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ABSTRACT 

Nondestructive evaluation of the gas pipeline system is most 
commonly performed using magnetic flux leakage (MF L) 
techniques. A major segment of this network employs seamless 
pipes. The data obtained from MFL inspection of seamless pipes is 
contaminated by various sources of noise; including seamless pipe 
noise due to material properties of the pipe, lift-off variation of 
MFL sensor due to motion of the pipe and system noise due to on-
board electronics. The noise can considerably reduce the 
detectability of defect signals in MFL data. This paper presents a 
new technique for improving the signal-to-noise-ratio in MFL data 
obtained from seamless pipes. The approach utilizes normalized 
least mean squares adaptive noise filtering coupled with wavelet 
shrinkage denoising to minimize the effects of various sources of 
noise. Results from application of the approach to data from field 
tests are presented. It is shown that the proposed algorithm is 
computationally efficient and data independent.  
 

1. INTRODUCTION  

Natural gas is transported to consumer sites through a vast network 
of pipelines. In order to ensure the integrity of the system, the 
pipelines are periodically examined using inspection tools called 
“pigs”. The pig is a magnetizer-sensor assembly, employing the 
magnetic flux leakage (MFL) technique for assessing the condition 
of the pipe. An array of Hall -effect sensors is usually installed 
around the circumference of the pig to sense the leakage flux 
caused by anomalies in the pipe. The signal picked up by the 
sensor array is recorded and subsequently analyzed offline by 
trained analysts.  The traditional method involving manual analysis 
of this huge volume of data is very time consuming and the 
performance is subject to the level of skills and training of the 
analyst. The gas pipeline inspection industry is therefore keenly 
interested in automated methods for analyzing MFL data in order 
to improve accuracy and decrease the turn around time between 
actual pigging and receipt of inspection results [1,2].  
 
Seamless pipes are usually produced in smaller girths. 
Consequently, they are commonly found in the collection and 
distribution ends of the gas pipeline network. Since these pipes are 
usually located in populated areas, it is imperative that flaws are 
detected in a timely and accurate manner. The typical procedure 
for manufacturing seamless pipes consists of a sequence of 
piercing, rolling and milling operations. The helical nature of these 
operations set the grain of the seamless pipe in such a way that the 
data obtained from MFL inspection of these pipes contain an 
artifact known as the seamless pipe noise (SPN). The s ignals 

generated by SPN in MFL data are time varying in nature and 
appear very similar in shape and amplitude to signals due to 
defects. As a consequence, seamless pipe noise can in some cases 
completely mask MFL signals from certain type of defects, such as 
low SNR signals from shallow corrosion and mechanical damage.  
Methods for minimizing the effect of SPN and improving the 
detectability of defect signals in MFL data are, therefore, required.  
This paper presents a new technique for automated preprocessing 
of data gathered from MFL inspection of seamless gas pipes. In 
particular, a signal processing approach for removing SPN and 
improving the SNR of MFL signals is described. 

2. APPROACH 

The basic idea underlying the approach is to employ signal and 
image processing techniques to mitigate the sources of corruption 
in MFL data obtained from seamless pipes. The overall algorithm 
is implemented in three major steps. The first step involves data 
normalization where the raw data is processed to account for 
inaccuracies in the data introduced by the measurement system in 
the pig. Sources of error and noise include those contributed by 
variations in sensor liftoff and bad sensors. The normalized data is 
then passed through a normalized least mean square (NLMS) 
adaptive filter to remove SPN from the data.  Finally, a wavelet 
threshold denoising technique is applied to remove the remaining 
random system noise in the MFL data.  Since algorithms 
incorporated into automated analysis tools are designed for 
classification and characterization of large volumes of MFL data, 
computational efficiency and data independence are highly 
desirable.  The technique described in this paper is designed to 
meet these criteria.  The following sections describe the above-
mentioned processing steps in greater detail.  

2.1. Data Normalization 

The data normalization step involves preprocessing of the MFL 
data to compensate for various imperfections in the data collection 
mechanism before denoising techniques can be applied. The effects 
of Hal l-effect transducers that malfunction during inspection and 
the variations in sensor lift-off alignment are corrected for in this 
step. Let si be the signal from the i th element in the circumferential 
sensor array on the pig and let N represent the total number of 
sensors in the array. The signal from a bad sensor is replaced 
simply by interpolating the signals from neighboring sensors. If mi 
is the mean value of the signal measured by i th sensor, then the lift-
off variation between sensors is minimized by 

.,,2,1, Niss iii =∆+=   (1) 

where mmii −=∆  and mdenotes the median of all signal means. 
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Figure 1. Schematic representation of the NLMS adaptive seamless 
pipe noise cancellation system. 

2.2. NLMS Adaptive Filter for SPN Cancellation 

The main step in the proposed algorithm employs a normalized 
least mean square (NLMS) adaptive filter for seamless pipe noise 
cancellation. SPN is a time-varying noise and thereby requires an 
adaptive filter to mitigate its effect. An adaptive filter is capable of 
adjusting its impulse response appropriately using an algorithm 
that minimizes the error between the filter output and reference 
input. We utilize a finite impulse response (FIR) filter based on 
least mean square (LMS) algorithm to implement the adaptive 
system. 
 

Figure 1 shows a schematic representation of the SPN rejection 
system. The aim of the technique is to exploit the correlation 
properties of the MFL signal generated by the seamless pipe and 
signals due to defects and other a rtifacts in the pipeline. The 
reference input, uk, and the primary input, dk, to the adaptive 
system are signals obtained from two MFL sensors in close 
proximity. Both inputs are assumed to be statistically stationary. 
We assume that uk consists of the SPN  signal alone, while dk 
contains the desired defect signal in addition to the noise signal, 
that is, 
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where sk denotes the defect signal, and ηk and η′
k  represent SPN 

signals from the two sensors.  The underlying assumption is that 
the SPN noise contained in the primary and the reference inputs, ηk 
and η′

k, are highly correlated with each other, and uncorrelated 
with the signal component, sk.  To determine the adaptive filter 
coefficients using the LMS algorithm, we minimize the total 
system output power (mean squared error) or the power in the error 
signal, εk. It can be shown [3,4,5] that the minimization term is 
given by,  
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The signal power ][ 2
ksE  is unchanged when the filter 

coefficients are adjusted in the error minimization algorithm. 
Consequently, only the term E[(ηk − yk)

2] is minimized in the MSE 
minimization. When the algorithm converges to the minimum 
mean square error (MMSE) solution, yk represents the best 
estimate, 

kη̂ , of the SPN contained in primary input dk in least 

square sense, i.e. 
kky η̂≈ . Since 

kkkk ys −+= ηε , this implies 

kk ŝ=ε , where kŝ is the best estimate of the defect signal sk. This 

argument implies that the minimization of MSE entails 
cancellation of correlated components between dk and uk, which in 
this case is the seamless pipe noise.  Consequently, the error signal 
at the output of the noise rejection system provides an estimate of 
the desired defect signal component in the primary input signal. 
Next we describe the least mean square algorithm used to obtain 
the MMSE solution.   

2.2.1. NLMS Adaptive Algorithm 

The NLMS algorithm utilizes the method of steepest decent to 
update the coefficients of a FIR filter. It is easy to show [3,4,5] that 
the filter update equation is given by, 

.U2BB 1 kkkk µε+=+  (4) 

where Bk and U k denote the filter coefficients and data vectors 
respectively. The parameter µ controls the convergence rate of the 
algorithm, and εk = dk − y k. The choice of the convergence 
parameter, µ, plays an important role in determining the 
performance of the adaptive system. It has been shown [4] that 
stable range of µ varies according to the input signal power.  If a 
normalized value, 
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is used, where σ2 is input signal power and L+1 is the number of 
adaptive filter coefficients, the stable range of µ is restricted to 
0<µ<1. In the MFL data obtained from gas pipeline inspection, the 
signal power may change due to variation in wall thickness or 
other artifacts in the pipe. Therefore, we replace σ2 by a time-
varying estimate, 
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where α is called the forgetting factor with values in the range 
10 <<<α , and is selected to reduce the influence of past samples. 

In summary, the overall NLMS algorithm is implemented using the 
relations,  
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For the adaptive noise cancellation structure shown in Figure 1, 
dk is obtained from the MFL sensor passing over a defect and uk 
from a sensor containing the SPN only. However, in MFL pipeline 
inspection, it is not known a priori which sensor contains only the 
noise data. To overcome this problem, we implement a scheme that 
dynamically assigns uk and dk from MFL sensors that are a fixed 
distance apart from each other. The SPN cancellation algorithm is 
then applied to each sensor by scanning the circumference of the 
pipe.  

2.2.2. SPN Cancellation in the Presence of System Noise 

The analysis to this point d oes not take the system noise into 
account.  System noise includes noise generated by on -board 
electronics as well as sensors, and contributes to most of the high 
frequency noise in the data.  Taking the system noise into 
consideration, the inputs to the adaptive noise rejection system can 
be described as, 
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Figure 2. Results obtained from the application of the noise cancellation algorithm to field data (a) Defect layout in the test data (b) Raw 
MFL data  (c) Output after SPN cancellation (d) Final de-noised signal. 
 

The system noise ∆k and ∆′
k are assumed to be uncorrelated 

with each other, as well as with other signal components sk, ηk and 
η′

k. Both the desired and reference inputs are considered stationary 
processes as before.  In this case, the adaptive system cancels out 
the correlated SPN, η′

k, and the system noise ∆k passes through to 
the output εk. 

The adaptive filter first learns the statistics of the signals and 
then tracks these properties if they change slowly with time.  For 
adaptive filters operating with time-varying stationary inputs, the 
steady-state performance of the filter can be mathematically 
described using the Wiener filter theory [3]. If we assume that the 
adaptive noise canceling process has converged, the MMSE 
solution or the minimum point on the error performance surface, 
H*(k), is equivalent to the coefficients of the optimum Wiener 
filter. Thus the output of the noise canceller, εk, is in fact the error 
of the Wiener filter, which according to orthogonality principle, is 
uncorrelated with the filter input uk [3,6].  This implies that all the 
correlated components (ηk) between primary and reference inputs 
will be completely eliminated at the output.  However the 
uncorrelated system noise will not be cancelled and appears at the 
output, εk. 

2.3. Wavelet Shrinkage Denoising  

In the last processing step of the algorithm, the residual system 
noise in the adaptive noise-cancellation system output is removed 
from the filtered MFL data.  This noise is treated as additive white 
Gaussian noise (AWGN), and a wavelet -based thresholding 

approach is utilized.  The technique is known as adaptive wavelet 
shrinkage denoising or soft thresholding [7]. In this method, the 
wavelet coefficients, w, of the MFL data are "shrunk" towards zero 
using the relation,  

.])[sgn(),( +−=Γ λλ www  (9) 

The threshold, λ, depends on the noise characteristics of the 
data and is estimated from the finest resolution level of wavelet 
transform of the data. Since the noise characteristics vary from 
transducer to transducer and from one pipe section to another, the 
threshold is computed adaptively for each transducer.   

3. RESULTS 

The proposed technique was applied to MFL data obtained from 
three seamless pipes of different SPN signatures. Each pipe was 
20’’ in diameter and had a 0.25’’ wall thickness. An identical 
defect set, shown in Figure 2a, was machined on each pipe. Figure 
2 shows processing results from application of the algorithm on 
MFL data obtained from one of these pipes.  To further elaborate 
on these results, Figure 3 shows the signals obtained by processing 
the MFL signal acquired from an individual sensor in the data 
shown in Figure 2, at each step of the algorithm.  Observe that the 
defect signals are masked by SPN in raw MFL data; however, all 
defect signals can be clearly identified in the processed data. When 
both MFL sensors that provide inputs to the adaptive system pass 
over a no-defect region in the pipe, dk and uk contain noise. The 
error output, εk, in this case would contai n system noise only, 
which is removed by wavelet shrinkage denoising.   
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Figure 3. Line-scans corresponding to sensor 23 in the data image shown in Figure 2 (a) Primary input, dk (b) Reference input, uk (c) Filter 
output, yk (d) Error output, εk (e) Final output after wavelet shrinkage denoising. 
 
Application of the algorithm to other data sets produced results that 
are very similar to the ones shown in Figures 2 and 3. It should be 
pointed out that since the algorithm is intended for automated 
analysis of MFL data, it was applied blindly to all data and that 
none of the processing parameters were modified during its 
application to different data sets. Furthermore, the algorithm was 
also applied to blocks of incoming stream data to emulate the real 
world processing of large volumes of MFL data analyzed in 
batches. To prevent loss of time and data sections for adjusting the 
filter coefficients, coefficients were saved after each batch was 
processed, and the adaptive filters were initialized to these 
coefficients for processing the next batch. 

4. SUMMARY AND CONCLUSIONS  

 A new technique for enhancing signals in MFL data from 
seamless gas pipeline inspection has been proposed. The approach 
utilizes a NLMS adaptive filter to cancel time -varying seamless 
pipe noise, followed by wavelet shrinkage denoising to remove the 
residual AWGN system noise. Signal processing results from 
application of the technique to MFL data obtained from different 
types of seamless pipes are presented.  Preliminary results obtained 
to d ate show considerable enhancement in the detectability of 
signals in MFL data.  This algorithm can be incorporated into 
automatic analysis tools designed for the classification and 
characterization of MFL data, because of its computational 
efficiency and data independence capabilities.  In addition, the 
technique appears to be a strong candidate for use in systems 
employed for controlling quality in seamless pipe production.  
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