a function of
Xa and xg and invariant to the parameter, t. For
simplicity, xa and xg are considered to be dependent on
only three parameters d, | and t. We need to find a
function, f, such that

f xa (d, 1, 1), % (d, I, 1)} = h(d})) )

Given two functions g; and g,a sufficient condition to
obtain asignal invariant tot can be derived as

h(dl) ? g1 (Xa) =92 (Xs) @

where ? refers to a homomorphic operator. Then the
desired t-invariant responseis defined as

f(Xa, X8) =92 (X8) ? 91" (xa) =h(d,)) (€)]

To implement this procedure, the functions h, g, and g,
need to be obtained. Since h is a user-defined function,
it can be chosen conveniently; for example, a linear
combination of d and |. The function g, could be used to
serve as a “conditioning” function, chosen to better
condition the data. For example, if xg contains widely
spread values, g, can be chosen to be a logarithmic
function. Having chosen h and g arbitrarily, asuitable

functional form is assumed for g;, whose coefficients
are to be determined. This is done by solving a set of
simultaneous equations at discrete points, (di, lj, ti); i: 1
tom; j: 1ton; k: 1top, inthedataspace. Thatis,

h(di, 1) ? gaf Xa (di, I}, 1)} = go{ X (di, 1j, )} (4)
should be solved exhaustively. This is nothing but a
problem in multidimensional interpolation. Invariance
is possible using this method only if a unique solution
to (4) exists, which depends on an appropriate choice of
g:. Designing an invariance transformation function in
essence translates to finding the most suitable g; for the
data set given. As mentioned earlier, functions modeled
by feedforward neural networks are ideal functional
formsfor g,. In a practical application, images from two
different inspection modalities (transducer frequency,
transducer orientation, etc.) could be the two dissimilar

signals that are required by this invariance
transformation technique.

3. APPLICATION EXAMPLES

The invariance transformation algorithm described in
the previous section is applied for interpreting NDE
signals obtained from two kinds of inspection processes
— metal gas pipelinesthat are inspected using magnetic
flux leakage methods and concrete water pipelines that
are inspected using ultrasonic techniques. Laboratory
experiments have been developed for generating a suite
of NDE signals for both kinds of inspection methods—
these have been used to exercise the invariance
algorithms. Details of the experimental process and
typical application results are presented in the following
subsections.

3.1. Magneticflux leakage inspection

Magnetic flux leakage (MFL) inspection is the method
of choice for inspecting a large portion of the 280,000-
mile natural gas transmission pipeline system [4]. These
pipes, usually buried underground, are 24 — 36 inchesin
diameter and are constructed from X-Grade steel. Along
any length of the pipe, pipe thickness and magnetic
characteristics vary — these lead to changes in the
magnetic flux leakage image of the pipe segment, thus
making defect characterization difficult. Invariance
transformation algorithms can potentially render the
magnetic images invariant to the effects of pipe-wal
thickness and/or magnetization characteristic, while at
the same time, preserve image variations that occur due
to defect depth. Different components of the magnetic
flux density vector can be used to generate the disparate
inspection signals — a set of orthogonal sensors can be
employed to record the various components.
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Fig. 1 Magnetic flux leakage images from pipes with
varying wall thickness and defect depth.
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Fig. 2 Magnetic flux leakage images after invariance
transformation.

Figure 1 shows magnetic images from sections of
pipe-walls with 3 different wall-thicknesses and 2
different defect depths. Figure 2 shows the
corresponding magnetic images after they have been
processed with the invariance transformation algorithm
described in the previous section. The results
demonstrate that gray level variations due to changing
magnetization level that occur due to changing pipe-
wall thicknesses are reduced/eliminated whereas gray
level variations due to defect geometry are preserved.

3.2. Ultrasonicinspection

Ultrasonic inspection is widely used for assuring the
integrity of a variety of metalic and non-metalic
objects, including composites [5]. In this paper, we
focus on using ultrasonic NDE for inspecting concrete
specimens representative of wastewater pipelines [6].
An immersion ultrasound system with pairs of
transducers are used to perform through-transmission
inspection of defective concrete samples. The
composition of the concrete is varied from a cement +
sand mix to a cement + sand + aggregate mixture; the
defect depth is also varied. The inspection is conducted
at two frequencies — 500 kHz and 1 MHz; the two sets
of Cscan images are used to generate peak-to-peak
signal amplitudes related to defect depth. These form
the disparate signals required for the invariance
transformation, which can be applied to provide a peak-
to-peak signal amplitude that isinvariant to the concrete

Fig. 3. Ultrasound C-scan image obtained by scanning a
6"x4"x2" concrete (cement + sand + water mixture)
specimen containing a 1"x1"x0.5" rectangular slot-
shape defect using a pair of 500 kHz ultrasound
transducers.

composition and yet responds to changes in defect
depth. Figure 3 shows a sample C-scan obtained from a
concrete specimen embedded with a rectangular defect.
Peak-to-peak signal amplitudes at two different
transducer frequencies inspecting concrete specimens
with varying composition and defect depth can be seen
in Figures 4 (a) and (b). Figure 5 shows the results of
the invariance transformation. This demonstrates a
particularly  useful  application of invariance
transformations to NDE - concrete, by its
heterogeneous nature is extraordinarily difficult to
characterize.

4. CONCLUSIONS

The results presented in this paper demonstrate the
validity of using invariance transformation dgorithms
for two very different NDE techniques — the magnetic
flux leakage inspection method, which is a static (dc)
process and the ultrasonic inspection method, whichisa
high frequency process. The algorithm is sufficiently
general in that it can be sed for invariant pattern
recognition in many imaging applications far removed
from NDE. The technique is robust and easy to
implement — all that is required is a suite of specimen
signatures for designing the invariance transformation.
In the NDE area, such transformations are a necessary
pre-processing stage for developing advanced
inspection and evaluation techniques.
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Fig. 5. Peak-peak signal amplitudes from C-scans of 6”x4”x2" concrete specimens made with two different
compositions scanned at two different frequencies— 500 kHz and 1 MHz. Specimens contain rectangular slot-
shaped defects of varying depths—0.25", 0.5" and 1”.
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Fig. 6. Invariance transformation results for the
concrete specimen scans.



