
DYNAMICALLY PARAMETERIZED ALGORITHMS AND ARCHITECTURES
TO EXPLOIT SIGNAL VARIATIONS

FOR IMPROVED PERFORMANCE AND REDUCED POWER

W. Burleson, R. Tessier, D. Goeckel, S. Swaminathan, P.Jain, J. Euh, S. Venkatraman, V. Thyagarajan

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst

burleson@ecs.umass.edu

ABSTRACT

Signal processing algorithms and architectures can use dynamic reconfig-
uration to exploit variations in signal statistics with the objectives of im-
proved performance and reduced power consumption. Parameters provide
a simple and formal way to characterize incremental changes to a com-
putation and its computing mechanism. This paper examines five param-
eterized computations which are typically implemented in hardware for
a wireless multimedia terminal: 1) motion estimation, 2) discrete cosine
transform, 3) Lempel-Ziv lossless compression, 4) 3D graphics light ren-
dering and 5) Viterbi decoding. Each computation is examined for the ca-
pability of dynamically adapting the algorithm and architecture parameters
to variations in their respective input signals. Dynamically reconfigurable
low-power implementations of each computation are currently underway.

1. INTRODUCTION

Reconfigurable computing has been proposed for signal processing with
various objectives, including high-performance, flexibility, specialization
and most recently adaptability. The actual reconfiguration can take many
forms and is typically characterized by: 1) how fast the reconfiguration can
occur, and 2) how much is actually reconfigured, and finally, 3) how many
possible configurations are used.

In this work we propose that reconfiguration of algorithms and archi-
tectures can be used to improve performance and reduce power consump-
tion. This objective can be achieved in at least two ways: 1) compromising
the resulting quality of the algorithm, or 2) exploiting variations in the
signals and necessary computations required to achieve a given level of
quality. Rabaey [1] proposed a similar objective and has demonstrated it
in a heterogeneous configurable baseband processor [4]. However, they
have focused on reconfiguration for task specialization and standards spe-
cialization utilizing domain-specific processors with varying degrees of
configuration granularity interconnected with hierarchical meshes. Others
have shown the ability to use dynamic reconfiguration to implement virtual
hardware at a number of levels, e.g. [2]. Our work focuses on dynamic re-
configuration of algorithms and architectures to adapt at various rates to
variations in signals and their associated computations. Signal processing
has a rich tradition of adaptive algorithms which estimate statistics of sig-
nals, channels and noise and then modify their computation accordingly.
However this usually results in modification of coefficients rather than sig-
nificant changes in the control flow of the programs. Although traditional
signal processing algorithms are characterized by small programs and lim-
ited control flow changes, recent DSP trends have led to much more com-
plex and data-dependent computation (e.g. MPEG4, adaptive wireless).
This trend has been aided by the widespread use of software-based DSPs
and compilers to implement complex heterogeneous applications. This pa-
per takes a first step at control-flow adaptation and configuration by us-
ing signal statistics to dynamically modify parameters of domain-specific
modules. We explore 5 modules that are important components in a larger
heterogenous system for wireless multimedia.

2. CONFIGURABLE ARCHITECTURES

A variety of recent work has addressed the use of configurable and pro-
grammable architectures for video compression. This work avoids the
completely reconfigurable approach using FPGAs. FPGAs do allow par-
allelism, pipelining, local memory and both functional and data special-
ization. They also allow generic prototyping and are well supported by
design tools and libraries of pre-designed components. However FPGAs
suffer from several disadvantages for low-power DSP [1]. FPGAs are rela-
tively slow at sequential computations when compared to microprocessors
or DSPs. FPGAs are not power efficient due to their high levels of pro-
grammability and lack of support for memory-intensive computation. FP-
GAs also have slow and inefficient reconfiguration mechanisms since they
were not designed to support high-speed dynamic reconfiguration.

Recently it has been widely recognized that heterogeneous domain-
specific reconfigurable architectures may be more appropriate for DSP than
FPGAs [1]. [4] demonstrated functioning silicon for a heterogeneous con-
figurable architecture for low-power video processing including on-chip
low-power FPGA, ARM processor and dedicated circuitry for DCT. Nu-
merous recent commercial offerings from FPGA vendors provide combi-
nations of FPGA, DSP, microcontroller and memories.

In this work we take a longer term approach leveraging trends in VLSI
which will allow much larger systems to be integrated on a chip [3]. We
target our modules to be integrated into a novel adaptive system on a chip
(aSOC) architecture which allows diverse computing modules to be imple-
mented in a tiled structure with a statically scheduled interconnect fabric.
[5] (Figure 1). Some tiles are general-purpose like RISC, DSP, RAM and
FPGA, but this paper focuses on more application-specific blocks which
are needed to achieve high performance levels for Motion Estimation, DCT
and Viterbi decoding. These blocks have typically been implemented in
hardware in previous ASICs hence a large literature of efficient architec-
tures and optimizations exists [11, 8]. However these blocks were typically
designed for worst-case performance and traded off flexibility for perfor-
mance and efficiency. Instead, we use dynamic reconfiguration for both
general-purpose and special-purpose tiles where the specific configuration
mechanism depends on the local architecture of the tile.

TILED LOGIC ARRAY
SINGLE TILE

uProc RISC

SRAM

Switch Memory

Switch
VLIW (Multi−tile)DSP

ME/DCTFPGA

FPGA

ME/DCT Core

RAM

Fig. 1. Tiled Architecture for aSOC

3. CONTENT VARIATION

Video content and its associated processing are highly non-uniform in both
space and time. Figure 2 [6] shows the distributions of the horizontal com-
ponent of the motion vector over 100 frames of two different video se-
quences. It is clear that motion vectors are highly variable but still cor-
related in both space and time. The ’table tennis’ sequence shows how
the motion vector distribution differs in shape due to the changing picture
content (content variation in time). Similarly, Figure 3 shows non-uniform
content variation in space.

Miss America

-16

0

16

pixel
1

50

99

frame
0

400

16

0

16

pixel

Table Tennis

-16

0

16

pixel
1

50

99

frame
0

400

16

0

16

pixel

Fig. 2. Motion Vector Distribution over time in ’Miss America’ and ’table tennis’
video sequences.

Fig. 3. Content Variation in Space. Left - Full search, Right - Logarithmic search

4. DYNAMICALLY PARAMETERIZED ALGORITHMS AND
ARCHITECTURES

Parameters provide a simple and formal way to characterize incremental
changes to a computation and its computing mechanism. Examples of
functional parameters include filter and transform lengths, search spaces,
wordlengths, iteration number and quantization levels. Architectural pa-
rameters do not modify the output bits of the computing mechanism but
allow tradeoffs in area, performance, power and reliability. Functional and
architectural parameters can be bound at varying stages in the design of a
video computation (Figure 4).

The basic idea behind dynamic parameter adjustment is shown in Fig-
ure 5. Functional parameters and architectural parameters are dynamically
adjusted to tune the actual processing to the content variation and changing
user/system requirements. A controller takes as inputs
1) system requirements and constraints (power, performance, etc.),
2) signal statistics from the input signals, and
3) algorithm statistics from post processing of the input signals (e.g. mo-
tion vectors being fed back).

Standard
Time

Configuration
Time

Compile/Boot
Time

usecs...msecs......secs....months...years....

Run−timeDesign TimeIP Time

Fig. 4. The Spectrum of Parameter Binding Times.

Functional parameter adjustment changes the quality of the system out-
put. However processing can gracefully degrade in constrained environ-
ments by exploiting system and end-user tolerance. Figure 6 [6] shows the
variation of compression with the search space size for the ’flower garden’
sequence. A larger search area increases the probability of getting a good

A P

Architecture

Constraints & Objectives
Area, Latency, Power

Algorithm

Precision, Quality,
CompressionSignals

Statistics
Signal &

Statistics
Architecture

Algorithm

Parameters
Architectural Functional

Parameters

Predictor

L

Signal Processing
System

Parameter
Controller

Fig. 5. Dynamic Parameter Adjustment

match during comparison, thus improving compression. Note that there is
a point of diminishing return.

Figure 3 shows an example of dynamic parameter adjustment which
chooses between two different algorithms. The Full-search algorithm re-
sults in a compression ratio of 70:1. The Logarithmic search algorithm
compromises the compression ratio to 50:1 but uses 14 times less computa-
tion. This reduction can be translated directly into further power savings by
allowing a reduced clock rate and power supply. The Logarithmic search
samples the search area and performs computation on fewer blocks.

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0 5 10 15 20 25 30
p

"bpp"

Fig. 6. Bits per pixel vs p (search window size) in ’flower garden’ video sequence.

5. DOMAIN-SPECIFIC MODULES

We are currently implementing five modules using dynamic reconfigura-
tion for low-power. Standard low-power optimizations are performed in
each implementation. The implementations are all targeted to occupy one
of the tiles in the Adaptive System on a Chip (aSOC) (Section 2). In this
paper we focus on the characteristics of each computation which allow
power/quality tradeoffs through rapid reconfiguration.

5.1. Motion Estimation

Motion Estimation compresses the temporal redundancies between con-
secutive frames. The most common algorithm is the Full search algorithm
[8] which compares a macroblock (16x16 pixels) from the current frame
to all the candidate blocks in a search window in the previous frame and
the best match is used to estimate the motion. Figure 7 [6] shows Power
Consumed v/s Search Area Size. The power due to both computations and
I/O (memory accesses) is normalized since, depending on the memory ar-
chitecture, the power of memory accesses can vary over several orders of
magnitude.

In Figure 3 the background shows no variation over consecutive frames.
The ball, hand and the paddle (with some camera zoom) are in motion and
would do well in an exhaustive search. But, it would be wasteful to make
a full search for the matching candidate block in the background, since
it is likely that the first candidate block compared will be close enough.
In this case a Spiral search gives very low latency values and conserves
power. The Spiral search algorithm [8] involves dynamic adjustment of
the search space size, with the search moving spirally around the vector
predictor location until a threshold is passed. The vector predictor location
and the threshold are set by the predictor in Figure 5 (Section 4).

Three different algorithms (chosen by a functional parameter) are im-
plemented in our module architecture: Full search, Spiral search and the 3-
Step search [8]. The predictor takes compression objectives, signal statis-
tics and motion vectors (feedback) as inputs and decides on the algorithm
to be implemented (Section 4). Details of the prediction algorithm are be-
yond the scope of this paper.

Pel subsampling [8] is another functional parameter which is adjusted
to reduce computations during a block comparison. Pels within a block are
correlated with each other and we can use a sub-set of the total number
of pels to provide a good approximation for matching. This gives reduced
computations and memory accesses at the cost of a small matching quality
degradation. The algorithm can also be configured to use Half-Pel mo-
tion estimation, where the previous data block are filtered to half-pel [8]
resolution by bilinear interpolation. Finally, the matching criteria compu-
tation, Sum of Absolute Differences, can also be configured to use shorter
wordlengths.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 2 4 6 8 10 12 14 16
p

normalized power vs. search area(p)

"I.O"
"computation"

Fig. 7. Power vs Search Area

Since Motion Estimation is a highly parallel application it is imple-
mented on a 16x16 pipelined array of processors. An array controller
reconfigures the array elements to use either of the three algorithms, Pel
Subsampling, Half-pel and match value wordlengths. This reconfiguration
can occur at frame rate to track temporal variation, or even faster, to track
intra-frame variations in motion.

A memory adjacent to the PE array is partitioned into blocks which
each store complete macroblocks of current and previous frame data, All
other blocks except the one being accessed are switched off by having their
bitlines and wordlines disabled. This results in a substantial power savings
of both dynamic and static power.

5.2. Discrete Cosine Transform

The Discrete Cosine Transform, particularly the 2D DCT [9], is an integral
part of many image and video compression systems and is typically imple-
mented as two 1D DCTs. The most power efficient DCT design we know
of to date is [10] which uses a variety of mechanisms to exploit content
variation to save power, however none of these involve dynamic reconfig-
uration.

We augment this architecture with two dynamically reconfigurable ca-
pabilities: 1) dynamic threshold and 2) dynamic parallelism. The threshold
requires careful tracking of the DCT data, but is implemented quite simply
as a comparator value. In contrast, the dynamic parallelism is used to trade-
off increased area for higher performance and involves large amounts of

reconfiguration data at relatively slow rates. This can be useful to achieve
an increased data rate, or can be coupled with voltage scaling to achieve
low-power.

Several mechanisms are used to save power based on content varia-
tion. Most Significant Bit Rejection exploits the property that in spa-
tially correlated images the pixel sums are likely to have a number of equal
most significant bits, thus avoiding redundant Read-accumulate compu-
tations (RAC).Row-Column Classification seeks to reduce the overall
arithmetic activity by imposing an upper bound on the number of clock cy-
cles required for the distributed arithmetic operation. Every row or column
input to the 1D DCT is assigned to a class based on user-specified thresh-
olds. This categorization leads to different upper-bounds on the number
of clock cycles for which the RAC will be computed and hence incurs
an imprecision but results in reduced signal activity. The user-specified
thresholds can be set dynamically based on dynamic power requirements
and power/quality trade-offs.Replication of RAC Units allows the DCT
unit to exploit further parallelism by replicating the ROM and accumulator
units. The dot product of 8-bit vectors X and Y takes eight cycles to com-
pute with one RAC unit. However, two RAC units can finish the computa-
tion of the dot product in only four clock cycles. This dynamic parallelism
could also be exploited by scaling the supply voltage to achieve a fixed
performance, leading to quadratically reduced power consumption. The
techniques can be combined to provide a wide range of power/performance
tradeoffs, with varying levels of configuration overhead. The

� � � � � 	 � 	

 � 	 � � � � � � � � � � � "
is being used to synthesize a low-power gate-level

netlist from a parameterized RTL description of the DCT unit.

5.3. Lempel-Ziv Compression

Lempel-Ziv compression is a lossless compression technique used in a
wide variety of data communication and storage applications and also rep-
resents a large class of computations which rely on variable length match-
ing sequences (e.g. Bio-sequence matching, Data mining). Average file
compression is 2:1, but for highly redundant data files, much higher lev-
els can be attained. However, the power savings due to compression may
be offset by the power consumed performing the string matching compu-
tation. Thus, the parameters for the LZ algorithm can be set depending
on the statistics of the data as well as the tradeoffs between compression
ratio and power/resources required to perform the compression. In some
cases, LZ should be replaced with a completely different algorithm which
is better suited to the statistics of the data.

LZ compression has fine-grain parallelism which has been exploited in
a variety of recent systolic array and CAM implementations [7]. The LZ
algorithm has three main parameters that can be dynamically configured:
1) the data type, for example ASCII characters, 2) the longest matching
length, and 3) the length of the dictionary or sliding window. The config-
uration task is similar to that for motion estimation except that the search
occurs in only one dimension and that the search candidate is of variable
length. However the statistics of the longest matching length can easily
be tracked and used to modify the parameter in the compression hardware.
The size of the dictionary can also be modified dynamically by tracking the
LZ pointers to determine how frequently remote sections of the dictionary
result in matches. We are currently developing a configurable LZ prototype
for a radar telemetry application using the Annapolis Wildfire development
system.

5.4. 3D Graphics Light Rendering

Real-time 3D graphics will be a major power consumer in future portable
embedded systems. Fortunately, we can exploit content variation and hu-
man perception to significantly reduce the power consumption of many
aspects of 3D graphics rendering. In [12] we study the impact on power
consumption of novel adaptive versions of the Gouraud and Phong shading
algorithms which consider both the graphics content (e.g. motion, scene
change) and the perception of the user. Novel dynamically configurable
architectures are proposed to efficiently implement the adaptive algorithms
in power-aware systems with gracefully degradable quality.

In [12] we introduce an integrated algorithm and hardware solution
based on human visual perceptual characteristics and dynamically recon-
figurable hardware. Three approaches are explored which are based on
human vision and loosely analogous to video coding techniques. The first
approach is called distributed computation over frames and exploits the af-
ter image phenomenon of the human visual system. The second approach
exploits visual sensitivity to motion. According to the speed and distance
from camera to object, either the Gouraud or Phong shading algorithm is
selected. The third approach is an adaptive computation of the specular
term computation used in Phong. Using the same selection criteria as in
adaptive shading, a reduced computational cost algorithm is used for fast
moving objects. Results based on simulation indicate a power savings of
up to # $ & using short but realistic rendering sequences.

Figure 8 shows how the power consumption between Phong and Gouraud
shading can vary by a factor of 20 for large triangles. If the graphics system
can use the lower quality shading algorithm (Gouraud) in situations where
human perception will allow it, significant power can be saved. We are
currently developing dynamically configurable shading hardware to even-
tually be used in a complete low-power 3D graphics system.

20

18

16

14

12

10

6

8

4

2
20 40 60 80 100 120 140 160

a=1.5

a=2
a=3
a=5

Power Consumption Ratio of Phong/Gouraud

Triangle size (pxles/triangle)

a: PCR of Mutiplier/Adder

P
ow

er
 C

on
su

m
pt

io
n

R
at

io

Fig. 8. Power consumption ratio of Phong shading and Gouraud shading:
one triangle shading

5.5. Adaptive Viterbi Decoding

Convolutional codes which allow for efficient soft-decision decoding are
widely employed in wireless communication systems. As convolutional
codes become more powerful, the complexity of the corresponding de-
coders generally increases. The Viterbi algorithm (VA) [13, 14], which
is the most extensively employed decoding algorithm for convolutional
codes, works well for codes with short constraint length' . However, its
memory requirement and number of computations poses an obstacle when
decoding more powerful codes with large constraint lengths. In order to
overcome this problem, the adaptive Viterbi algorithm (AVA), wherein the
average number of computations per decoded information bit is reduced,
has been developed [16, 15]. We look at AVA for reducing power con-
sumption.

In the adaptive Viterbi algorithm (AVA), the number of survivor paths
retained at every trellis stage varies according to the current path costs
themselves - a path is kept if its current cost is less than() * , , where

() is the current cost of the best path, and, is a parameter [16, 15].
Thus, unlike the standard Viterbi algorithm, which always retains. / 0 2
paths, the number of paths varies over time as shown in Figure 9. Because
the variability in the number of paths can be significant, it is convenient to
also set a maximum number of surviving paths to be4 max. For a given
constraint length, the average number of paths with current cost less than

() * , is generallymuch less than. / 0 2 , implying a significant compu-
tational savingson average on a serial processor over the standard Viterbi
algorithm. However, as can be seen from Figure 9, there is a significant
variation in the instantaneous number of paths which can complicate par-
allelization to achieve real-time performance.

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900 1000

"softcum14.out"

Fig. 9. Number of surviving paths versus decoded symbol number for the
adaptive Viterbi algorithm for a' 6 8 : ,

� 6 2; convolutional code with
4 max set to . / 0 2 (its maximum).

The threshold condition to determine whether a path is retained de-
pends on the parameter, . If a small value of, is selected, it will result in
an increased bit error rate (BER), but theaverage computational complex-
ity will be reduced. On the other hand, if a large value of, is selected,
theaverage number of survivor paths increases and will result in a smaller
BER. Thus, the optimum value of, has to be selected so that the BER is
within allowable limits while matching the size and reconfiguration capa-
bilities of the hardware. Per above,4 max denotes the maximum number
of survivor paths to be retained at any trellis stage. Whereas the choice of,
selects an operating point on theaverage computational complexity versus
BER tradeoff curve, the choice of4 max selects a point on themaximum
computational complexity versus BER tradeoff curve in a similar manner.

The variation in instantaneous computations required makes the AVA
well-suited to exploit the parallelism and dynamic reconfigurability of FP-
GAs. Since FPGA resources can be allocated to either memory or logic,
configuration contents depend heavily on preset values of, and 4) = ? . If
additional survivor paths are required, the amount of path storage needed
increases reducing available area for logic. As a result, fewer parallel logic
functions can be created, potentially limiting decoder performance. In con-
trast, if too few survivor paths are retained, the quality of the decoded signal
may be adversely affected. The variation in instantaneous computations re-
quired makes the AVA well-suited to exploit the dynamic reconfigurability
of the FPGA. In particular, rapid dynamic reconfigurability should allow
us to realize the promise of the significant reduction in average number
of computations (and thus power) versus the standard Viterbi algorithm.
However, it is clear from Figure 9 that reconfiguration must happen at
a rapid rate. Methods of reconfiguration currently being considered are
altering the amount of memory versus computation units and amortizing
complexity over time.

6. CONCLUSIONS

This paper has described preliminary algorithmic and architectural aspects
of a larger project in low-power multimedia. The most significant contri-
bution is probably the outline of a methodology for design and experimen-
tation in the general area of dynamic parameterization as a mechanism for
adapting computing systems to varying computational loads. Remaining
work to be done on this project includes:
1) Implementation at the C, HDL, netlist and physical levels,
2) Power estimation of the modules and the overall architectures including
configuration mechanisms,
3) Techniques for statistically tracking content and channel variation,
4) Full prototyping based on actual workloads using a logic emulator from
IKOS systems.
This work has been partially supported by NSF 9988238. Extended paper
can be found at www.ecs.umass.edu/ece/vspgroup/icassp01

