
PARAMETERISED FLOATING-POINT ARITHMETIC ON FPGAS

Allan Jaenicke

Vision Wizards Limited
The Surrey Technology Centre, 40 Occam Road
The Surrey Research Park, Guildford, Surrey UK

Wayne Luk

Department of Computing
Imperial College

180 Queen’s Gate, London UK

ABSTRACT

This paper describes the parameterisation, implementation and eval-
uation of floating-point adders and multipliers for FPGAs. We
have developed a method, based on the Handel-C language, for
producing technology-independent pipelined designs that allow
compile-time parameterisation of design precision and range, and
optional inclusion of features such as overflow protection, gradual
underflow and rounding modes of the IEEE floating-point format.
The resulting designs, when implemented in a Xilinx XCV1000
device, achieve 28 MFLOPs with IEEE single precision floating-
point numbers. These designs are used in an optimised implemen-
tation for computing Two-Dimensional Fast Hartley Transform.
Preliminary results suggest that our implementation is faster than
many programmable DSP processors and supercomputers.

1. INTRODUCTION

Floating-point operations are useful for computations involving
large dynamic range, but they require significantly more resources
than integer operations. The rapid advance in Field-Programmable
Gate Array (FPGA) technology makes such devices increasingly
attractive for implementing floating-point arithmetic. FPGAs of-
fer reduced development time and costs compared to application-
specific integrated circuits, and their flexibility enables field up-
grade and adaptation of hardware to run-time conditions [10].

Early implementations either involved multiple FPGAs for im-
plementing IEEE 754 single precision floating-point arithmetic [4],
or they adopted custom data formats to enable a single-FPGA so-
lution [9]. To overcome device size restriction, subsequent single-
FPGA implementations of IEEE 754 Standard employed serial
arithmetic [6] or avoided features, such as supporting gradual un-
derflow, which are expensive to implement [5].

Table 1 compares various implementations of floating-point
arithmetic units on FPGAs. Our implementation, undertaken as
a final-year undergraduate project, achieves 28 MFLOPS and im-
proved performance is expected from further hardware optimisa-
tions and advances in FPGA technology.

2. PARAMETERISATION

Our main aims of designing floating-point units (FPUs) for re-
configurable hardware implementation are: (a) to parameterise the
precision and range of the floating-point format to allow optimis-
ing the FPUs for specific applications, and (b) to support optional
inclusion of features such as gradual underflow and rounding. An
approach meeting these aims will achieve effective design tradeoff
between performance and required resources.

Our intention is to adhere to the structure and features of the
IEEE 754 Standard to produce implementations compliant with
this standard, while allowing the precision and the range of the
format and inclusion of features to be parameterisable. When de-
termining whether to pipeline the implementations, we conclude
that it is necessary so as to support implementations in which high
data throughput is more important than low latency.

To support custom arithmetic formats, it is necessary to allow
the width of the exponent and fraction fields to be set at compile
time. Allowing such parameterisation of the format considerably
increases the complexity of the design. It is also necessary to en-
sure that the parameterisable design does not lead to significantly
larger or slower designs.

The IEEE 754 Standard specifies a number of features which,
depending on the data to be processed, may not be needed in the
implementation. It is hence desirable to have the capability of se-
lecting whether to include these features. This would often reduce
the design size as well as improve the performance.

The following three features have been identified as optional.
First, gradual underflow. Gradual underflow is especially costly to
implement for the multiplier, as it requires a full-length shifter in
the normalisation stage. Gradual underflow is not needed, if it is
safe to regard values of magnitude smaller than 1.0� 2

�
MIN as 0,

where
�

MIN depends on the bias of the exponent. Second, overflow
protection. Overflow is usually handled by setting the result to a
specified bit pattern to signal that the result has the value infinity.
Overflow protection is not needed if results are always within the
range representable by the format used. Third, rounding modes.
If rounding is not necessary, or if different rounding modes are
available, this can be chosen at compile time.

Of the three features described above, gradual underflow and
rounding modes are expected to have the largest impact on the
logic requirements of the FPUs. When designing the FPUs, it be-
comes necessary to address the issue of pipeline integrity when dif-
ferent combinations of features can be included as proposed here.
A modular approach is desirable to avoid design complexity. For
instance, inclusion of optional features affecting one pipeline stage
in the implementation should not require significant changes to be
made to other pipeline stages.

We have developed methods for producing pipelined floating-
point adders and multipliers with variable number of pipeline stages,
such that designs with different time/space/feature tradeoffs can
be implemented in hardware. The key difficulties in designing pa-
rameterisable pipeline units include: (a) allowing the number of
pipeline stages to be varied while ensuring pipeline integrity, and
(b) developing individual operations such that they will work with
variable width of operands and optional support for algorithmic
features, such as gradual underflow.



Table 1. FPGA Implementations of floating-point operations. The speed entries from [9] are based on 16-bit format, while those for this
paper are based on 32-bit format. [5] predicts a performance of 33 MFLOPS for their multiplier on a Xilinx 40250XV FPGA.

Shirazi [9] Louca [6] Ligon [5] This paper
FPGA used Xilinx 4010 Altera FLEX 81188 Xilinx 4020E Xilinx XCV1000
Data format Custom: 16/18 bit IEEE single precision: 32 bit IEEE single precision: 32 bit Parameterisable: IEEE compliant
Addition bit parallel, 3 stages bit parallel, 3 stages bit parallel, 13 stages bit parallel, 8 stages min.

9.3 MFLOPS 7 MFLOPS 40 MFLOPS 28 MFLOPS
Multiplication bit parallel, 3 stages digit serial, 6 stages Booth, 3 stages bit parallel, 5 stages min.

6 MFLOPS 2.3 MFLOPS 5.5 MFLOPS 28 MFLOPS

To illustrate our method, we explain below the design of a
pipelined floating-point multiplier such that the number of pipeline
stages is determined by a user-provided parameter� .

Stage 1: extracts signs, exponents and fractions from the operand
and makes the implicit MSB explicit. If gradual underflow is sup-
ported, a check for whether the operands are denormals is nec-
essary. The outcome will affect the value of the MSB and the
exponent, setting both to 1 if a denormal value is detected.

Stage 2 to� ( � � � ): computes the product of the mantissas.
Stage (� � 
 ): evaluates the distance and direction to shift the

product; only required if gradual underflow is supported.
Stage (� � � ): checks if the normalisation shift, determined

to be necessary in the previous stage, is indeed allowed, so that
the exponent will not underflow if the mantissa is left shifted the
required amount; only required if gradual underflow is supported.

Stage (� � � ): provides the normalisation shift, and if round-
ing is required then the round and sticky bits are updated to reflect
the effect of the normalisation shift; only required if gradual un-
derflow is supported.

Stage (� � 
 � � ): performs rounding; only required if rounding
is supported.

Stage (� � 
 � � � � ): writes the result to the destination register.
If gradual underflow is not supported, then a right-shift must be
performed if there is a carry-out from the multiplier.

A floating-point multiplier based on the above pipeline stage
division will have at least 3 stages, when the multiplication takes a
single cycle and gradual underflow and rounding are not included.

3. IMPLEMENTATION

The designs shown in Table 1, except ours, were produced us-
ing the VHDL language. We have considered three languages
for developing our parameterised FPUs: VHDL, Pebble [7] and
Handel-C [2],[10]. VHDL and Pebble support structural hardware
description, while Handel-C captures designs similar in style to
the C language. Handel-C is chosen because: (a) we wish to fo-
cus on algorithmic level parameterisation and optimisation, and
a software-style language appears best for this purpose; (b) the
Handel-C compiler contains interface libraries for the RC1000-PP
FPGA system [2] which simplified our implementation.

The FPUs implemented have the characteristics shown in Ta-
ble 1. The implementation addresses all the issues discussed in
the preceding section. They can be fully pipelined and can support
both custom formats and the standard IEEE formats.

The arithmetic operations in the FPUs have been implemented
using the standard Handel-C adders and multipliers. Our floating-

point adder is implemented as a multi-stage addition, with the
width of adders and hence the number of cycles involved as param-
eters. Our multiplier includes a parameterisable multiplier-adder
tree for computing the product of the mantissas. We adopt this ap-
proach mainly for performance [9], and also it would have been
cumbersome to implement, for instance a pipelined multiplier ar-
ray, in a non-structural language like Handel-C.

A comparison of cost and performance for different parame-
terisations has been conducted to gain an insight into: (i) the cost
of the different features that can be included optionally, and (ii)
their effect on performance. For this purpose the following con-
figurations for each FPU are considered. (a) Basic configuration:
denormals are set to zero. (b) Overflow configuration: the Ba-
sic configuration plus overflow protection. (c) Gradual Underflow:
the Basic configuration plus gradual underflow. (d) Round: the Ba-
sic configuration plus IEEE round to nearest rounding. (e) Com-
plete: the Basic configuration plus overflow protection, gradual
underflow and IEEE round to nearest rounding.

Different configurations of the arithmetic operation of each
FPU have also been considered, using the Basic configuration and
the IEEE single precision format. Implementation costs are given
by: (a) device independent figures from the Handel-C compiler,
and (b) device specific figures from the Xilinx tools which pro-
duce an FPGA configuration file from the output of the Handel-C
compiler. The Handel-C compiler provides two useful figures for
resource usage: the number of gates and latches. The Xilinx tools
provide the number of 4-input lookup tables (LUTs) and flip-flops
(Figure 1) as well as the number of Slices (Figure 2) used by a
design in a Xilinx XCV1000 FPGA. Standard settings have been
used in both the Handel-C compiler and the Xilinx tools.

Fig. 1. The cost in number of LUTs and flip-flops for floating-point
multiplication using the Basic configuration, from Xilinx tools.



The cost of implementing a floating-point multiplier with dif-
ferent floating-point bit-size formats is shown in Figure 1. The
16-bit format uses a 4-bit exponent and an 11-bit fraction, while
the 32-bit format is equivalent to the IEEE single precision format,
namely 8-bit exponent and 23-bit fraction. The 40-bit format uses
a 10-bit exponent and a 29-bit fraction.

The costs of different optional features for floating-point mul-
tipliers are shown in Figure 2. There is significant cost for adding
gradual underflow, since a shifter is required for normalising the
product. The normalisation units contribute significantly to the
cost of the adder which uses a barrel-shifter, and a cheaper imple-
mentation should be sought. Moreover, inclusion of proper round-
ing adds 10–15% to the cost, which is similar to the cost of adding
rounding in the adder implementation.

Fig. 2. Floating-point multiplier implementation: the cost of sup-
port for overflow is negligible, while support for gradual underflow
nearly doubles its size. Note that a logarithmic scale is used.

As with adders, different multiplier configurations have been
observed to have similar longest delay paths. Various parameter-
isations of the arithmetic operation have been tried. We divide
each input into� partitions and use a multiplier-adder tree with

� � multipliers and� �  
 adders, where each multiplier has two
" � � -bit inputs and one� " � � -bit output. The implementation cost
rises rapidly with� , however: sixty-four 3-bit multipliers are about
75% more costly than four 12-bit multipliers. This increase in cost
is partly due to an increase in the number of latches needed as the
number of pipeline stages increased from 5 to 9.

Our current implementations do not involve FPGA-specific
optimisations, making them portable across different devices. Such
optimisations, while likely to be tedious and error-prone, should
improve performance and device utilisation. For instance, it has
been reported that 4-2 adders and delayed addition techniques work
well for FPGAs, achieving a clock speed of 97 MHz on a Xilinx
XCV100E device for 32-bit floating-point accumulation with over-
flow detection and handling [8].

4. CASE STUDY: 2D FAST HARTLEY TRANSFORM

This section describes the use of our floating-point building blocks
for implementing the Fast Hartley Transform (FHT) on a XCV1000
FPGA in an RC1000-PP system [2]. The FHT can be considered
an optimisation of the FFT when only real values are required [3].
Our FHT processor achieves a significant reduction in the number
of clock cycles by accelerating the updating of the control vari-
ables, and by fusing the transpose, permutation and the first stage
of the FHT. Its performance is compared to various dedicated and

programmable FFT processors, and the results are encouraging.
The target for our implementation is a Xilinx XCV1000 FPGA

in an RC1000-PP system, containing four banks of 2MB SRAM.
Due to the cost of setting up DMA channels between the FPGA
board and the host PC, it has been decided that the entire FHT
would be implemented in hardware. This means that to process the
data set, the FPGA would need to have access to all four memory
banks while computing the FHT, not allowing the interleaving of
computation and data transfer.

The first stage is split from the subsequent stages as it only
uses the add/subtract unit. Due to memory access constraints, we
are limited to reading one operand from each memory bank per
cycle; it would be inefficient to process a single row of data at a
time with the FPUs. Our solution is to interleave the processing of
two rows from two memory banks, reading a pair of operands and
writing a pair of results every cycle.

An elegant solution has been found which allows us to fuse
the transpose, permutation and the first stage of the FHT. We have
observed that a special transpose operation is not required, since
the same effect can be obtained by addressing the rows as columns
and vice versa in the memory space. Examination of the permu-
tation table reveals that the first stage, which always computes the
addition and subtraction of two adjacent pairs of operands, does
not have to be performed interleaved if combined with both the
transpose and the permutation. The permutation function always
replaces the pairs of operands needed by the add/subtract opera-
tion in the first stage with one operand from the lower half of the
row, and the other operand from the upper half. By combining the
first stage with both the transpose and the permutation operation,
these accesses to the two halves of a row become accesses to two
different halves of a column, involving two memory banks.

Another improvement has been achieved by iterating over all
the rows for each state of the control variables rather than com-
puting the FHT of two rows at a time. This optimisation reduces
the number of cycles spent updating control variables, halving the
number of cycles required to compute the FHT.

A further optimisation concerning memory access has been
applied. We have observed that the inner most loop contains two
operations which use an identical pair of operands. One of these
operations is conditional upon two control variables being unequal.
During the iterations where both are executed, which is the major-
ity, the two operations could be interleaved such that the operands
are not read from memory twice. This enables us to read a third
operand required by the operation.

We employ a Double Loop approach instead of using shift reg-
isters to delay control data specifying the destination address of
results of computations carried out by the FPUs. This approach
involves two similar implementations of the same loop construct,
one starting execution delayed by the number of cycles given by
the latency of the FPU, from which it reads the results. One of
the loops then issues operands to the FPU, using the state of its
control variables to index RAM reads, and the other receives the
results from the FPU and writes them into two RAMs using its
local control variables to index RAM writes.

Our FHT implementation provides a case study for analysing
the suitability of FPGAs for floating-point arithmetic. The cost of
the implementation varies with the size of the data set, as the width
of the control variables changes and different amounts of on-chip
RAM is needed to store the trigonometric and permutation tables.

We have found that the implementations scale well in terms
of logic and flip-flop requirements. For the IEEE single precision



format with 32-bit data, the FHT compiled for 1024� element data
sets uses around 59% of Slices in a Xilinx XCV1000. The on-
chip RAM requirements are affected by the size of the data set,
as they are used to store the trigonometric and permutation ta-
bles, An $ � -element data set will require two$ � � word & -bit
of RAMs to store the trigonometric tables, where& is the width of
the floating-point format used, and one$ word ' ( * $ -bit RAM
for the permutation table. As there are 131,072 Block RAM bits
in the Xilinx XCV1000, FHT implementations with up to� , - . �

elements requiring 115 Kbits can be accommodated in the chip.
As expected, the number of cycles that our processor takes

to compute the 2D FHT is roughly proportional to/ 0 � ' ( * � 4 ,
the number of operations required to perform the calculation. In
calculating the 2D FHT of small data sets, more cycles are lost
relative to the size of the data set than in the larger data sets. This
is due to the implementation waiting for the FPU pipeline to empty
before moving on to the next state of control variables.

Our design is scalable, since more rows can be processed in
parallel. Computation time can be reduced by 45–50% by having
eight 1MB RAMs rather than four 2MB RAMs, and instantiating
another set of FPUs. Such systematic halving can be continued as
long as sufficient logic is available for the additional FPUs.

The current implementation can be clocked at around 22 MHz,
producing the 2D FHT of a
 , � � � -element data set in around 0.52
second. Table 2 compares it against other systems from [1] and
a lab PC. Our 2D design performs 2048 1D FHT transforms of a
1024-point data set and a data transpose in 520 ms, so the figure of
254 8 s (=520ms/2048) is an overestimate of the time for each 1K-
point transform. However, the other systems (except the Pentium)
compute the FFT, which involves twice as many computations as
the FHT. Dedicated FFT processors, however, may not be able
to take advantage of the reduced computations in the FHT unless
designed to do so. We have not included the FHT processor in [3]
since it is based on fixed-point arithmetic with block-floating-point
scaling.

We observe the following from Table 2. (a) Our FHT proces-
sor has the lowest clock speed, while it is faster than most pro-
grammable DSP and supercomputer implementations. Moreover,
unlike some FPGA implementations [5], our design is compliant
with IEEE 754 format. (b) Handel-C has proved useful particularly
for algorithmic level optimisations. The combination of Handel-C

Table 2. Performance comparison of our FHT processor with
other systems in [1], which compute the FFT. The first two are
dedicated FFT devices, while the rest are programmable DSP pro-
cessors or supercomputers. The Pentium, in a PC, runs 2D FHT.

Processor Time for 1K-point Clock
transform (8 9 ) Speed (MHz)

DoubleBW powerFFT 10 128
Texas Mem Sys TM-66 65 50
Our FHT Processor 254 22
Sharc ADSP-21061 460 40
Pentium-III 469 800
Cray Y-MP (1-CPU) 600 159
Cray 2 (1-CPU) 1000 244
TMS 320C40 1298 60
Lucent DSP16000 2110 80

and the RC-1000PP system provides a powerful vehicle for rapid
prototyping hardware designs; it enables, for instance, final-year
undergraduate projects such as this project to involve complex cir-
cuit implementations. (c) There is much scope for improving our
design, such as using a faster FPGA, including device-specific op-
timisations [8], and having multiple FHT processors and custom
external interfaces on the same chip if desired.

5. CONCLUSION

We have presented an approach for developing parameterised FPUs
for hardware implementation. Our designs can be used as build-
ing blocks for floating-point applications customised to meet user
constraints, for instance by varying the precision, rounding modes,
or the number of pipeline stages. Current and future work includes
optimising our hardware implementation to exploit FPGA-specific
features, and developing tools which can automatically produce
designs that meet given numerical characteristics as well as per-
formance, size and power consumption requirements.

Acknowledgements. Many thanks to George Constantinides,
Roger Gook, Karel Hruda, Philip McLauchlan, Oskar Mencer,
Nabeel Shirazi and Tim Todman for their comments. The sup-
port of Celoxica Limited, UK Engineering and Physical Sciences
Research Council (Grant number GR/54356) and Xilinx, Inc. is
gratefully acknowledged.

6. REFERENCES

[1] Baas, B.M.FFT Chip Comparisons,
http://www-star.stanford.edu/; bbaas/fftinfo.html.

[2] Celoxica Limited, http://www.celoxica.com.

[3] Erickson, A.C. and Fagin B.S. “Calculating the FHT in hard-
ware”, IEEETrans. on Sig. Proc., 1992, pp. 1341–1353.

[4] Fagin, B. and Renard, C. “FPGAs and floating point arith-
metic”, IEEE Trans. on VLSI, 1994, pp. 365–367.

[5] Ligon III, W.B. et al. “A re-evaluation of the practicality of
floating-point operations on FPGAs”,Proc. IEEE Symp. on
FPGAs for Custom Comput. Machines, 1998, pp. 206–215.

[6] Louca, L. et al. “Implementation of IEEE single preci-
sion floating-point addition and multiplication on FPGAs”,
Proc. IEEE Symp. on FPGAs for Custom Comput. Machines,
1996, pp. 107–116.

[7] Luk, W. and McKeever, S. “Pebble: a language for
parametrised and reconfigurable hardware design”,Field-
Programmable Logic and Applications, LNCS 1482,
Springer, 1998, pp. 9–18.

[8] Luo, Z. and Martonosi, M. “Accelerating pipelined integer
and floating-point accumulations in configurable hardware
with delayed addition techniques”,IEEE Trans. on Comput.,
2000, pp. 208–218.

[9] Shirazi, N., Walters, A. and Athanas, P. “Quantitative analy-
sis of floating-point arithmetic on FPGA based custom com-
puting machines”,Proc. IEEE Symp. on FPGAs for Custom
Comput. Machines, 1995, pp. 155–162.

[10] Styles, H. and Luk, W. “Customising graphics applica-
tions: techniques and programming interface”,Proc. IEEE
Symp. on Field-Programmable Custom Computing Ma-
chines, 2000, pp. 77–87.


