PARAMETERISED FLOATING-POINT ARITHMETIC ON FPGAS

Allan Jaenicke Wayne Luk
Vision Wizards Limited Department of Computing
The Surrey Technology Centre, 40 Occam Road Imperial College
The Surrey Research Park, Guildford, Surrey UK 180 Queen’s Gate, London UK
ABSTRACT Our intention is to adhere to the structure and features of the

EE 754 Standard to produce implementations compliant with
is standard, while allowing the precision and the range of the

have developed a method. based on the Handel-C lanquage. f format and inclusion of features to be parameterisable. When de-
ave develop ethod, based on the Handel-. language, 0fermining whether to pipeline the implementations, we conclude

produ.cmg technology—mdependent p.|pe||ned. c_ie3|gns that allow that it is necessary so as to support implementations in which high
compile-time parameterisation of design precision and range, anddata throughput is more important than low latency.
optional inclusion of features such as overflow pr.otectic.)n, gradual To support custom arithmetic formats, it is necéssary to allow
#ﬂgerrélgmtﬁ]nddrg:in?ngn;]z(rjwei?noﬁgr]ﬁelnEtEdE ﬂogt;?iﬂhzoi?tcﬂggg the width of the exponent and fraction fields to be set at compile
device achigve 289M|£LOPS Witﬁ IEEE single precision floating- _time. Allowing such pa}rameterisatic_)n of th_e format considerably

’ increases the complexity of the design. It is also necessary to en-

po!nt numbers. leese de5|g_ns are_used in an optimised |mplemen-sure that the parameterisable design does not lead to significantly
tation for computing Two-Dimensional Fast Hartley Transform.

Preliminary results suggest that our implementation is faster thanlarger or slower designs.
many programmable DSP processors and supercomputers. The IEEE 754 Standard specifies a number of features which,

depending on the data to be processed, may not be needed in the
implementation. It is hence desirable to have the capability of se-

This paper describes the parameterisation, implementation and evz{ -
uation of floating-point adders and multipliers for FPGAs. We

1. INTRODUCTION lecting whether to include these features. This would often reduce
_ ) ) i ) . the design size as well as improve the performance.
Floating-point operations are useful for computations involving The following three features have been identified as optional.

large dynamic range, but they require significantly more resourcesgirst, gradual underflow. Gradual underflow is especially costly to
than integer operations. The rapid advance in Field-Programmableimplement for the multiplier, as it requires a full-length shifter in
Gate Array (FPGA) technology makes such devices increasingly the normalisation stage. Gradual underflow is not needed, if it is
attractive for implementing floating-point arithmetic. FPGAs of- gafe to regard values of magnitude smaller thax2® as 0,
fer reduced development time and costs compared to application\yhere g,y depends on the bias of the exponent. Second, overflow
specific integrated circuits, and their flexibility enables field up- protection. Overflow is usually handled by setting the result to a
grade and adaptation of hardware to run-time conditions [10].  specified bit pattern to signal that the result has the value infinity.
Early implementations either involved multiple FPGAs forim-  oyerflow protection is not needed if results are always within the
plementing IEEE 754 single precision floating-point arithmetic [4], range representable by the format used. Third, rounding modes.
or they adopted custom data formats to enable a single-FPGA so4f rounding is not necessary, or if different rounding modes are
lution [9]. To overcome device size restriction, subsequent single- available, this can be chosen at compile time.
FPGA implementations of IEEE 754 Standard employed serial  Of the three features described above, gradual underflow and
arithmetic [_6] or avoided fgature_s, such as supporting gradual uUn-rounding modes are expected to have the largest impact on the
derflow, which are expensive to implement [S]. _ ~logic requirements of the FPUs. When designing the FPUs, it be-
_ Table 1 compares various implementations of floating-point comes necessary to address the issue of pipeline integrity when dif-
arithmetic units on FPGAs. Our implementation, undertaken as ferent combinations of features can be included as proposed here.
a final-year undergraduate project, achieves 28 MFLOPS and im-a modular approach is desirable to avoid design complexity. For
proved performance is expected from further hardware optimisa- jnstance, inclusion of optional features affecting one pipeline stage
tions and advances in FPGA technology. in the implementation should not require significant changes to be
made to other pipeline stages.
2. PARAMETERISATION We have developed methods for producing pipelined floating-
point adders and multipliers with variable number of pipeline stages,
Our main aims of designing floating-point units (FPUs) for re- such that designs with different time/space/feature tradeoffs can
configurable hardware implementation are: (a) to parameterise thebe implemented in hardware. The key difficulties in designing pa-
precision and range of the floating-point format to allow optimis- rameterisable pipeline units include: (a) allowing the number of
ing the FPUs for specific applications, and (b) to support optional pipeline stages to be varied while ensuring pipeline integrity, and
inclusion of features such as gradual underflow and rounding. An (b) developing individual operations such that they will work with
approach meeting these aims will achieve effective design tradeoffvariable width of operands and optional support for algorithmic
between performance and required resources. features, such as gradual underflow.



Table 1. FPGA Implementations of floating-point operations. The speed entries from [9] are based on 16-bit format, while those for this
paper are based on 32-bit format. [5] predicts a performance of 33 MFLOPS for their multiplier on a Xilinx 40250XV FPGA.

Shirazi [9] Louca [6] Ligon [5] This paper
FPGA used Xilinx 4010 Altera FLEX 81188 Xilinx 4020E Xilinx XCV1000
Data format Custom: 16/18 bit  IEEE single precision: 32 bit IEEE single precision: 32 bit Parameterisable: IEEE compliant
Addition bit parallel, 3 stages bit parallel, 3 stages bit parallel, 13 stages bit parallel, 8 stages min.
9.3 MFLOPS 7 MFLOPS 40 MFLOPS 28 MFLOPS
Multiplication  bit parallel, 3 stages digit serial, 6 stages Booth, 3 stages bit parallel, 5 stages min.
6 MFLOPS 2.3 MFLOPS 5.5 MFLOPS 28 MFLOPS

To illustrate our method, we explain below the design of a point adder is implemented as a multi-stage addition, with the
pipelined floating-point multiplier such that the number of pipeline width of adders and hence the number of cycles involved as param-
stages is determined by a user-provided param¥éter eters. Our multiplier includes a parameterisable multiplier-adder

Stage 1: extracts signs, exponents and fractions from the operattile for computing the product of the mantissas. We adopt this ap-
and makes the implicit MSB explicit. If gradual underflow is sup- proach mainly for performance [9], and also it would have been
ported, a check for whether the operands are denormals is neceumbersome to implement, for instance a pipelined multiplier ar-
essary. The outcome will affect the value of the MSB and the ray, in a non-structural language like Handel-C.
exponent, setting both to 1 if a denormal value is detected. A comparison of cost and performance for different parame-

Stage 2taV (N > 2): computes the product of the mantissas. terisations has been conducted to gain an insight into: (i) the cost

Stage (V + 1): evaluates the distance and direction to shift the of the different features that can be included optionally, and (ii)
product; only required if gradual underflow is supported. their effect on performance. For this purpose the following con-

Stage {V + 2): checks if the normalisation shift, determined figurations for each FPU are considered. (a) Basic configuration:
to be necessary in the previous stage, is indeed allowed, so thaglenormals are set to zero. (b) Overflow configuration: the Ba-
the exponent will not underflow if the mantissa is left shifted the sic configuration plus overflow protection. (c) Gradual Underflow:
required amount; only required if gradual underflow is supported. the Basic configuration plus gradual underflow. (d) Round: the Ba-

Stage {V + 3): provides the normalisation shift, and if round- ~ Sic configuration plus IEEE round to nearest rounding. (e) Com-
ing is required then the round and sticky bits are updated to reflectplete: the Basic configuration plus overflow protection, gradual
the effect of the normalisation shift; only required if gradual un- underflow and IEEE round to nearest rounding.

derflow is supported. Different configurations of the arithmetic operation of each
Stage (V+1/4): performs rounding; only required ifrounding  FPU have also been considered, using the Basic configuration and
is supported. the IEEE single precision format. Implementation costs are given

Stage (V+1/4/5): writes the result to the destination register. Dy: (&) device independent figures from the Handel-C compiler,
If gradual underflow is not supported, then a right-shift must be and (b) device specific figures from the Xilinx tools which pro-
performed if there is a carry-out from the multiplier. duce an FPGA configuration file from the output of the Handel-C

A floating-point multiplier based on the above pipeline stage compiler. The Handel-C compiler provides two useful figg_res for
division will have at least 3 stages, when the multiplication takes a fésource usage: the number of gates and latches. The Xilinx tools

single cycle and gradual underflow and rounding are not included. Provide the number of 4-input lookup tables (LUTs) and flip-flops
(Figure 1) as well as the number of Slices (Figure 2) used by a

design in a Xilinx XCV1000 FPGA. Standard settings have been
3. IMPLEMENTATION used in both the Handel-C compiler and the Xilinx tools.

The designs shown in Table 1, except ours, were produced us-
ing the VHDL language. We have considered three languages 100
for developing our parameterised FPUs: VHDL, Pebble [7] and 0
Handel-C [2],[10]. VHDL and Pebble support structural hardware AN

description, while Handel-C captures designs similar in style to :‘l:I; | |mes
the C language. Handel-C is chosen because: (a) we wish to fo- '|T|T I m-inpist LUTs |

cus on algorithmic level parameterisation and optimisation, and
a software-style language appears best for this purpose; (b) the
Handel-C compiler contains interface libraries for the RC1000-PP
FPGA system [2] which simplified our implementation. 5o bk Al)-bk

The FPUs implemented have the characteristics shown in Ta- bl formed foeTren
ble 1. The implementation addresses all the issues discussed in
the preceding section. They can be fully pipelined and can support
both custom formats and the standard IEEE formats. Fig. 1. The costin number of LUTs and flip-flops for floating-point

The arithmetic operations in the FPUs have been imp|ementede|tip|iC3ti0n using the Basic configuration, from Xilinx tools.
using the standard Handel-C adders and multipliers. Our floating-




The cost of implementing a floating-point multiplier with dif-  programmable FFT processors, and the results are encouraging.
ferent floating-point bit-size formats is shown in Figure 1. The The target for our implementation is a Xilinx XCV1000 FPGA
16-bit format uses a 4-bit exponent and an 11-bit fraction, while in an RC1000-PP system, containing four banks of 2MB SRAM.
the 32-bit format is equivalent to the IEEE single precision format, Due to the cost of setting up DMA channels between the FPGA
namely 8-bit exponent and 23-bit fraction. The 40-bit format uses board and the host PC, it has been decided that the entire FHT
a 10-bit exponent and a 29-bit fraction. would be implemented in hardware. This means that to process the

The costs of different optional features for floating-point mul- data set, the FPGA would need to have access to all four memory
tipliers are shown in Figure 2. There is significant cost for adding banks while computing the FHT, not allowing the interleaving of
gradual underflow, since a shifter is required for normalising the computation and data transfer.
product. The normalisation units contribute significantly to the The first stage is split from the subsequent stages as it only
cost of the adder which uses a barrel-shifter, and a cheaper imple-uses the add/subtract unit. Due to memory access constraints, we
mentation should be sought. Moreover, inclusion of proper round- are limited to reading one operand from each memory bank per
ing adds 10-15% to the cost, which is similar to the cost of adding cycle; it would be inefficient to process a single row of data at a
rounding in the adder implementation. time with the FPUs. Our solution is to interleave the processing of
two rows from two memory banks, reading a pair of operands and
writing a pair of results every cycle.

An elegant solution has been found which allows us to fuse
the transpose, permutation and the first stage of the FHT. We have
observed that a special transpose operation is not required, since
OLdsbxi . .

‘ 4‘7 Vit 4000 Shom the same effect can be obtained by addressing the rows as columns
|_|_|—| | and vice versa in the memory space. Examination of the permu-
tation table reveals that the first stage, which always computes the
Crarows  Ordedl FBowd  Campirls addition and subtraction of two adjacent pairs of operands, does
Unchirian not have to be performed interleaved if combined with both the
orlgureien transpose and the permutation. The permutation function always
replaces the pairs of operands needed by the add/subtract opera-
tion in the first stage with one operand from the lower half of the
row, and the other operand from the upper half. By combining the
first stage with both the transpose and the permutation operation,
these accesses to the two halves of a row become accesses to two
different halves of a column, involving two memory banks.
) . o . . Another improvement has been achieved by iterating over all

As with adders, different multiplier configurations have been the rows for each state of the control variables rather than com-

observed to have similar longest delay paths. Various parameterputing the FHT of two rows at a time. This optimisation reduces

isations of the arithmetic operation have been tried. We divide the number of cycles spent updating control variables, halving the
each input intok partitions and use a multiplier-adder tree with  nymper of cycles required to compute the FHT.

k? multipliers and2® — 1 adders, where each multiplier has two
n/k-bit inputs and on@n/k-bit output. The implementation cost
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Fig. 2. Floating-point multiplier implementation: the cost of sup-
port for overflow is negligible, while support for gradual underflow
nearly doubles its size. Note that a logarithmic scale is used.

A further optimisation concerning memory access has been
: | _ y - =1 applied. We have observed that the inner most loop contains two
rises rapidly withk, however: s|x’.[y-foutj3-.bltmult_lpl_lel’S are a_bout operations which use an identical pair of operands. One of these
75% more costly than four 12-bit multipliers. This increase in cost operations is conditional upon two control variables being unequal.
is partly due to an increase in the number of latches needed as th?)uring the iterations where both are executed, which is the major-
number of pipeline stages increased from 5 to 9. _ity, the two operations could be interleaved such that the operands

Our current implementations do not involve FPGA-specific gre not read from memory twice. This enables us to read a third
optimisations, making them portable across different devices. S“Choperand required by the operation.
optimisations, while likely to be tedious and error-prone, should We employ a Double Loop approach instead of using shift reg-

improve performance and device utilisation. For instance, it has e to delay control data specifying the destination address of
been reported that 4-2 adders and delayed addition techniques work, ¢ iis of computations carried out by the FPUs. This approach

well for FPGAs, achieving a clock speed of 97 MHz on a Xilinx i qves two similar implementations of the same loop construct,
XCV100E (_jewce for 32-p|t floating-point accumulation with over- .o starting execution delayed by the number of cycles given by
flow detection and handling [8]. the latency of the FPU, from which it reads the results. One of
the loops then issues operands to the FPU, using the state of its
4. CASE STUDY: 2D FAST HARTLEY TRANSFORM control variables to index RAM reads, and the other receives the
results from the FPU and writes them into two RAMs using its
This section describes the use of our floating-point building blocks local control variables to index RAM writes.
forimplementing the Fast Hartley Transform (FHT) on a XCV1000 Our FHT implementation provides a case study for analysing
FPGA in an RC1000-PP system [2]. The FHT can be consideredthe suitability of FPGAs for floating-point arithmetic. The cost of
an optimisation of the FFT when only real values are required [3]. the implementation varies with the size of the data set, as the width
Our FHT processor achieves a significant reduction in the numberof the control variables changes and different amounts of on-chip
of clock cycles by accelerating the updating of the control vari- RAM is needed to store the trigonometric and permutation tables.
ables, and by fusing the transpose, permutation and the first stage We have found that the implementations scale well in terms
of the FHT. Its performance is compared to various dedicated andof logic and flip-flop requirements. For the IEEE single precision



format with 32-bit data, the FHT compiled for 102dlementdata  and the RC-1000PP system provides a powerful vehicle for rapid
sets uses around 59% of Slices in a Xilinx XCV1000. The on- prototyping hardware designs; it enables, for instance, final-year
chip RAM requirements are affected by the size of the data set, undergraduate projects such as this project to involve complex cir-
as they are used to store the trigonometric and permutation ta-cuit implementations. (c) There is much scope for improving our

bles, AnM?-element data set will require twif/4 word P-bit design, such as using a faster FPGA, including device-specific op-
of RAMs to store the trigonometric tables, whdras the width of timisations [8], and having multiple FHT processors and custom
the floating-point format used, and o word log M-bit RAM external interfaces on the same chip if desired.

for the permutation table. As there are 131,072 Block RAM bits

in the Xilinx XCV1000, FHT implementations with up #0962 5. CONCLUSION

elements requiring 115 Kbits can be accommodated in the chip.

As expected, the number of cycles that our processor takeswe have presented an approach for developing parameterised FPUs
to compute the 2D FHT is roughly proportional @(N log N), for hardware implementation. Our designs can be used as build-
the number of operations required to perform the calculation. In ing blocks for floating-point applications customised to meet user
calculating the 2D FHT of small data sets, more cycles are lost constraints, for instance by varying the precision, rounding modes,
relative to the size of the data set than in the larger data sets. Thisor the number of pipeline stages. Current and future work includes
is due to the implementation waiting for the FPU pipeline to empty optimising our hardware implementation to exploit FPGA-specific
before moving on to the next state of control variables. features, and developing tools which can automatically produce

Our design is scalable, since more rows can be processed irdesigns that meet given numerical characteristics as well as per-
parallel. Computation time can be reduced by 45-50% by having formance, size and power consumption requirements.
eight 1IMB RAMs rather than four 2MB RAMSs, and instantiating
another set of FPUs. Such systematic halving can be continued aé
long as sufficient logic is available for the additional FPUs.

The current implementation can be clocked at around 22 MHz
producing the 2D FHT of 40242-element data set in around 0.52
second. Table 2 compares it against other systems from [1] and
a lab PC. Our 2D design performs 2048 1D FHT transforms of a
1024-point data set and a data transpose in 520 ms, so the figure of
254 s (=520ms/2048) is an overestimate of the time for each 1K- 6. REFERENCES
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